首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Our previous studies (Boscan P, Kasparov S, and Paton JF. Eur J Neurosci 16: 907-920, 2002) showed that activation of somatic afferents attenuated the baroreceptor reflex via neurokinin type 1 (NK(1)) and GABA(A) receptors within the nucleus of the solitary tract (NTS). The periaqueductal gray matter (PAG) can also depress baroreceptor reflex function and project to the NTS. In the present study, we have tested the possibility that the dorsolateral (dl)-PAG projects to the NTS neurons that also respond to somatic afferent input. In an in situ, arterially perfused, unanesthetized decerebrate rat preparation, somatic afferents (brachial plexus), cervical spinal cord, and dl-PAG were stimulated electrically, whereas NTS neurons were recorded extracellularly. From 45 NTS neurons excited by either brachial plexus or dl-PAG stimulation, 41 received convergence excitatory inputs from both afferents. Onset latency and evoked peak discharge frequency from brachial plexus afferents were 39.4 +/- 4.7 ms and 10.7 +/- 1.1 Hz, whereas this was 43.9 +/- 6.4 ms and 7.9 +/- 1 Hz, respectively, following dl-PAG stimulation. As revealed by using a paired pulse stimulation protocol, monosynaptic connections were found in 9 of 36 neurons tested from both spinal cord and dl-PAG. We tested NK(1)-receptor sensitivity in 38 neurons that received convergent inputs from brachial plexus/PAG. Fifteen neurons were sensitive to selective antagonism of NK(1) receptors. CP-99994, the NK(1) antagonist, failed to alter ongoing firing activity but reduced the evoked peak discharge frequency following stimulation of both brachial plexus (from 12.3 +/- 1.8 to 7.2 +/- 1.3 Hz; P < 0.01) and PAG (from 7.8 +/- 1.5 to 4.5 +/- 1 Hz; P < 0.01). We conclude that 1) somatic brachial and PAG afferents can converge onto single NTS neurons; 2) this convergence occurs via either direct or indirect pathways; and 3) NK(1) receptors are activated by some of these inputs.  相似文献   

2.
The possibility that substances P (SP) is a neurotransmitter of baro- and chemoreceptor afferents in the rat was investigated. SP-like immunoreactivity (SP-I) was analyzed quantitatively by radioimmunoassay in various levels of the nucleus tractus solitarius (NTS), the site of termination of these afferents while SP-containing afferent neurons were studied in various portions of the peripheral pathways by immunocytochemistry. It was found that the NTS contained significant amounts of SP-I and that unilateral removal of the nodose ganglia reduces the SP-I content of those portions of the NTS known to receive vagal afferents. In addition, SP-I was visualized in discrete fibers in the tunica adventitia of the aortic arch and carotid sinus regions, the vagus nerve and nodose ganglia. These results in the rat are consistent with our previous studies in the cat and provide further evidence that SP is contained within baro- and chemoreceptor afferent nerves.  相似文献   

3.
The nucleus tractus solitarius (NTS), the site of termination of visceral afferents of the ninth and tenth cranial nerves, mediates and integrates the reflex cardiovascular and noncardiovascular responses to stimulation of cardiopulmonary and other visceral afferents. On injection into the NTS, the amino acid L-glutamate (L-Glu) and its excitatory analogs produce dose-dependent hypotension and bradycardia, a baroreceptor reflex-like response. The L-Glu antagonist glutamate diethyl ester blocks the response both to L-Glu and to baroreceptor reflex activation. Electrical stimulation of vagal c-fibers selectively releases 3H into a push-pull cannula after preloading of the NTS with L-[3H]Glu or D-[3H]aspartate. The NTS contains a high-affinity uptake system for inactivation of L-Glu. Like L-Glu, acetylcholine and serotonin, which are also found in the NTS, both elicit a baroreceptor reflex-like response when microinjected into the NTS. However, cholinergic and serotonergic antagonists do not block the baroreceptor reflex. A glutamatergic neuron (or neurons) projecting into NTS appears to be an integral part of the baroreceptor reflex arc.  相似文献   

4.
Pain and neurotransmitters   总被引:5,自引:0,他引:5  
1. To study physiological roles of substance P (SP), gamma-aminobutyric acid (GABA), enkephalins and other endogenous substances, we developed several kinds of isolated spinal cord preparations of newborn rats. 2. In these preparations, various slow responses of spinal neurons evoked by stimulation of primary afferent C fibers were depressed by a tachykinin antagonist, spantide. These results together with many other lines of evidence suggest that SP and neurokinin A serve as pain transmitters in a subpopulation of primary afferent C fibers. 3. Some C-fiber responses in various isolated spinal cord preparations were depressed by GABA, muscimol, and opioid peptides. In contrast, bicuculline (GABA antagonist) and naloxone (opioid antagonist) potentiated the "tail pinch potential," i.e., a nociceptive response of the ventral root evoked by pinch stimulation of the tail in isolated spinal cord-tail preparation of the newborn rat. The latter results support the hypothesis that some primary afferents activate inhibitory spinal interneurons which release GABA and enkephalins as transmitters to modulate pain inputs.  相似文献   

5.
The N-methyl-D-aspartate (NMDA) ion channel blocker MK-801 administered systemically or as a nanoliter injection into the nucleus of the solitary tract (NTS), increases meal size. Furthermore, we have observed that ablation of the NTS abolishes increased meal size following systemic injection of dizocilpine (MK-801) and that MK-801-induced increases in intake are attenuated in rats pretreated with capsaicin to destroy small, unmyelinated, primary afferent neurons. These findings led us to hypothesize that NMDA receptors on central vagal afferent terminals or on higher-order NTS neurons innervated by these vagal afferents might mediate increased food intake. To evaluate this hypothesis, we examined 15% sucrose intake after 50-nl MK-801 injections ipsilateral or contralateral to unilateral nodose ganglion removal (ganglionectomy). On the side contralateral to ganglionectomy, vagal afferent terminals would be intact and functional, whereas ipsilateral to ganglionectomy vagal afferent terminals would be absent. Three additional control preparations also were included: 1) sham ganglionectomy and 2) subnodose vagotomy either contralateral or ipsilateral to NTS cannula placement. We found that rats with subnodose vagotomies increased their sucrose intake after injections of MK-801 compared with saline, regardless of whether injections were made contralateral (12.6 +/- 0.2 vs. 9.6 +/- 0.3 ml) or ipsilateral (14.2 +/- 0.6 vs. 9.7 +/- 0.4 ml) to vagotomy. Rats with NTS cannula placements contralateral to nodose ganglionectomy also increased their intake after MK-801 (12.2 +/- 0.9 and 9.2 +/- 1.1 ml for MK-801 and saline, respectively). However, rats with placements ipsilateral to ganglionectomy did not respond to MK-801 (8.0 +/- 0.5 ml) compared with saline (8.3 +/- 0.4 ml). We conclude that central vagal afferent terminals are necessary for increased food intake in response to NMDA ion channel blockade. The function of central vagal afferent processes or the activity of higher-order NTS neurons driven by vagal afferents may be modulated by NMDA receptors to control meal size.  相似文献   

6.
The cardiovascular effects of substance P (SP) microinjections in the nucleus tractus solitarii (NTS) were evaluated in conscious rats. We chose this model because it is an effective way to access some of the cardiovascular effects of neurotransmitters in the NTS without the inconvenience of blunting pathways with anesthetic agents or removing forebrain projections by decerebration. The cardiovascular responses to SP injections were also evaluated after chronic nodose ganglionectomy. We found that, in conscious rats, SP microinjections into the NTS induced hypertension and tachycardia. Unilateral and bilateral SP injections into the NTS caused a slow increase in blood pressure and heart rate that peaked 1.5-5 min after injection and lasted for 20-30 min. Nodose ganglionectomy increased the duration of the pressor and tachycardic effects of SP and enhanced the pressor response. These data show that SP in the NTS is involved in pressor pathways. The supersensitivity to SP seen after nodose ganglionectomy suggests that vagal afferent projections are involved in those pressor pathways activated by SP in the NTS.  相似文献   

7.
Evidence suggests that transmission of barosensitive input from arterial baroreceptors and cardiac mechanoreceptors at nucleus tractus solitarius (NTS) neurons involves non-N-methyl-d-aspartate (NMDA) glutamate receptors, but there is a possibility that the contribution of NMDA receptors might increase during periods of increased afferent input, when enhanced neuronal depolarization could increase the activation of NMDA receptors by removal of a Mg(2+) block. Thus the effects of NMDA on cardiac mechanoreceptor-modulated NTS neuronal discharges were examined at different levels of arterial pressure used to change cardiac mechanoreceptor afferent input. To determine whether the response was specific to NMDA, (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) was also administered at different levels of neuronal discharge. In anesthetized dogs, neuronal activity was recorded from the NTS while NMDA or AMPA was picoejected at high versus low arterial stimulating pressures. NMDA, but not AMPA, produced a significantly greater discharge of mechanoreceptor-driven NTS neurons at higher versus lower levels of stimulating pressure. These data suggest that the role played by NMDA receptors is greater during periods of enhanced neuronal depolarization, which could be produced by increases in afferent barosensitive input.  相似文献   

8.
The cardiac "sympathetic afferent" reflex (CSAR) has been reported to increase sympathetic outflow and depress baroreflex function via a central angiotensin II (ANG II) mechanism. In the present study, we examined the role of ANG II type 1 (AT(1)) receptors in the nucleus tractus solitarii (NTS) in mediating the interaction between the CSAR and the baroreflex in anesthetized rats. We examined the effects of bilateral microinjection of AT(1) receptor antagonist losartan (100 pmol) into the NTS on baroreflex control of renal sympathetic nerve activity (RSNA) before and after CSAR activation by epicardial application of capsaicin (0.4 microg). Using single-unit extracellular recording, we further examined the effects of CSAR activation on the barosensitivity of barosensitive NTS neurons and the effects of intravenous losartan (2 mg/kg) on CSAR-induced changes in activity of NTS barosensitive neurons. Bilateral NTS microinjection of losartan significantly attenuated the increases in arterial pressure, heart rate, and RSNA evoked by capsaicin but also markedly (P < 0.01) reversed the CSAR-induced blunted baroreflex control of RSNA (Gain(max) from 1.65 +/- 0.10 to 2.22 +/- 0.11%/mmHg). In 17 of 24 (70.8%) NTS barosensitive neurons, CSAR activation significantly (P < 0.01) inhibited the baseline neuronal activity and attenuated the neuronal barosensitivity. In 11 NTS barosensitive neurons, intravenous losartan effectively (P < 0.01) normalized the decreased neuronal barosensitivity induced by CSAR activation. In conclusion, blockade of NTS AT(1) receptors improved the blunted baroreflex during CSAR activation, suggesting that the NTS plays an important role in processing the interaction between the baroreflex and the CSAR via an AT(1) receptor-dependent mechanism.  相似文献   

9.
Helke CJ  Seagard JL 《Peptides》2004,25(3):413-423
Twenty-five years ago, very little was known about chemical communication in the afferent limb of the baroreceptor reflex arc. Subsequently, considerable anatomic and functional data exist to support a role for the tachykinin, substance P (SP), as a neuromodulator or neurotransmitter in baroreceptor afferent neurons. Substance P is synthesized and released from baroreceptor afferent neurons, and excitatory SP (NK1) receptors are activated by baroreceptive input to second-order neurons. SP appears to play a role in modulating the gain of the baroreceptor reflex. However, questions remain about the specific role and significance of SP in mediating baroreceptor information to the central nervous system (CNS), the nature of its interaction with glutaminergic transmission, the relevance of colocalized agents, and complex effects that may result from mediation of non-baroreceptive signals to the CNS.  相似文献   

10.
Intraperitoneal injection of CCK reduces food intake and triggers a behavioral pattern similar to natural satiation. Reduction of food intake by CCK is mediated by vagal afferents that innervate the stomach and small intestine. These afferents synapse in the hindbrain nucleus of the solitary tract (NTS) where gastrointestinal satiation signals are processed. Previously, we demonstrated that intraperitoneal (IP) administration of either competitive or noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonists attenuates reduction of food intake by CCK. However, because vagal afferents themselves express NMDA receptors at both central and peripheral endings, our results did not speak to the question of whether NMDA receptors in the brain play an essential role in reduction of feeding by CCK. We hypothesized that activation of NMDA receptors in the NTS is necessary for reduction of food intake by CCK. To test this hypothesis, we measured food intake following IP CCK, subsequent to NMDA receptor antagonist injections into the fourth ventricle, directly into the NTS or subcutaneously. We found that either fourth-ventricle or NTS injection of the noncompetitive NMDA receptor antagonist MK-801 was sufficient to inhibit CCK-induced reduction of feeding, while the same antagonist doses injected subcutaneously did not. Similarly fourth ventricle injection of d-3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphoric acid (d-CPPene), a competitive NMDA receptor antagonist, also blocked reduction of food intake following IP CCK. Finally, d-CPPene injected into the fourth ventricle attenuated CCK-induced expression of nuclear c-Fos immunoreactivity in the dorsal vagal complex. We conclude that activation of NMDA receptors in the hindbrain is necessary for the reduction of food intake by CCK. Hindbrain NMDA receptors could comprise a critical avenue for control and modulation of satiation signals to influence food intake and energy balance.  相似文献   

11.
Several sympathoexcitatory reflexes, such as the cardiac sympathetic afferent reflex (CSAR) and arterial chemoreflex, are significantly augmented and contribute to elevated sympathetic outflow in chronic heart failure (CHF). This study was undertaken to investigate the interaction between the CSAR and the chemoreflex in CHF and to further identify the involvement of angiotensin II type 1 receptors (AT1Rs) in the nucleus of the tractus solitarius (NTS) in this interaction. CHF was induced in rats by coronary ligation. Acute experiments were performed in anesthetized rats. The chemoreflex-induced increase in cardiovascular responses was significantly greater in CHF than in sham-operated rats after either chemical or electrical activation of the CSAR. The inhibition of the CSAR by epicardial lidocaine reduced the chemoreflex-induced effects in CHF rats but not in sham-operated rats. Bilateral NTS injection of the AT1R antagonist losartan (10 and 100 pmol) dose-dependently decreased basal sympathetic nerve activity in CHF but not in sham-operated rats. This procedure also abolished the CSAR-induced enhancement of the chemoreflex. The discharge and chemosensitivity of NTS chemosensitive neurons were significantly increased following the stimulation of the CSAR in sham-operated and CHF rats, whereas CSAR inhibition by epicardial lidocaine significantly attenuated chemosensitivity of NTS neurons in CHF but not in sham-operated rats. Finally, the protein expression of AT1R in the NTS was significantly higher in CHF than in sham-operated rats. These results demonstrate that the enhanced cardiac sympathetic afferent input contributes to an excitatory effect of chemoreflex function in CHF, which is mediated by an NTS-AT1R-dependent mechanism.  相似文献   

12.
The purpose of this study was to investigate secondary muscle spindle afferents from the triceps-plantaris (GS) and posterior biceps and semitendinosus (PBSt) muscles with respect to their fusimotor reflex control from different types of peripheral nerves and receptors. The activity of single secondary muscle spindle afferents was recorded from dissected and cut dorsal root filaments in alpha-chloralose anaesthetized cats. Both single spindle afferents and sets of simultaneously recorded units (2-3) were investigated. The modulation and mean rate of firing of the afferent response to sinusoidal stretching of the GS and PBSts muscle were determined. Control measurements were performed in the absence of any reflex stimulation, while test measurements were made during reflex stimulation. The reflex stimuli consisted of manually performed movements of the contralateral hind limb, muscle stretches, ligament tractions and electrical stimulations of cutaneous afferents. Altogether 21 secondary spindle afferents were investigated and 20 different reflex stimuli were employed. The general responsiveness (i.e. number of significant reflex effects/number of control-test series) was 52.4%, but a considerable variation between different stimuli was found, with the highest (89.9%) for contralateral whole limb extension and the lowest (25.0%) for stretch of the contralateral GS muscle. The size of the response to a given stimulus varied considerably between different afferents, and, in the same afferent, different reflex stimuli produced effects of varying size. Most responses were characterized by an increase in mean rate of discharge combined with a decrease in modulation, indicative of static fusimotor drive (Cussons et al., 1977). Since the secondary muscle spindle afferents are part of a positive feedback loop, projecting back to both static and dynamic fusimotor neurones (Appelberg Et al., 1892 a, 1983 b; Appelberg et al., 1986), it is suggested that the activity in the loop may work like an amplified which, during some circumstances, enhance the effect of other reflex inputs to the system (Johansson et al., 1991 b).  相似文献   

13.
Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhances behavioral and electrophysiological responses to gastric distension in rats and people, we hypothesized that CCK might enhance the vagal afferent response to gastric distension via an action on capsaicin-insensitive vagal afferents. To test this hypothesis, we quantified expression of Fos-like immunoreactivity (Fos) in the dorsal vagal complex (DVC) of capsaicin-treated (Cap) and control rats (Veh), following gastric balloon distension alone and in combination with CCK injection. In Veh rats, intraperitoneal CCK significantly increased DVC Fos, especially in nucleus of the solitary tract (NTS), whereas in Cap rats, CCK did not significantly increase DVC Fos. In contrast to CCK, gastric distension did significantly increase Fos expression in the NTS of both Veh and Cap rats, although distension-induced Fos was attenuated in Cap rats. When CCK was administered during gastric distension, it significantly enhanced NTS Fos expression in response to distension in Cap rats. Furthermore, CCK's enhancement of distension-induced Fos in Cap rats was reversed by the selective CCK-A receptor antagonist lorglumide. We conclude that CCK directly activates capsaicin-sensitive C-type vagal afferents. However, in capsaicin-resistant A-type afferents, CCK's principal action may be facilitation of responses to gastric distension.  相似文献   

14.
In hypertensive subjects, a single bout of dynamic exercise results in an immediate lowering of blood pressure back toward normal. This postexercise hypotension (PEH) also occurs in the spontaneously hypertensive rat (SHR). In both humans and SHRs, PEH features a decrease in sympathetic nerve discharge, suggesting the involvement of central nervous system pathways. Given that substance P is released in the nucleus tractus solitarius (NTS) by activation of baroreceptor and skeletal muscle afferent fibers during muscle contraction, we hypothesized that substance P acting at neurokinin-1 (NK-1) receptors in the NTS might contribute to PEH. We tested the hypothesis by determining, in conscious SHRs, whether NTS microinjections of the NK-1 receptor antagonist SR-140333 before exercise attenuated PEH. The antagonist, in a dose (60 pmol) that blocked substance P- and spared D,L-homocysteic acid-induced depressor responses, significantly attenuated the PEH by 37%, whereas it had no effect on blood pressure during exercise. Vehicle microinjection had no effect. The antagonist also had no effect on heart rate responses during both exercise and the PEH period. The data suggest that a substance P (NK-1) receptor mechanism in the NTS contributes to PEH.  相似文献   

15.
Ischemic stimulation of cardiac receptors evokes excitatory sympathetic reflexes. Although the nucleus of the solitary tract (NTS) is an important site for integration of visceral afferents, its involvement in the cardiac-renal sympathetic reflex remains to be fully defined. This study examined the role of glutamate receptor subtypes in the commissural NTS in the sympathetic responses to stimulation of cardiac receptors. Renal sympathetic nerve activity (RSNA) was recorded in anesthetized rats. Cardiac receptors were stimulated by epicardial application of bradykinin (BK; 10 microg/ml). Application of BK significantly increased the mean arterial pressure from 78.2 +/- 2.2 to 97.5 +/- 2.9 mmHg and augmented RSNA by 38.5 +/- 2.5% (P < 0.05). Bilateral microinjection of 10 pmol of 6-cyano-7-nitroquinoxaline-2,3-dione, a non-N-methyl-D-aspartate (NMDA) antagonist, into the commissural NTS eliminated the pressor and RSNA responses to BK application in 10 rats. However, microinjection of 2-amino-5-phosphonopentanoic acid (0.1 and 1 nmol, n = 8), an NMDA- receptor antagonist, or alpha-methyl-4-carboxyphenylglycine (0.1 and 1 nmol, n = 5), a glutamate metabotropic receptor antagonist, failed to attenuate significantly the pressor and RSNA responses to stimulation of cardiac receptors with BK. Thus this study suggests that non-NMDA, but not NMDA and glutamate metabotropic, receptors in the commissural NTS play an important role in the sympathoexcitatory reflex response to activation of cardiac receptors during myocardial ischemia.  相似文献   

16.
Repetitive-twitch contraction of the hindlimb muscles in anesthetized rabbits consistently evokes a reflex depressor response, whereas this type of contraction in anesthetized cats evokes a reflex pressor response in about one-half of the preparations tested. Rapidly conducting group III fibers appear to comprise the afferent arm of the reflex arc, evoking the depressor response to twitch contraction in rabbits because electrical stimulation of their axons reflexly decreases arterial pressure. In contrast, electrical stimulation of the axons of slowly conducting group III and group IV afferents reflexly increases arterial pressure in rabbits. In the present study, we examined the discharge properties of group III and IV muscle afferents and found that the former (i.e., 13 of 20), but not the latter (i.e., 0 of 10), were stimulated by 5 min of repetitive-twitch contraction (1 Hz) of the rabbit triceps surae muscles. Moreover, most of the group III afferents responding to contraction appeared to be mechanically sensitive, discharging in synchrony with the muscle twitch. On average, rapidly conducting group III afferents responded for the 5-min duration of 1-Hz repetitive-twitch contraction, whereas slowly conducting group III afferents responded only for the first 2 min of contraction. We conclude that rapidly conducting group III afferents, which are mechanically sensitive, are primarily responsible for evoking the reflex depressor response to repetitive-twitch contractions in anesthetized rabbits.  相似文献   

17.
Reflex cardiovascular responses to muscle contraction are mediated by mechanical and metabolic stimulation of thin muscle afferent fibers. Metabolic stimulants and receptors involved in responses are uncertain. Capsaicin depolarizes thin sensory afferent nerves that have vanilloid type 1 receptors (VR1). Among potential endogenous ligands of thin fibers, H+ has been suggested as a metabolite mediating the reflex muscle response as well as a potential stimulant of VR1. It has also been suggested that acid-sensing ion channels (ASIC) mediate H+, evoking afferent nerve excitation. We have examined the roles of VR1 and ASIC in mediating cardiovascular reflex responses to acid stimulation of muscle afferents in a rat model. In anesthetized rats, injections of capsaicin into the arterial blood supply of triceps surae muscles evoked a biphasic response (n = 6). An initial fall in mean arterial pressure (from baseline of 95.8 +/- 9.5 to 70.4 +/- 4.5 mmHg, P < 0.05 vs. baseline) was followed by an increase (to 131.6 +/- 11.3 mmHg, P < 0.05 vs. baseline). Anandamide (an endogenous substance that activates VR1) induced the same change in blood pressure as did capsaicin. The pressor (but not depressor) component of the response was blocked by capsazepine (a VR1 antagonist) and section of afferent nerves. In decerebrate rats (n = 8), H+ evoked a pressor response that was not blocked by capsazepine but was attenuated by amiloride (an ASIC blocker). In rats (n = 12) pretreated with resiniferatoxin to destroy muscle afferents containing VR1, capsaicin and H+ responses were blunted. We conclude that H+ stimulates ASIC, evoking the reflex response, and that ASIC are likely to be frequently found on afferents containing VR1. The data also suggest that VR1 and ASIC may play a role in processing of muscle afferent signals, evoking the muscle pressor reflex.  相似文献   

18.
肾神经在肾缺血预处理对麻醉家兔心脏保护中的作用   总被引:11,自引:3,他引:11  
Ding YF  Zhang MM  He RR 《生理学报》2001,53(1):7-12
在氨基甲酸乙酯麻醉家兔上,观察肾脏缺血预处理(RIP)对缺血-再灌注心肌的影响,旨在证实RIP对心肌有无保护效应,并明确肾神经在其中的作用。所得结果如下(1)在心脏45min缺血和180min再灌注过程中,血压、心率和心肌耗氧量呈进行性下降;心外膜电图ST段在缺血期明显抬高,再灌注过程中逐渐恢复到基础对照值。心肌梗塞范围占缺血心肌的55.80±1.25%。(2)RIP时心肌梗塞范围为36.51±2.8%,较单纯心肌缺血-再灌注显著减少(P<0.01),表明RIP对心肌有保护作用。(3)肾神经切断可取消RIP对心肌的保护效应,但肾神经切断本身对单纯缺血-再灌注所致的心肌梗死范围无明显影响。(4)肾缺血(10min)时,肾传入神经放电活动由0.14±0.08增至0.65±0.12imp/s(P<0.01)。(5)预先应用腺苷受体拮抗剂8-苯茶碱可明显减弱肾缺血所激活的肾传入神经活动,提示肾传入活动的增强是由肾缺血产生的腺苷所介导。以上结果表明,肾短暂缺血-再灌注所诱发的肾神经传入活动在RIP心肌保护效应中起重要作用。  相似文献   

19.
Bronchopulmonary C fibers defend the lungs against injury from inhaled agents by a central nervous system reflex consisting of apnea, cough, bronchoconstriction, hypotension, and bradycardia. Glutamate is the putative neurotransmitter at the first central synapses in the nucleus of the solitary tract (NTS), but substance P, also released in the NTS, may modulate the transmission. To test the hypothesis that substance P in the NTS augments bronchopulmonary C fiber input and hence reflex output, we stimulated the C fibers with left atrial capsaicin (LA CAP) injections and compared the changes in phrenic nerve discharge, tracheal pressure (TP), arterial blood pressure (ABP), and heart rate (HR) in guinea pigs before and after substance P injections (200 microM, 25 nl) in the NTS. Substance P significantly augmented LA CAP-evoked increases in expiratory time by 10-fold and increases in TP and decreases in ABP and HR by threefold, effects prevented by neurokinin-1 (NK1) receptor antagonism. Thus substance P acting at NTS NK1 receptors can exaggerate bronchopulmonary C fiber reflex output. Because substance P synthesis in vagal airway C fibers may be enhanced in pathological conditions such as allergic asthma, the findings may help explain some of the associated respiratory symptoms including cough and bronchoconstriction.  相似文献   

20.
The synaptic effectiveness of sensory fibers ending in the spinal cord of vertebrates can be centrally controlled by means of specific sets of GABAergic interneurons that make axo-axonic synapses with the terminal arborizations of the afferent fibers. In the steady state, the intracellular concentration of chloride ions in these terminals is higher than that predicted from a passive distribution, because of an active transport mechanism. Following the release of GABA by spinal interneurons and activation of GABA(A) receptors in the afferent terminals, there is an outwardly directed efflux of chloride ions that produces primary afferent depolarization (PAD) and reduces transmitter release (presynaptic inhibition). Studies made by intrafiber recording of PAD, or by measuring changes in the intraspinal threshold of single afferent terminals (which is reduced during PAD), have further indicated that muscle and cutaneous afferents have distinctive, but modifiable PAD patterns in response to segmental and descending stimuli. This has suggested that PAD and presynaptic inhibition in the various types of afferents is mediated by separate sets of last-order GABAergic interneurons. Direct activation, by means of intraspinal microstimulation, of single or small groups of last-order PAD-mediating interneurons shows that the monosynaptic PAD elicited in Ia and Ib afferents can remain confined to some sets of the intraspinal collaterals and not spread to nearby collaterals. The local character of PAD allows cutaneous and descending inputs to selectively inhibit the PAD of segmental and ascending intraspinal collaterals of individual muscle spindle afferents. It thus seems that the intraspinal branches of the sensory fibers are not hard wired routes that diverge excitation to spinal neurons, but are instead dynamic pathways that can be centrally controlled to address information to selected neuronal targets. This feature appears to play an important role in the selection of information flow in muscle spindles that occurs at the onset of voluntary contractions in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号