首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The strategies used by necrotrophic fungal pathogens to infect plants are often perceived as lacking the sophistication of their haustorium producing, host defence suppressing, biotrophic counterparts. There is also a relative paucity of knowledge regarding how effective gene-for-gene based resistance reactions might function against necrotrophic plant pathogens. However, recent data has emerged from a number of systems which has highlighted that particular species of necrotrophic (and/or hemibiotrophic) fungi, have evolved very sophisticated strategies for plant infection which appear, in fact, to hijack the host resistance responses that are commonly deployed against biotrophs. Both disease resistance (R) protein homologues and mitogen-activated protein kinase (MAPK) cascades commonly associated with incompatible disease resistance responses; appear to be targeted by necrotrophic fungi during compatible disease interactions. These findings highlight an emerging sophistication in the strategies deployed by necrotrophic fungi to infect plants.Key words: Mycosphaerella graminicola, Septoria tritici, Triticum aestivum, mitogen-activated protein kinase, programmed cell death, fungal pathogen, disease resistance, disease susceptibility, toxin  相似文献   

2.
Heterobasidion irregulare is one of five Heterobasidion annosum sensu lato (s.l.) species, which are destructive pathogens in boreal and temperate forests of the northern hemisphere that causes root and butt rot in conifer. A gene encoding endo‐rhamnogalacturonase (HIRHG), which belongs to the glycoside hydrolase family 28 (GH28), was found in a quantitative trait loci (QTL) region for virulence in Heterobasidion. In this study, we showed that HIRHG is highly upregulated during necrotrophic infection of Norway spruce compared with growth in liquid culture and that the HIRHG encoded protein is produced during fungal growth on complex carbon sources. Phylogenetic analysis of endo‐rhamnogalacturonases revealed that rhamnogalacturonase genes have been lost in most of the biotrophic and hemibiotrophic plant pathogens investigated but were common in necrotrophic pathogens and saprophytic fungi. Heterologous expression of the HIRHG gene in the hemibiotrophic fungus Magnaporthe oryzae increased its capacity to grow on pectin; however, the transformed M. oryzae isolates showed significant less infection of rice leaves compared to the wild type.  相似文献   

3.
4.
A defence pathway contributing to non‐host resistance to biotrophic fungi in Arabidopsis involves the synthesis and targeted delivery of the tryptophan (trp)‐derived metabolites indol glucosinolates (IGs) and camalexin at pathogen contact sites. We have examined whether these metabolites are also rate‐limiting for colonization by necrotrophic fungi. Inoculation of Arabidopsis with adapted or non‐adapted isolates of the ascomycete Plectosphaerella cucumerina triggers the accumulation of trp‐derived metabolites. We found that their depletion in cyp79B2 cyp79B3 mutants renders Arabidopsis fully susceptible to each of three tested non‐adapted P. cucumerina isolates, and super‐susceptible to an adapted P. cucumerina isolate. This assigns a key role to trp‐derived secondary metabolites in limiting the growth of both non‐adapted and adapted necrotrophic fungi. However, 4‐methoxy‐indol‐3‐ylmethylglucosinolate, which is generated by the P450 monooxygenase CYP81F2, and hydrolyzed by PEN2 myrosinase, together with the antimicrobial camalexin play a minor role in restricting the growth of the non‐adapted necrotrophs. This contrasts with a major role of these two trp‐derived phytochemicals in limiting invasive growth of non‐adapted biotrophic powdery mildew fungi, thereby implying the existence of other unknown trp‐derived metabolites in resistance responses to non‐adapted necrotrophic P. cucumerina. Impaired defence to non‐adapted P. cucumerina, but not to the non‐adapted biotrophic fungus Erysiphe pisi, on cyp79B2 cyp79B3 plants is largely restored in the irx1 background, which shows a constitutive accumulation of antimicrobial peptides. Our findings imply differential contributions of antimicrobials in non‐host resistance to necrotrophic and biotrophic pathogens.  相似文献   

5.
The aerobiology of fungi in the genus Fusarium is poorly understood. Many species of Fusarium are important pathogens of plants and animals and some produce dangerous secondary metabolites known as mycotoxins. In 2006 and 2007, autonomous unmanned aerial vehicles (UAVs) were used to collect Fusarium 40–320 m above the ground at the Kentland Farm in Blacksburg, Virginia. Eleven single-spored isolates of Fusarium graminearum (sexual stage Gibberella zeae) collected with autonomous UAVs during fall, winter, spring, and summer months caused Fusarium head blight on a susceptible cultivar of spring wheat. Trichothecene genotypes were determined for all 11 of the isolates; nine isolates were DON/15ADON, one isolate was DON/3ADON, and one isolate was NIV. All of the isolates produced trichothecene mycotoxins in planta consistent with their trichothecene genotypes. To our knowledge, this is the first report of a NIV isolate of F. graminearum in Virginia, and DON/3ADON genotypes are rare in populations of the fungus recovered from infected wheat plants in the eastern United States. Our data are considered in the context of a new aerobiological framework based on atmospheric transport barriers, which are Lagrangian coherent structures present in the mesoscale atmospheric flow. This framework aims to improve our understanding of population shifts of F. graminearum and develop new paradigms that may link field and atmospheric populations of toxigenic Fusarium spp. in the future.  相似文献   

6.
As in other eukaryotes, protein kinases (PKs) are generally evolutionarily conserved and play major regulatory roles in plant pathogenic fungi. Many PKs have been proven to be important for pathogenesis in model fungal plant pathogens, but little is currently known about their roles in the pathogenesis of cereal rust fungi, devastating pathogens in agriculture worldwide. Here, we report on an in planta highly induced PK gene PsSRPKL from the wheat stripe rust fungus Puccinia striiformis f. sp. tritici (Pst), one of the most important cereal rust fungi. PsSRPKL belongs to a group of PKs that are evolutionarily specific to cereal rust fungi. It shows a high level of intraspecies polymorphism in the kinase domains and directed green fluorescent protein chimers to plant nuclei. Overexpression of PsSRPKL in fission yeast induces aberrant cell morphology and a decreased resistance to environmental stresses. Most importantly, PsSRPKL is proven to be an important pathogenicity factor responsible for fungal growth and responses to environmental stresses, therefore contributing significantly to Pst virulence in wheat. We hypothesize that cereal rust fungi have developed specific PKs as pathogenicity factors for adaptation to their host species during evolution. Thus, our findings provide significant insights into pathogenicity and virulence evolution in cereal rust fungi.  相似文献   

7.
Botrytis species: relentless necrotrophic thugs or endophytes gone rogue?   总被引:1,自引:0,他引:1  
Plant pathology has a long‐standing tradition of classifying microbes as pathogens, endophytes or saprophytes. Lifestyles of pathogens are categorized as biotrophic, necrotrophic or hemibiotrophic. Botrytis species are considered by many to be archetypal examples of necrotrophic fungi, with B. cinerea being the most extensively studied species because of its broad host range and economic impact. In this review, we discuss recent work which illustrates that B. cinerea is capable of colonizing plants internally, presumably as an endophyte, without causing any disease or stress symptoms. The extent of the facultative endophytic behaviour of B. cinerea and its relevance in the ecology and disease epidemiology may be vastly underestimated. Moreover, we discuss the recent discovery of a novel Botrytis species, B. deweyae, which normally grows as an endophyte in ornamental daylilies (Hemerocallis), but displays facultative pathogenic behaviour, and is increasingly causing economic damage. We propose that the emergence of endophytes ‘gone rogue’ as novel diseases may be related to increased inbreeding of hybrid lines and reduced genetic diversity. These observations lead us to argue that the sometimes inflexible classification of pathogenic microbes by their lifestyles requires serious reconsideration. There is much more variety to the interactions of Botrytis with its hosts than the eye (or the plant pathologist) can see, and this may be true for other microbes interacting with plants.  相似文献   

8.
Fumonisins are mycotoxins produced by several species of Fusaria. They are found on corn and in corn-based products, can cause fatal illnesses in some animals and are suspected human esophageal carcinogens. Fumonisins are believed to cause toxicity by blocking ceramide synthase, a key enzyme in sphingolipid biochemistry which converts sphinganine (or sphingosine) and fatty acyl CoA to ceramide. Relatively fewfungal species have been evaluated for their ability to produce fumonisins. Fewer have been studied to determine if they produce ceramide synthase inhibitors, whether fumonisin-like structures or not, therefore potentially having toxicity similar to fumonisins. We analyzed corn cultures of 49 isolates representing 32 diversespecies of fungi for their ability to produce fumonisins. We also evaluated the culture extracts for ceramide synthase activity. Only cultures prepared with species reported previously to produce fumonisins – Fusarium moniliforme and F. proliferatum – tested positive for fumonisins. Extracts of these cultures inhibited ceramide synthase, as expected. None of the other fungal isolates we examined produced fumonisins or other compounds capable of inhibiting ceramide synthase. Although the fungi we selected for these studies represent only a few ofthe thousands of species that exist, they share the commonality that they are frequently associated with cereal grasses, including corn, either as pathogens or as asymptomatic endophytes. Thus,these results should be encouraging to those attempting to find ways to genetically manipulate fumonisin-producing fungi, tomake corn more resistant, or to develop biocontrol measures because it appears that only a relatively few fungal contaminants of corn can produce fumonisins. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Mycotoxins as harmful indoor air contaminants   总被引:6,自引:0,他引:6  
Fungal metabolites (mycotoxins) that pose a health hazard to humans and animals have long been known to be associated with mold-contaminated food and feed. In recent times, concerns have been raised about exposures to mycotoxin-producing fungi in indoor environments, e.g., damp homes and buildings. The principal mycotoxins that contaminate food and feed (alfatoxins, fumonisins, ochratoxin A, deoxynivalenol, zearalenone) are rarely if ever found in indoor environments, but their toxicological properties provide an insight into the difficulties of assessing the health effects of related mycotoxins produced by indoor molds. Although the Penicillium and Aspergillus genera of fungi are major contaminants of both food and feed products and damp buildings, the particular species and hence the array of mycotoxins are quite different in these environments. The mycotoxins of these indoor species and less common mycotoxins from Stachybotrys and Chaetomium fungi are discussed in terms of their health effects and the need for relevant biomarkers and long-term chronic exposure studies.  相似文献   

10.
Recent developments in genomics have opened up for newer opportunities to study the diversity and classification of fungi. The genus Fusarium contains many plant pathogens that attack diverse agricultural crops. Fusarium spp. are not only pathogenic to plants but are also known as toxin producers that negatively affect animal and human health. The identification of Fusarium species still remains one of the most critical issues in fungal taxonomy, given that the number of species recognized in the genus has been constantly changing in the last century due to the different taxonomic systems. This review focuses of various molecular-based techniques employed to study the diversity of Fusarium species causing diseases in major food crops. An introduction of fusarial diseases and their mycotoxins and molecular-marker-based methods for detection introduce the concept of marker application. Various well-known molecular techniques such as random amplified polymorphic DNA, amplification fragment length polymorphism, etc. to more modern ones such as DNA microarrays, DNA barcoding, and pyrosequencing and their application form the core of the review. Target regions in the genome which can be potential candidates for generation of probes and their use in phylogeny of Fusarium spp. are also presented. The concluding part emphasizes the value of molecular markers for assessing genetic variability and reveals that molecular tools are indispensable for providing information not only of one Fusarium species but on whole fungal community. This will be of extreme value for diagnosticians and researchers concerned with fungal biology, ecology, and genetics.  相似文献   

11.
Sphingolipids play an important role in signal transduction pathways that regulate physiological functions and stress responses in eukaryotes. In plants, recent evidence suggests that their metabolic precursors, the long-chain bases (LCBs) act as bioactive molecules in the immune response. Interestingly, the virulence of two unrelated necrotrophic fungi, Fusarium verticillioides and Alternaria alternata, which are pathogens of maize and tomato plants, respectively, depends on the production of sphinganine-analog mycotoxins (SAMs). These metabolites inhibit de novo synthesis of sphingolipids in their hosts causing accumulation of LCBs, which are key regulators of programmed cell death. Therefore, to gain more insight into the role of sphingolipids in plant immunity against SAM-producing necrotrophic fungi, we disrupted sphingolipid metabolism in Nicotiana benthamiana through virus-induced gene silencing (VIGS) of the serine palmitoyltransfersase (SPT). This enzyme catalyzes the first reaction in LCB synthesis. VIGS of SPT profoundly affected N. benthamiana development as well as LCB composition of sphingolipids. While total levels of phytosphingosine decreased, sphinganine and sphingosine levels increased in SPT-silenced plants, compared with control plants. Plant immunity was also affected as silenced plants accumulated salicylic acid (SA), constitutively expressed the SA-inducible NbPR-1 gene and showed increased susceptibility to the necrotroph A. alternata f. sp. lycopersici. In contrast, expression of NbPR-2 and NbPR-3 genes was delayed in silenced plants upon fungal infection. Our results strongly suggest that LCBs modulate the SA-dependent responses and provide a working model of the potential role of SAMs from necrotrophic fungi to disrupt the plant host response to foster colonization.  相似文献   

12.
13.
The necrotrophic root pathogens Rhizoctonia solani AG-8 and R. oryzae cause Rhizoctonia root rot and damping-off, yield-limiting diseases that pose barriers to the adoption of conservation tillage in wheat production systems. Existing control practices are only partially effective, and natural genetic resistance to Rhizoctonia has not been identified in wheat or its close relatives. We report the first genetic resistance/tolerance to R. solani AG-8 and R. oryzae in wheat (Triticum aestivum L. em Thell) germplasm ‘Scarlet-Rz1’. Scarlet-Rz1 was derived from the allohexaploid spring wheat cultivar Scarlet using EMS mutagenesis. Tolerant seedlings displayed substantial root and shoot growth after 14 days in the presence of 100–400 propagules per gram soil of R. solani AG-8 and R. oryzae in greenhouse assays. BC2F4 individuals of Scarlet-Rz1 showed a high and consistent degree of tolerance. Seedling tolerance was transmissible and appeared to be dominant or co-dominant. Scarlet-Rz1 is a promising genetic resource for developing Rhizoctonia-tolerant wheat cultivars because the tolerance trait immediately can be deployed into wheat breeding germplasm through cross-hybridization, thereby avoiding difficulties with transfer from secondary or tertiary relatives as well as constraints associated with genetically modified plants. Our findings also demonstrate the utility of chemical mutagenesis for generating tolerance to necrotrophic pathogens in allohexaploid wheat. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. P. A. Okubara and C. M. Steber contributed equally to this work.  相似文献   

14.
Ayurvedic medicine, which uses decoctions made of medicinal plants, is used to cure diseases in many Asian countries including Sri Lanka. Although proper storage facilities for medicinal plants are unavailable in Sri Lanka, neither the potential for growth of toxigenic fungi nor their ability to produce mycotoxins in stored medicinal plants has been investigated. We isolated three Fusarium species, F. culmorum, F. acuminatum and F. graminearum from the medicinal plant Tribulus terrestris. Culture extracts of the 3 Fusarium spp. were cytotoxic to mammalian cell lines BHK-21 and HEP-2. Three toxic metabolites produced by Fusarium spp; T-2 toxin, zearalenone, and diacetoxyscirpenol were also cytotoxic to the same mammalian cell lines. The 3 Fusarium spp. grown on rice media produced zearalenone. Plant material destined for medicinal use should be stored under suitable conditions to prevent growth of naturally occurring toxigenic fungi prior to its use.  相似文献   

15.
The Dothideomycetes represents a large and diverse array of fungi in which prominent plant pathogens are over‐represented. Species within the Cochliobolus, Alternaria, Pyrenophora and Mycosphaerella (amongst others) all cause diseases that threaten food security in many parts of the world. Significant progress has been made over the past decade in understanding how some of these pathogens cause disease at a molecular level. It is reasonable to suggest that much of this progress can be attributed to the increased availability of genome sequences. However, together with revealing mechanisms of pathogenicity, these genome sequences have also highlighted the capacity of the Dothideomycetes to produce an extensive array of secondary metabolites, far greater than originally thought. Indeed, it is now clear that we appear to have only scratched the surface to date in terms of the identification of secondary metabolites produced by these fungi. In the first half of this review, we examine the current status of secondary metabolite research in the Dothideomycetes and highlight the diversity of the molecules discovered thus far, in terms of both structure and biological activity. In the second part of this review, we survey the emerging techniques and technologies that will be required to shed light on the vast array of secondary metabolite potential that is encoded within these genomes. Experimental design, analytical chemistry and synthetic biology are all discussed in the context of how they will contribute to this field.  相似文献   

16.
The phytotoxicity ofFusarium metabolites: An update since 1989   总被引:1,自引:0,他引:1  
McLean M 《Mycopathologia》1996,133(3):163-179
The present article summarises the published phytotoxic effects of severalFusarium metabolites (mycotoxins, phytotoxins, antibiotics and pigments) since 1989. The phytotoxicity of many of the commonly isolated metabolites cannot be disputed, but their role in pathogenesis ofFusarium-induced plant diseases is uncertain. Plant species/varieties differ in their susceptibililty resistance to these toxinsin vitro, as well as toFusarium pathogens under field conditions. Such variations in plant response may reflect resistance mechanisms that operate at several levels, including an initial ability to prevent fungal invasion; prevention of fungal spread and toxin tolerance or degradation. Little is known about the mode of action of most of these metabolites on either animal or plant cells. Several novelFusarium metabolites have been isolated in the past few years. Many are toxic to animals and cell lines, but assessment of their phytotoxicity has largely been neglected. Since many plant pathogenic Fusaria produce a plethora of metabolites, the additive or synergistic actions of toxins in combination must be considered in plant pathology.  相似文献   

17.
Because pathogens use diverse infection strategies, plants cannot use one-size-fits-all defence and modulate defence responses based on the nature of pathogens and pathogenicity mechanism. Here, we report that a rice glycoside hydrolase (GH) plays contrasting roles in defence depending on whether a pathogen is hemibiotrophic or necrotrophic. The Arabidopsis thaliana MORE1 (M agnaporthe o ryzae re sistance 1) gene, encoding a member of the GH10 family, is needed for resistance against Moryzae and Alternaria brassicicola, a fungal pathogen infecting A. thaliana as a necrotroph. Among 13 rice genes homologous to MORE1, 11 genes were induced during the biotrophic or necrotrophic stage of infection by M. oryzae. CRISPR/Cas9-assisted disruption of one of them (OsMORE1a) enhanced resistance against hemibiotrophic pathogens Moryzae and Xanthomonas oryzae pv. oryzae but increased susceptibility to Cochliobolus miyabeanus, a necrotrophic fungus, suggesting that OsMORE1a acts as a double-edged sword depending on the mode of infection (hemibiotrophic vs. necrotrophic). We characterized molecular and cellular changes caused by the loss of MORE1 and OsMORE1a to understand how these genes participate in modulating defence responses. Although the underlying mechanism of action remains unknown, both genes appear to affect the expression of many defence-related genes. Expression patterns of the GH10 family genes in A. thaliana and rice suggest that other members also participate in pathogen defence.  相似文献   

18.
A survey of different types of cereal straw samples viz. paddy, maize and wheat, from Bihar State, India, was conducted in order to examine the mould flora and mycotoxin contamination. Out of 170 samples examined for mould flora,Aspergillus flavus group of fungi had highest level of incidence followed byA niger. Isolates ofA flavus, A ochraceus, Fusarium verticillioides andPenicillium citrinum were screened for their mycotoxins producing abilities. Out of 75, 63 and 68 isolates ofA flavus group obtained from stored straw of paddy, maize and wheat samples, respectively, 27 (36%), 14 (22%) and 24 (35%) were found to be toxigenic which produced different combinations of aflatoxins in different concentrations. The percentage toxigenicity was comparatively lower in the isolates of other mycotoxigenic fungi from all types of samples. Out of 222 samples of straw analysed for natural occurrence of different mycotoxins, besides the aflatoxins present, zearalenone, ochratoxin A and citrinin were also recorded alone or as co-contaminants. A conducive climate together with the socioeconomic conditions of this region are important determinants for the high incidence of mycotoxins in cereal straw samples.  相似文献   

19.
20.
Dual biological control, of both insect pests and plant pathogens, has been reported for the fungal entomopathogens, Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) and Lecanicillium spp. (Ascomycota: Hypocreales). However, the primary mechanisms of plant disease suppression are different for these fungi. Beauveria spp. produce an array of bioactive metabolites, and have been reported to limit growth of fungal plant pathogens in vitro. In plant assays, B. bassiana has been reported to reduce diseases caused by soilborne plant pathogens, such as Pythium, Rhizoctonia, and Fusarium. Evidence has accumulated that B. bassiana can endophytically colonize a wide array of plant species, both monocots and dicots. B. bassiana also induced systemic resistance when endophytically colonized cotton seedlings were challenged with a bacterial plant pathogen on foliage. Species of Lecanicillium are known to reduce disease caused by powdery mildew as well as various rust fungi. Endophytic colonization has been reported for Lecanicillium spp., and it has been suggested that induced systemic resistance may be active against powdery mildew. However, mycoparasitism is the primary mechanism employed by Lecanicillium spp. against plant pathogens. Comparisons of Beauveria and Lecanicillium are made with Trichoderma, a fungus used for biological control of plant pathogens and insects. For T. harzianum Rifai (Ascomycota: Hypocreales), it has been shown that some fungal traits that are important for insect pathogenicity are also involved in biocontrol of phytopathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号