首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kang JH  Wang L  Giri A  Baldwin IT 《The Plant cell》2006,18(11):3303-3320
Threonine deaminase (TD) catalyzes the conversion of Thr to alpha-keto butyrate in Ile biosynthesis; however, its dramatic upregulation in leaves after herbivore attack suggests a role in defense. In Nicotiana attenuata, strongly silenced TD transgenic plants were stunted, whereas mildly silenced TD transgenic plants had normal growth but were highly susceptible to Manduca sexta attack. The herbivore susceptibility was associated with the reduced levels of jasmonic acid-isoleucine (JA-Ile), trypsin proteinase inhibitors, and nicotine. Adding [(13)C(4)]Thr to wounds treated with oral secretions revealed that TD supplies Ile for JA-Ile synthesis. Applying Ile or JA-Ile to the wounds of TD-silenced plants restored herbivore resistance. Silencing JASMONATE-RESISTANT4 (JAR4), the N. attenuata homolog of the JA-Ile-conjugating enzyme JAR1, by virus-induced gene silencing confirmed that JA-Ile plays important roles in activating plant defenses. TD may also function in the insect gut as an antinutritive defense protein, decreasing the availability of Thr, because continuous supplementation of TD-silenced plants with large amounts (2 mmol) of Thr, but not Ile, increased M. sexta growth. However, the fact that the herbivore resistance of both TD- and JAR-silenced plants was completely restored by signal quantities (0.6 mumol) of JA-Ile treatment suggests that TD's defensive role can be attributed more to signaling than to antinutritive defense.  相似文献   

2.
As a consequence of membrane lipid peroxidation, foliar defense compounds are changed by elevated ozone (O3), which in turn affects the palatability and performance of insect herbivores. The induced defense of two tomato [Solanum esculentum L. (Solanaceae)] genotypes, namely jasmonic acid (JA) pathway‐deficient mutant spr2 and its wild‐type control, was studied in response to cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), as well as the digestive adaptation of these insects under elevated O3 in open‐top field chambers. Our data indicated that elevated O3 increased foliar JA and salicylic acid (SA) levels simultaneously and up‐regulated proteinase inhibitors (PIs) and lipoxidase activities in wild‐type plants, regardless of H. armigera infestation. In contrast, only the O3+H. armigera treatment increased free SA levels in spr2 plants, but did not affect JA level or PI activities. Additionally, the lower activity of midgut digestive enzymes, including active alkaline trypsin‐like enzyme and chymotrypsin‐like enzyme, was observed in the midgut of cotton bollworms after they consumed wild‐type plants treated for 2 h with elevated O3. With temporary increases at 8 h, all four digestive enzymes of interest in the insect midgut dropped when they were fed with wild‐type plants under elevated O3 treatment. Increases in atmospheric O3 are thought to increase JA signaling and consequently reduce the activities of midgut digestive enzymes in H. armigera, therefore enhancing plant resistance against insect herbivores.  相似文献   

3.
Animals have several strategies to contend with nutritionally poor diets, including compensatory consumption and enhanced food utilization efficiencies. Plants produce a diversity of defense compounds that affect the ability of herbivores to utilize these strategies in response to variation in food nutritional quality. Little is known, however, about effects of allelochemicals on herbivores utilizing integrated behavioral and morphological responses to reduced food quality. Our objectives were to (1) examine how variation in diet nutritional quality influences compensatory responses of a generalist insect herbivore, and (2) determine how plant defenses affect these processes. Gypsy moth (Lymantria dispar) larvae were administered one of nine combinations of diet having low, moderate, or high nutritional quality and 0, 2, or 4 % purified aspen (Populus tremuloides) salicinoids. We quantified larval growth, consumption, frass production, and biomass allocation to midgut tissue over a 4-day bioassay. In the absence of salicinoids, larvae compensated for reduced nutritional quality and maintained similar growth across all diets through increased consumption, altered midgut biomass allocation, and improved processing efficiencies. Dietary salicinoids reduced larval consumption, midgut biomass allocation, digestive efficiencies, and growth at all nutritional levels, but the effect size was more pronounced when larvae were fed nutritionally suboptimal diets. Our findings demonstrate that integrated behavioral and morphological compensatory responses to reduced food quality are affected by plant defenses, ultimately limiting compensatory responses and reducing larval performance.  相似文献   

4.
5.
Lei Wang  Jianqiang Wu 《遗传学报》2013,40(12):597-606
The plant hormone jasmonic acid (JA) plays a central role in plant defense against herbivores. Herbivore damage elicits a rapid and transient JA burst in the wounded leaves and JA functions as a signal to mediate the accumulation of various secondary metabolites that confer resistance to herbivores. Nicotiana attenuata is a wild tobacco species that inhabits western North America. More than fifteen years of study and its unique interaction with the specialist herbivore insect Manduca sexta have made this plant one of the best models for studying plant-herbivore interactions. Here we review the recent progress in understanding the elicitation of JA accumulation by herbivore-specific elicitors, the regulation of JA biosynthesis, JA signaling, and the herbivore-defense traits in N. attenuata.  相似文献   

6.
Adaptation to plant allelochemicals is a crucial aspect of herbivore chemical ecology. To understand an insect ecology, we studied an effect of nonhost Cassia tora seed-based diet (Ct) on growth, development, and molecular responses in Helicoverpa armigera. We employed a comparative approach to investigate the proteomic differences in gut, hemolymph, and frass of H. armigera reared on a normal (chickpea seed-based, Cp) and Ct diet. In this study, a total of 46 proteins were identified by nano-LC-MS(E). Among them, 17 proteins were up-regulated and 29 proteins were down-regulated when larvae were exposed to the Ct diet. Database searches combined with GO analysis revealed that gut proteases engrossed in digestion, proteins crucial for immunity, adaptive responses to stress, and detoxification were down-regulated in the Ct fed larvae. Proteins identified in H. armigera hemolymph were found to be involved in defense mechanisms. Moreover, proteins found in frass of the Ct fed larvae were observed to participate in energy metabolism. Biochemical and quantitative real-time PCR analysis of selected candidate proteins showed differential gene expression patterns and corroborated with the proteomic data. Our results suggest that the Ct diet could alter expression of proteins related to digestion, absorption of nutrients, adaptation, defense mechanisms, and energy metabolism in H. armigera.  相似文献   

7.
We have previously demonstrated that Arabidopsis vegetative storage protein (AtVSP) is an acid phosphatase that has anti-insect activity in in vitro feeding assays [Liu et al., 2005. Plant Physiology 139, 1545-1556]. To investigate the functionality of AtVSP in planta as an anti-insect defense protein, we produced AtVSP-overexpressing as well as AtVSP-silenced transgenic Arabidopsis lines, and evaluated impact on the polyphagous American grasshopper Schistocerca americana. Grasshoppers showed no significant difference in weight gain and growth rate when feeding on wild type, overexpressing, or silenced lines, respectively. In addition, AtVSP protein was undetectable in either the midgut or frass of grasshoppers reared on transgenic plants suggesting that AtVSP was unable to withstand proteolytic degradation. To determine the stability of the AtVSP protein in grasshopper digestive canal, midgut extracts from various nymphal stages were incubated with bacterially expressed AtVSP for different periods of time. AtVSP was hydrolyzed rapidly by grasshopper midgut extract, in stark contrast with its fate when incubated with cowpea bruchid midgut extract. Multiple proteases have been detected in the midgut of grasshoppers, which may play important roles in determining the insect response to AtVSP. Results indicate that stability of an anti-insect protein in insect guts is a crucial property integral to the defense protein.  相似文献   

8.
9.
The crystal proteins of Bacillus thuringiensis are widely used in transgenic crops and commercially available insecticides. Manduca sexta, the tobacco hornworm, is the model insect for B. thuringiensis studies. Although brush border vesicles prepared from larval M. sexta midgut have been used in numerous mode-of-action studies of B. thuringiensis toxins, their protein components are mostly unknown. Vesicles prepared from the brush border of M. sexta midgut were analyzed using one- and two-dimensional gel electrophoresis to establish a midgut brush border proteome. Sub-proteomes were also established for B. thuringiensis Cry1Ac binding proteins and glycosylphosphatidyl inositol (GPI) anchored proteins. Peptide mass fingerprints were generated for several spots identified as Cry1Ac binding proteins and GPI-anchored proteins and these fingerprints were used for database searches. Results generally did not produce matches to M. sexta proteins, but did match proteins of other Lepidoptera. Actin and alkaline phosphatase were identified as novel proteins that bind Cry1Ac in addition to the previously reported aminopeptidase N. Aminopeptidase N was the only GPI-anchored protein identified. Actin, aminopeptidase N, and membrane alkaline phosphatase were confirmed as accurate protein identifications through western blots.  相似文献   

10.
Plant peptidase inhibitors provide plants with a defense strategy to inhibit insect digestive enzymes and have been studied as an alternative strategy for pest control as they interfere in normal insect physiology. We evaluated the effects of ingestion of the trypsin inhibitor from Inga vera Willd. (Fabaceae) seeds on the nutritional and digestive physiology of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) larvae. Inga vera trypsin inhibitor (IVTI) reduced the efficiency of the conversion of ingested and digested food in these larvae and increased the metabolic cost, causing an anti‐nutritional effect. In both short‐ and long‐term bioassays, the ingestion of IVTI inactivated most of the insect's trypsin activity, but increased chymotrypsin activity as a compensatory response by the insect; however, protein digestion continued to be partially blocked. Consequently, chymotrypsin‐like enzymes, which were over‐produced in the gut, were excreted more into the frass of IVTI‐fed larvae. As such, the resistance of IVTI to hydrolysis by insect midgut proteases resulted in detrimental effects to larvae. These data provide support for the use of IVTI as a biotechnological tool for pest control.  相似文献   

11.
1. Effect of amino acid administration on pancreatic secretion of digestive enzymes, amylase, trypsinogen and chymotrypsinogen was studied after wing vein injection of an amino acid (AAs) mixture (Thr, Lys, Phe, Leu, Ile, Glu, Val, His, and Met) or combinations of selected amino acids, i.e. Thr + Phe + Ile, Thr + Phe, Thr + Ile or Phe + Ile, in the presence of cholecystokinin (CCK) in chicks. 2. Time course changes of enzyme output were similar in all treatment groups having a peak within 10-30 min, except for Phe + Ile that resulted in delayed induction of the enzyme release as shown by significant increases in the last 20 min compared with those in the rest. 3. When increases in enzyme outputs for the first 30 min were compared, it was shown that the three enzyme responses brought about by the administration of the AAs mixture was almost entirely accounted for by the combined injection of Thr + Phe. 4. Neither Thr + Ile nor Phe + Ile was as effective as Thr + Phe in inducing the output of these pancreatic enzymes. 5. The present results suggest that Thr and Phe may have a specific regulatory role in the secretion of pancreatic digestive enzymes in chicks when administered simultaneously.  相似文献   

12.
Plant cystatins, similar to other defense proteins, include hypervariable, positively selected amino acid sites presumably impacting their biological activity. Using 29 single mutants of the eighth domain of tomato (Solanum lycopersicum) multicystatin, SlCYS8, we assessed here the potential of site-directed mutagenesis at positively selected amino acid sites to generate cystatin variants with improved inhibitory potency and specificity toward herbivorous insect digestive cysteine (Cys) proteases. Compared to SlCYS8, several mutants (22 out of 29) exhibited either improved or lowered potency against different model Cys proteases, strongly suggesting the potential of positively selected amino acids as target sites to modulate the inhibitory specificity of the cystatin toward Cys proteases of agronomic significance. Accordingly, mutations at positively selected sites strongly influenced the inhibitory potency of SlCYS8 against digestive Cys proteases of the insect herbivore Colorado potato beetle (Leptinotarsa decemlineata). In particular, several variants exhibited improved potency against both cystatin-sensitive and cystatin-insensitive digestive Cys proteases of this insect. Of these, some variants also showed weaker activity against leaf Cys proteases of the host plant (potato [Solanum tuberosum]) and against a major digestive Cys protease of the two-spotted stinkbug Perillus bioculatus, an insect predator of Colorado potato beetle showing potential for biological control. Overall, these observations suggest the usefulness of site-directed mutagenesis at positively selected amino acid sites for the engineering of recombinant cystatins with both improved inhibitory potency toward the digestive proteases of target herbivores and weaker potency against nontarget Cys proteases in the host plant or the environment.  相似文献   

13.
Manduca sexta allatotropin (Manse-AT) is a multifunctional neuropeptide whose actions include the stimulation of juvenile hormone biosynthesis, myotropic stimulation, cardioacceleratory functions, and inhibition of active ion transport. Manse-AT is a member of a structurally related peptide family that is widely found in insects and also in other invertebrates. Its precise role depends on the insect species and developmental stage. In some lepidopteran insects including M. sexta, structurally-related AT-like (ATL) peptides can be derived from alternatively spliced mRNAs transcribed from the AT gene. We have isolated a cDNA for an AT receptor (ATR) from M. sexta by a PCR-based approach using the sequence of the ATR from Bombyx mori. The sequence of the M. sexta ATR is similar to several G protein-coupled receptors from other insect species and to the mammalian orexin receptor. We demonstrate that the M. sexta ATR expressed in vertebrate cell lines is activated in a dose-responsive manner by Manse-AT and each Manse-ATL peptide in the rank order ATL-I > ATL-II > ATL-III > AT, and functional analysis in multiple cell lines suggest that the receptor is coupled through elevated levels of Ca(2+) and cAMP. In feeding larvae, Manse-ATR mRNA is present at highest levels in the Malpighian tubules, followed by the midgut, hindgut, testes, and corpora allata, consistent with its action on multiple target tissues. In the adult corpora cardiaca--corpora allata complex, Manse-ATR mRNA is present at relatively low levels in both sexes.  相似文献   

14.
We describe prostaglandin (PG) biosynthesis by isolated midgut preparations from tobacco hornworms, Manduca sexta. Microsomal-enriched midgut preparations yielded four PGs, PGA/B(2), PGD(2), PGE(2) and PGF(2alpha), all of which were confirmed by analysis on gas chromatography--mass spectrometry (GC--MS). PGA and PGB are double bond isomers which do not resolve on TLC but do resolve by GC; for convenience, we use the single term PGA(2) for this product. PGA(2) was the major product under most conditions. The midgut preparations were sensitive to reaction conditions, including radioactive substrate, protein concentration (optimal at 1mg/reaction), reaction time (optimal at 0.5 min), temperature (optimal at 22 degrees C), buffer pH (highest at pH 6), and the presence of a co-factor cocktail composed of reduced glutathione, hydroquinine and hemoglobin. In vitro PG biosynthesis was inhibited by two cyclooxygenase inhibitors, indomethacin and naproxen. Subcellular localization of PG biosynthetic activity in midgut preparations, determined by ultracentrifugation, revealed the presence of PG biosynthetic activity in the cytosolic and microsomal fractions, although most activity was found in the cytosolic fractions. This is similar to other invertebrates, and different from mammalian preparations, in which the activity is exclusively associated with the microsomal fractions. Midgut preparations from M. sexta pupae, adult cockroach, Periplaneta americana, and corn ear worms, Helicoverpa zea, also produced the same four major PG products. We infer that insect midguts are competent to biosynthesize PGs, and speculate they exert important, albeit unrevealed, actions in midgut physiology.  相似文献   

15.
Jasmonates (JAs) are the well characterized fatty acid-derived cyclopentanone signals involved in the plant response to biotic and abiotic stresses. JAs have been shown to regulate many aspects of plant metabolism, including glucosinolate biosynthesis. Glucosinolates are natural plant products that function in defense against herbivores and pathogens. In this study, we applied a proteomic approach to gain insight into the physiological processes, including glucosinolate metabolism, in response to methyl jasmonate (MeJA). We identified 194 differentially expressed protein spots that contained proteins that participated in a wide range of physiological processes. Functional classification analysis showed that photosynthesis and carbohydrate anabolism were repressed after MeJA treatment, while carbohydrate catabolism was up-regulated. Additionally, proteins related to the JA biosynthesis pathway, stress and defense, and secondary metabolism were up-regulated. Among the differentially expressed proteins, many were involved in oxidative tolerance. The results indicate that MeJA elicited a defense response at the proteome level through a mechanism of redirecting growth-related metabolism to defense-related metabolism.  相似文献   

16.
17.
Inhibition of jasmonic acid (JA) signaling has been shown to decrease herbivore resistance, but the responsible mechanisms are largely unknown because insect resistance is poorly understood in most model plant systems. We characterize three members of the lipoxygenase (LOX) gene family in the native tobacco plant Nicotiana attenuata and manipulate, by antisense expression, a specific, wound- and herbivory-induced isoform (LOX3) involved in JA biosynthesis. In three independent lines, antisense expression reduced wound-induced JA accumulation but not the release of green leaf volatiles (GLVs). The impaired JA signaling reduced two herbivore-induced direct defenses, nicotine and trypsin protease inhibitors (TPI), as well as the potent indirect defense, the release of volatile terpenes that attract generalist predators to feeding herbivores. All these defenses could be fully restored by methyl-JA (MeJA) treatment, with the exception of the increase in TPI activity, which was partially restored, suggesting the involvement of additional signals. The impaired ability to produce chemical defenses resulted in lower resistance to Manduca sexta attack, which could also be restored by MeJA treatment. Expression analysis using a cDNA microarray, specifically designed to analyze M. sexta-induced gene expression in N. attenuata, revealed a pivotal role for LOX3-produced oxylipins in upregulating defense genes (protease inhibitor, PI; xyloglucan endotransglucosylase/hydrolase, XTH; threonine deaminase, TD; hydroperoxide lyase, HPL), suppressing both downregulated growth genes (RUBISCO and photosystem II, PSII) and upregulated oxylipin genes (alpha-dioxygenase, alpha-DOX). By genetically manipulating signaling in a plant with a well-characterized ecology, we demonstrate that the complex phenotypic changes that mediate herbivore resistance are controlled by a specific part of the oxylipin cascade.  相似文献   

18.
Hideki Kagata  Takayuki Ohgushi 《Oikos》2012,121(11):1869-1877
The importance of consumers in regulating ecosystem processes has been increasingly recognized. Although insect herbivores have significant impacts on nutrient cycling through excretion in terrestrial systems, few studies have explored how insect species differ in this ecosystem process. Using 130 lepidopteran species, we tested two hypotheses based on ecological stoichiometry and metabolic scaling, respectively, both of which provide a mechanistic framework for consumer‐driven nutrient recycling. Our results highlighted that host plant C:N ratio is the most important determinant of interspecific variation in frass C:N ratio. Insect body mass also partially contributed to the variation in frass C:N ratio. These findings indicate that insect herbivores would play an important role in nutrient recycling with the characteristics of ecological stoichiometry in terrestrial systems.  相似文献   

19.
20.
Prolyl carboxypeptidase (PRCP) is a lysosomal proline specific serine peptidase that also plays a vital role in the regulation of physiological processes in mammals. In this report, we isolate and characterize the first PRCP in an insect. PRCP was purified from the anterior midgut of larvae of a stored product pest, Tenebrio molitor, using a three-step chromatography strategy, and it was determined that the purified enzyme was a dimer. The cDNA of PRCP was cloned and sequenced, and the predicted protein was identical to the proteomic sequences of the purified enzyme. The substrate specificity and kinetic parameters of the enzyme were determined. The T. molitor PRCP participates in the hydrolysis of the insect's major dietary proteins, gliadins, and is the first PRCP to be ascribed a digestive function. Our collective data suggest that the evolutionary enrichment of the digestive peptidase complex in insects with an area of acidic to neutral pH in the midgut is a result of the incorporation of lysosomal peptidases, including PRCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号