首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this investigation was to estimate the optimum nutrient requirements and responses to low relative nutrient addition rates of seedlings of two important broadleaf tree species in China, Populus simonii Carr. and Paulownia tomentosa (Thunb.) Steud. In preliminary experiments the optimum nutrient proportions were estimated under high concentration conditions. The nutrients consumed were replaced by means of daily additions determined by pH and conductivity titrations without changing the nutrient solutions. A relatively high K level was needed in relation to nitrogen; higher than in birch or grey alder seedlings. To obtain a high relative growth rate, suitable proportions by weight were 100 N:70 K:14 P:7 Ca:7 Mg for the Populus seedlings and 100 N:75 K:20 P:8 Ca:9 Mg for the Paulownia seedlings.
In studies of nutrient stress responses the relative nutrient addition rate was used as the treatment variable under low conductivity conditions. The responses and relationships were similar to those described for birch, grey alder and Salix . The relative addition rate, and there was also a strong linear regression between relative growth rate and nitrogen status. Relative growth rates were high and the maximum weight increase was about 19% day−1 in Populus and over 25% day−1 in Paulownia . The nitrogen productivity of Paulownia was very high, 0.26 g dry weight (g N)−1 h−1, and for Populus it was 0.16 g dry weight (g N)−1 h−1.  相似文献   

2.
Beech plants ( Fagus sylvatica L. provenance Maramures) were grown in nutrient solution at low pH (4.2) and exposed to different concentrations of AlCl3. Uptake and leakage of Ca2+(45Ca2+) and H2PO4-(32P) were studied. A high external aluminium concentration (1.0m M ) reduced the uptake and export to the shoot of both calcium and phosphate, while 0.1 m M Al increased the phosphorus level in the roots. To determine the impact of aluminium on the localization of calcium and phosphate, leakage of the elements from both intact plants and plants frozen prior to the leakage experiment was studied. The leakage of Ca2+ from intact plants was not affected by prior exposure to 0.1 m M Al. Freezing of the beech plants before the leakage experiment increased leakage of calcium slightly more from roots of control plants than for roots exposed to 0.1 m M Al, indicating that even low concentrations of alminium may impede the influx of calcium across the plasma membrane in the roots. The patterns of Ca2+ leakage from roots previously exposed to 1.0 m M Al indicated that very little Ca2+ was located extracellularly. The extracellular fraction of phosphate increased with increasing Al concentration in the nutrient solution. Low Al concentration (0.1 m M ) only reduced the intracellular phosphate concentration to a minor extent, while 1.0 m M Al profoundly decreased it. It is concluded that 0.1 m M AlCl3 has a limited effect upon the localization of Ca2+ and phosphate in the roots. At higher levels of Al, 0.1–1.0 m M , there is a more dramatic change in nutrient localization in the free space and uptake over the plasma membrane.  相似文献   

3.
The effects of aluminium on biomass, nutrients and soluble carbohydrates and phenols were studied in beech ( Fagus sylvatica L.) seedlings. After germination, seedlings with cotyledons and the buds of the first leaf-pair developed, were preconditioned for two weeks and then grown for 31 days in nutrient solutions containing 0.1, 0.5, 1.0 or 2.0 m M A1C13. Aluminium did not affect the dry weights of roots but at Al concentrations ≥ 1.0 m M the development of the terminal shoot above the first leaf pair, was reduced by 80% or more. The concentrations of most nutrients (P, Ca, Mg, Zn, Cu) in the plant tissues decreased strongly even at the lowest Al levels, but K increased in the shoots. The tissue concentration of N was not affected of Al. but the distribution between the organs was changed to a higher content of N in the roots. At ≥1.0 m M Al the concentrations of starch in both the shoots and the roots were significantly increased, and at ≥ 0.5 m M the roots contained more of total phenols than untreated seedlings. The elevated concentrations and contents of starch and phenols in the seedlings may partly be related to the reduced shoot growth. The observed effects of Al were marked already at Al levels found in soil waters from beech forests in southern Sweden.  相似文献   

4.
The effects of AICI3 on uptake of Ca2+ and phosphate in roots of intact beech ( Fagus sylvatica L. provenance Maramures) plants were studied in nutrient solution and soil solution. Aluminium reduced the concentrations of Ca, Mg and P in plants and increased that of K. In short term experiments, uptake of Ca2+(45Ca) was reduced by exposure of the roots to Al. The effect of aluminium on Ca2+(45Ca) uptake was immediate and primarily of a competitive nature, preventing Ca2+ from being adsorbed. Uptake of 32P-phosphate increased with increasing Al concentration up to 0.1 m M and then decreased at higher Al concentrations. The effect of Al on 32P-phosphate uptake was most pronounced during the first hours of exposure. Growth of plants for 15 days in soil solution, collected from the upper A horizon of a beech forest soil, had no effect on uptake of Ca2+(45Ca) and 32P-phosphate, probably because of a low concentration of labile bound monomeric Al and binding of Al to organic compounds. Soil solution from the deeper B horizon reduced Ca2+(45Ca) uptake and increased 32P-phosphate uptake in a manner similar to that with Altreatment in nutrient solution. It is concluded that in soil solution from the deeper regions of the soil, mineral uptake by roots was affected by Al.  相似文献   

5.
1 Seedlings of mountain birch Betula pubescens ssp. czerepanovii were grown outdoors, under different environmental conditions, during their first growing season at Abisko, northern Sweden. Winter survival of seedlings was studied in relation to their growth and nitrogen (N) acquisition rate during the previous growing season.
2 Effects of fertilization and soil temperature on seedling growth and N acquisition were analysed in a factorial experiment including seven fertilizer levels and two temperature treatments. Effects of shading and neighbours ( B. p. ssp. czerepanovii and Empetrum hermaphroditum ) on seedling growth and N economy were evaluated in another experiment including five different neighbour interaction treatments.
3 An increase in either soil temperature or fertilization rate caused the birch seedlings to take up more N and grow faster. The relative growth rate and rate of N accumulation during the 12-week growing season were closely related to winter survival: at a relative growth rate of 2.0% and 3.8% day−1, the winter survival of mountain birch seedlings was estimated to be 5% and 95%, respectively. This range corresponded to a relative N accumulation rate between 2.4% and 4.3% day−1.
4 The relative N accumulation rate was clearly reduced by shading and by the plant–plant interactions studied. The effects of shading and birch neighbours but not of Empetrum on the rate of N accumulation could be explained by lower soil temperature.
5 Nutrient supply, soil temperature, vegetation shade and, presumably, allelopathy affect the N acquisition of first-year mountain birch seedlings, and thus also influence their winter survival. Soil temperature might be the major influence on the survival rate, due to its strong influence on the root N uptake rate.  相似文献   

6.
Two cultivars of wheat (Triticum aestivum L. cvs Kadett and WW 20299) were grown for 9 days with 20% relative increase in nutrient supply per day at pH 4.1. Aluminium at 50 μ M retarded the growth of roots more than that of shoots in both cultivars, thus decreasing the root/shoot ratio. The inhibition was largest in WW 20299. With long term Al treatment (9 days), Km for K+(86Rb) influx increased five times in both cultivars and Vmax decreased in WW 20299. Efflux of K+(86Rb) was little affected. When the roots were treated with aluminium for two days, only relative growth rate of roots was retarded, while growth of shoots was unaffected and influx of K+(86Rb) adjusted to the actual K+ demand of the plants. It is concluded that the effects of aluminium on K+ uptake in these wheat cultivars are not primary factors contributing to aluminium sensitivity. However, in soil with Al the demand for a comparatively high concentration of K+ to maintain an adequate K+ uptake rate, in combination with a slow growth rate of the roots, may secondarily lead to K+ deficiency in the plants.  相似文献   

7.
The effect of 700 μmol CO2 mol−1, 200 nmol ozone mol−1 and a combination of the two on carbon allocation was examined in Pinus halepensis co-cultured with Betula pendula in symbiosis with the ectomycorrhizal fungus Paxillus involutus . The results show that under low nutrient and ozone levels, elevated CO2 has no effect on the growth of B. pendula or P. halepensis seedlings nor on net carbon partitioning between plant parts. Elevated CO2 did not enhance the growth of the fungus in symbiosis with the birch. On the other hand, ozone had a strong negative effect on the growth of the birch, which corresponded with the significantly reduced growth rates of the fungus. Exposure to elevated CO2 did not ameliorate the negative effects of ozone on birch; in contrast, it acted as an additional stress factor. Neither ozone nor CO2 had significant effects on biomass accumulation in the pine seedlings. Ozone stimulated the spread of mycorrhizal infection from the birch seedlings to neighbouring pines and had no statistically significant effects on phosphoenolpyruvate carboxylase (PEPC) or ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity in the pine needles or on PEPC activity in pine roots.  相似文献   

8.
The tolerances of Columbia Arabidopsis thaliana (L.) Heynh. to NaCl, L-asparagine (L-Asn) and D-asparagine (D-Asn) during seedling establishment on sterile agar medium were determined. Germination and the establishment of upright seedlings with expanded green cotyledons were increasingly inhibited by NaCl concentrations from 20 to 180 m M and radicle growth was prevented at 225 m M NaCl. Tolerance of established seedlings to NaCl was similar at these concentrations. Seedling establishment was prevented at 20 m M L-Asn and 60 m M D-Asn, but L-Asn was not toxic to established seedlings. At lower concentrations, exogenous L- and D-Asn enhanced NaCl tolerance during germination and seedling establishment. Inhibition of seedling establishment by NaCl concentrations below 225 m M was reduced by the addition of L- and D-Asn to the medium. Maximal reduction of NaCl inhibition occurred between 2 and 4 m M for both L- and D-Asn. Higher concentrations of NaCl prevented establishment whether exogenous Asn was present or not. Reduction of NaCl inhibition occurred to the same extent whether L-Asn was presented simultaneously with the NaCl or preloaded for up to 24 h. The total seedling content of Na+ increased about 4-fold to 55 μg (mg dry weight)−1 as the medium concentration of NaCl was increased from 9 μ M to 150 m M NaCl. Total K+ content declined about 80% from about 34 μg (mg dry weight)−1 over the same range of NaCl concentrations. The Na+ uptake and K+ efflux by whole seedlings were similar whether or not NaCl tolerance was increased by exogenous Asn.  相似文献   

9.
The effect of acetate on growth and rate of ammonium uptake in Scenedesmus obliquus (UTEX 78) was investigated under light-limiting conditions. Addition of acetate to autotrophic cells with a growth constant of 0.71 day−1 resulted in an increase in the growth rate (mixotrophy, k = 1.3 day−1), and in the presence of acetate, growth occurred in the dark (heterophy, k = 0.44 day−1). The rate of ammonium uptake in autotrophy (17.8 amol cell−1 min−1) was similar to that in heterotrophy (17.4 amol cell−1 min−1) but was 3.7 times lower than that in mixotrophy (65.9 amol cell−1 min−1). In general, mixotrophic cells showed optimum ammonium uptake at the acetate concentration at which they were grown. In autotrophy, uptake of ammonium leveled off at about 12.5 μ M while no saturation was observed in mixotrophic cells. An increase in the rate of uptake of ammonium was observed in autotrophic cells within 1 h after the addition of acetate. The activity of isocitrate lyase (EC 4.1.3.1), a key enzyme for the regulation of the glyoxylate cycle responsible for acetate catabolism, showed a 3.9-fold increase in activity after 24 h in the dark in the presence of acetate. The level of isocitrate lyase activity in cells grown for 24 h in the dark in the presence of 0–20 m M acetate also increased as a function of acetate concentration.  相似文献   

10.
Spinach plants ( Spinacia oleracea L. cv. Subito) were grown in a complete nutrient solution under ample light intensity (14 h day−1 at 660 μmol m−2 s−1) before being transferred either to a minus-N solution (experiment 1), or to limiting light conditions (6 h day−1 at 220 μmol m−2 s−1; experiment 2). Shoot growth in experiment 1 decreased significantly from 0.24 day−1 to 0.07 day−1 after the fourth day of transfer. Root relative growth rate increased after 1 day from 0.25 to 0.31 day−1, but decreased on the fifth day after transfer to 0.11 day−1. Shoot growth in experiment 2 decreased significantly from 0.25 to 0.17 day−1 after the fourth day of transfer, while root growth decreased to half of its original level (0.25 day−1) already on the second day. Growth substrate levels in the plants (free sugars, free amino acids) and starch levels depended on the plant age, the moment in the diurnal cycle, and the imposed treatment. Fluctuations in shoot growth or root growth resulting from the light or N limitation could not be explained by a correspondent increase or decrease in the levels of growth substrates. The hypotheses underlying the functional equilibrium theory, assuming shoot and root growth to be controlled by N- and C-containing substrates respectively, and several other growth and partitioning models are therefore questioned. A neglect of the osmotic role of the free sugars in these models might be the explanation for this.  相似文献   

11.
Yearling brown trout, Salmo trutta L., were exposed to various concentrations of inorganic aluminium (0–3.7 μM1−1) over a pH range of 4.3–6.5 in a flow-through bioassay apparatus using synthetic test media. Low pH, in the absence of aluminium, produced little effect on growth or survival except at the lowest pH tested (4.3). At pH less than 5.5, concentrations of total aluminium in excess of 1 μM 1−1 (27μg 1−1) were found to retard growth. The effects of a given aluminium concentration were markedly reduced at pH above 5.5.
The change in aluminium toxicity with pH must be related to changes in aluminium chemistry. When growth rates are correlated with the different aluminium species, calculated using thermodynamic equilibrium constants given in the literature, it appears that the Al(OH)2 + species is the most toxic, with a small contribution also coming from polymeric complexes.  相似文献   

12.
A rapid assay for aluminium phytotoxicity at submicromolar concentrations   总被引:1,自引:0,他引:1  
Investigations of Al phytotoxicity, including the identification of the Al species responsible for toxicity, require a rapid assay procedure employing very low concentrations of Al and a chemically simple rooting medium. Root elongation in newly germinated red clover ( Trifolium pratense L. cv. Kenland) was inhibited by submicromolar concentrations of Al. Ca2+ at concentrations of at least 0.2 m M was essential for optimal elongation in control seedlings. Ca2+ also relieved Al toxicity with the net effect that maximum reduction of elongation by 1 μ M Al was achieved at 0.2 m M Ca2+. Elongation in control seedlings was at least 90% of maximum from pH 4.5 to 5.7. Increases in pH relieved Al toxicity so that maximum sensitivity to 1 μ M Al occurred at pH 4.7. As a consequence of these experiments and other considerations we chose for our basic assay a medium composed of 0.2 m M CaSO4 adjusted to pH 4.5 with H2SO4, variously supplemented with Al2(SO4)3.
Day-old seedlings were incubated in this aerated medium in the dark at 23°C for one day. No additions of other solutes increased the sensitivity of the assay, but amelioration of Al toxicity was effected by Mg2+, F-, phosphate and citrate. Increases in ionic strength per se had comparatively little effect on the toxic effects of Al. Two barley cultivars ( Hordeum vulgare L. cv. Dayton and Kearney) and two wheat cultivars ( Triticum aestivum L. cv. Hart and Thorne) known to differ in sensitivity to Al were reliably separated at submicromolar Al concentrations by the assay procedure, which was slightly modified. Suggestions for the improvement of the assay and for applications to future research are offered.  相似文献   

13.
Binding of Cd to non-specific metal-binding peptides (phytochelatins)in birch roots has been suggested as an explanation for toleranceto Cd toxicity in birch (Betula pendula). In the present study,the tolerance of birch roots to Cd was further investigatedby using buthionine sulphoximine (BSO) as an inhibitor of phytochelatinsynthesis. Birch seedlings, grown in nutrient solution at pH4.2, were exposed to 0 or 2 µM CdCl2 combined with 0 or0.1 mM BSO for 6 d. Plant growth (fresh weight increase andshoot to root dry weight ratio) and the nutrient compositionin fine roots, whole roots and shoots were determined. The effectsof Cd on growth confirms the results of earlier studies on birch,suggesting a reduced shoot growth, but preserved or stimulatedroot growth. When Cd and BSO were combined, overall plant growthwas severely reduced. BSO was also shown to aggravate Cd-inducedreductions of root and shoot concentrations of K, Ca and Mgbut to impede the accumulation of Cd. The results suggest that phytochelatins participate in protectingthe root against Cd interferences with growth, possibly by restrictingCd-induced changes in the nutrient composition of the plant. Key words: Betula pendula, buthionine sulphoximine, cadmium, phytochelatins, roots, tolerance  相似文献   

14.
Abstract: The potential ability of Al to affect cholinergic transmission was studied on synaptosomal fractions of rat brain incubated with pyruvate in depolarizing medium containing 30 m M K+. Addition of 1 m M Ca caused a 266% increase in the acetylcholine (ACh) release despite decreased pyruvate oxidation. Under these conditions, 0.25 m M Al did not affect pyruvate oxidation but raised mitochondrial and decreased synaptoplasmic acetyl-CoA. Simultaneously, a 61% inhibition of Ca-evoked ACh release was observed. Verapamil (0.1 and 0.5 m M ) decreased the acetyl-CoA concentration in synaptoplasm and inhibited ACh release. Al (0.012 m M ) partially reversed these inhibitory effects. Omission of Pi from the medium abolished suppressive effects of Al on acetyl-CoA content and Ca-evoked transmitter release. We conclude that the Al(PO4)OH complex may be the active form of Al, which, by interaction with the verapamil binding sites of Ca channels, is likely to restrict the Ca influx to the synaptoplasm. This may inhibit the provision of acetyl-CoA to the synaptoplasm as well as the Ca-evoked ACh release. One may suppose that excessive accumulation of Al in some encephalopathic brains may, by this mechanism, suppress still-surviving cholinergic neurons and exacerbate cognitive deficits caused by already-existing structural losses in the cholinergic system.  相似文献   

15.
Two abalone species: green Haliotis fulgens and yellow Halioti corrugata represent nearly 97% of the total production in the Mexican abalone fishery. It has been assumed that abalone feed on the kelp algae Macrocystis pyrifera. Regional hatcheries use this species as a main source of natural food. M. pyrifera does not occur at the southern limit of the distribution of abalone species along the Baja California Peninsula. In this study, growth rates of juveniles H. fulgens , 17.3 ± 2.2 mm shell length and 0.4 ± 0.2 g body weight, were evaluated. Juveniles were fed with common species in the benthic environments inhabited by abalone along the western coast of Baja California during 191 days. Three diets were based on algae: palm kelp, Eisenia arborea , giant kelp, M. pyrifera and Gelidium robustum , and one on seagrass, Phyllospadix torreyi. Shell length and body growth rates varied between 21.5 μm day−1 and 2.2 mg day−1 for E. arborea and between 45.9 μm day−1 and 6.7 mg day−1 for M. pyrifera. Higher specific growth rates (SGR) in length and weight were determined for M. pyrifera : 0.2% and 0.7% day−1. Significant differences between values of juveniles fed M. pyrifera with the rest of the diets were found. The highest mortality (21%) was in juveniles fed the red algae G. robustum.  相似文献   

16.
Oxic–anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO2) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic–anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO2 fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO2 assimilation, totaling 9.3 mmol C m−2 day−1, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L−1 day−1 were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.  相似文献   

17.
Estimating the rate of photorespiration in leaves   总被引:20,自引:1,他引:19  
The influence of Li+ on the circumnutations of hypocotyls of Helianthus annuus L . cv. Californicus was investigated. LiCl at concentration levels from 0 to 40 m M (lethal) was added to intact hypocotyls grown in liquid nutrient medium. The Li+ concentration in the hypocotyls was measured by flame photometry. The growth of the hypocotyls was not affected by the LiCl.
Amplitude and frequency of the circumnutations were determined by correlation analysis. The oscillatory pattern of the movements became less regular at concentrations above 10 m M LiCl. The amplitude of the movements was reduced for concentrations above 7 m M LiCl. The frequency of the movements was reduced when LiCl was increased from 0 to 10 m M . Above 10 m M LiCl the frequency of the circumnutations was higher than for control plants. The results showed that circumnutations of sunflower hypocotyls can be added to the group of oscillators in biological organisms that are affected by Li+.  相似文献   

18.
The uptake of K+ ion was studied in the roots of wheat ( Triuicum aestivum L. cv. GK Szeged) and cucumber ( Cucumis sativus L. cv. Budai csemege) seedlings grown in nutrient solution under nitrogen and sulfate stress conditions. Seedlings pretreated with 1 or 10 m M NaNO3, absorbed more K+ than those treated with 0.1 m M NaNO3. However, the posteffect of NaNO3 was considerably influenced by the Na2SO4, treatment. The results suggest that, at least partly, a feed-back regulation of K+ uptake may occur. However, due to the high Na+ contents of the roots, a Na+ effect in this process cannot be excluded. The growth and dry matter yields of the roots and shoots were strongly influenced by the SO2−/4 and NO/3 supply of the plants. Appreciable differences were experienced between wheat and cucumber seedlings. The optimum SO2−/4 concentration of the growth solution for maximal growth varied considerably between the species, and was also different for the roots and the shoots in a given species.  相似文献   

19.
High levels of aluminium in the soil solution of forest soils cause stress to forest trees. Within the soil profile, pH and aluminium concentration in the soil solution vary considerably with soil depth. pH strongly influences the speciation of A1 in solution, and is a factor when considering toxicity of A1 to roots. Norway spruce ( Picea abies [L.] Karst.) seedlings were grown for 7 weeks in nutrient solutions at pH 3.2, 4.0 or 5.0 containing 0, 100 or 400 µ M A1. At the end of this period, seedling growth, the cation exchange capacity of the roots and the amount of exchangeable Ca and Mg in roots were determined. A1 concentrations in whole roots, root segments, and in needles were measured. Using X‐ray microanalysis, the concentrations of Al, Ca, Mg and P were determined in cortical cell walls. We wanted to test the hypotheses that (1) the amount of Al bound to cation exchange sites can be used as a marker for Al toxicity and (2) the Mg concentration of needles is controlled by the amount of Mg bound to cation exchange sites. Low pH reduced the inhibition of Al on root growth and shoot length. Both low pH and Al lowered the concentration of Ca and Mg in needles. Al concentrations in the roots decreased as the pH decreased. In the roots, Al displaced Mg and Ca from binding sites at the root cortical cell walls. A comparison of the effects of Al at the different pH values on root growth and Mg concentration in the needles, suggests that, at pH 5.0, an Al fraction in the apoplast inhibits root growth, but does not affect Mg uptake. This fraction of Al is not available for transport to the shoots. In contrast, Mg uptake is strongly affected by Al at pH 3.2, although only very low levels of Al were detected in the roots. Thus, Al accumulation in the apoplast is a positive marker for Al effects on root growth, but not Mg uptake. The Mg concentration of needles is not controlled by the amount of Mg bound to cation exchange sites.  相似文献   

20.
Uptake and distribution of Ca+, Mg2+ and K2+ were investigated in plants of cucumber ( Cucumis sativus L. var. Cila) which had been cultivated for 12, 19, 32, or 53 days in complete nutrient solution with 1.0 m M Ca2+, 2.0 m M Mg2+ and 2.0 m M K+. The + concentration was about the same in roots and shoots, while the Ca2+ and Mg2+ concentrations were low in roots compared to shoots. The K+ concentration decreased with increasing leaf age, while the Ca2+ and Mg2+ concentrations increased, except in older plants with flowers and fruits, where an increased concentration was found in the youngest leaves. This is discussed in connection with increased indoleacetic acid (IAA) synthesis in the shoot. Excision of leaves at different levels from 21-day-old plants, followed by uptake for 24 h from the nutrient solution on days 22 and 23, resulted in no immediate reduction in Ca2+ (45Ca) uptake. Transport of Ca2+ increased to leaves above and below the excision point and total Ca2+ uptake remained at the same level as for the intact plant. It is suggested that regulation of Ca2+ uptake is primarily achieved in the root while the distribution in the shoot is regulated by the accessability of negative binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号