首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The host-controlled K-restriction of unmodified phage lambda is ten to hundred-fold alleviated in the E. coli K12 strain, carring plasmid pKM101 of N-incompatibility group. By restriction mapping Tn5 insertion in pKM101, which reduced pKM101-mediated alleviation of K-restriction, was shown to by located within BglII-B-fragment approximately 9 kb anticlockwise from the EcoRI-site of pKM101. We have termed the gene(s) promoting the alleviation of K-restriction ARD (Alleviation of Restriction of DNA). It was shown that (i) plasmid pKM101-mediated alleviation of K-restriction did not depend on bacterial genes LexA, RecBC, umuC and plasmid gene muc; (ii) ard gene did not mediate EcoK type modification of DNA and did not enhance the modification activity of EcoK system in a way similar to that observed with RAL gene of phage lambda. Action of Ard gene of plasmid pKM101 is highly specific: alleviation of restriction of DNA lambda takes place only in K-strains of E. coli and is practically absent in B-strains and also in E. coli strains which have restricting enzymes of 11 type, EcoRI and EcoRIII.  相似文献   

2.
The IncN plasmid pKM101 (a derivative of R46), like the IncI1 plasmid ColIb-P9, carries a gene (ardA, for alleviation of restriction of DNA) encoding an antirestriction function. ardA was located about 4 kb from the origin of transfer, in the region transferred early during bacterial conjugation. The nucleotide sequence of ardA was determined, and an appropriate polypeptide with the predicted molecular weight of about 19,500 was identified in maxicells of Escherichia coli. Comparison of the deduced amino acid sequences of the antirestriction proteins of the unrelated plasmids pKM101 and ColIb (ArdA and Ard, respectively) revealed that these proteins have about 60% identity. Like ColIb Ard, pKM101 ArdA specifically inhibits both the restriction and modification activities of five type I systems of E. coli tested and does not influence type III (EcoP1) restriction or the 5-methylcytosine-specific restriction systems McrA and McrB. However, in contrast to ColIb Ard, pKM101 ArdA is effective against the type II enzyme EcoRI. The Ard proteins are believed to overcome the host restriction barrier during bacterial conjugation. We have also identified two other genes of pKM101, ardR and ardK, which seem to control ardA activity and ardA-mediated lethality, respectively. Our findings suggest that ardR may serve as a genetic switch that determines whether the ardA-encoded antirestriction function is induced during mating.  相似文献   

3.
Plasmid pKM101 affects the I type restriction EcoK in E. coli. The gene ard responsible for alleviation of EcoK restriction was shown to be located within the BglIIB fragment of pKM101. Here we have cloned ard gene into high copy vectors pBR322 and pUC12. Plasmid pD12 was constructed by introducing into pUC12 a 1.87 kb HindIII-Pst fragment, carrying ard gene. Tn5 and Tn1000 insertions were obtained in the ard gene region.  相似文献   

4.
The effects of deletion of various regions of the pKM101 genome on several phenotypes conferred by pKM101 in Escherichia coli WP2 cells were investigated. Differences in the response of cells carrying pKM101 or various pKM101 deletion derivatives to the mutagenic effects of phleomycin E can be attributed to differences in sensitivity to the lethal effects of phleomycin E. Resistance to phleomycin E is conferred by the pKM101 mucAB genes (or an adjacent gene) but observed only with pKM101 derivatives which have lost a 2.2-kilobase (BalI-KpnI-2) segment which completely includes the pKM101 endonuclease gene nuc. A pKM101 slow-growth determinant, distinct from the slo gene, has also been identified and localized in the 2.4-kilobase (BalI-KpnI-3) segment which is adjacent to the nuc gene. Loss of this region does not appear to substantially influence the toxic or mutagenic effects of phleomycin E.  相似文献   

5.
Summary The host-controlled K restriction of unmodified phage was 10-100-fold alleviated in the wild-type strain E. coli K12, carrying plasmid pKM101 of incompability group N. pKM101-mediated release of K restriction was also observed in lexA -, recA -, and recB - strains of E. coli K12. By restriction mapping Tn5 insertions in pKM101, which reduced pKM101-mediated alleviation of restriction, were shown to be located within the BglIIB fragment approximately 11 kb anticlockwise from the RI site of pKM101. We have termed the gene(s) promoting the alleviation of K restriction of phage ard (alleviation of restriction of DNA). It was shown (1) that ard function affected only the EcoK restriction system and not the EcoB, EcoRI, EcoRIII, or EcoPI system, (2) ard gene(s) did not mediate EcoK type modification of DNA and did not increase the modification activity of the EcoK system in a way similar to that observed with gene ral of bacteriophage .  相似文献   

6.
Cell killing and mutation induction in the lacI gene of Escherichia coli by cis-Pt(NH3)2Cl2 were studied in cells with different repair capacities, with and without pKM101. The presence of the plasmid pKM101 made repair-proficient cells more susceptible to killing by cis-Pt(NH3)2Cl2 and strongly enhanced mutation induction by that compound. Both effects were shown to be dependent upon excision repair. Characterization of the induced mutations in the lacI gene after cis-Pt(NH3)2Cl2 treatment of E. coli cells, by the LacI system, revealed that the mutagenic specificity of the Pt compound was strongly influenced by the presence of the pKM101 plasmid. With pKM101, 23% of the induced amber and ochre mutations resulted from substitutions at AT base pairs, whereas these mutations were hardly induced in cells without pKM101. These results suggest that pKM101-induced repair differs from normal SOS repair.  相似文献   

7.
Summary Twenty Tn5 insertion mutants of the drug resistance plasmid pKM101 have been isolated that are unable to enhance mutagenesis with ultraviolet (UV) irradiation or methyl methanesulfonate. By restriction mapping, the Tn5 insertion in each of these pKM101 mutants was shown to be within a 1.9 kb region of the plasmid genome. We have termed this segment of the pKM101 map the muc (mutagenesis: UV and chemical) gene(s). Characterization of these mutants indicated that any Tn5 insertion within the muc gene(s) abolished the ability of pKM101 to: (a) enhance spontaneous, UV and chemical mutagenesis, (b) increase host survival following UV-irradiation, (c) increase the survival of UV-irradiated phage plated on irradiated or unirradiated cells, and (d) suppress the repair and mutagenesis deficiencies of a umuC mutant. Possible models to explain the role of the pKM101 muc gene(s) in mutagenesis and repair are discussed.  相似文献   

8.
The drug resistance plasmid pKM101 makes Escherichia coli resistant to the lethal effects of ultraviolet (UV) irradiation and more susceptible to mutagenesis by a variety of agents. The plasmid operon responsible for increasing mutagenesis has been termed mucAB (Mutagenesis, UV and chemical). We have isolated a derivative of pKM101 called pGW1975 which makes cells more sensitive to killing by UV but which retains the ability of pKM101 to increase susceptibility to methyl methanesulfonate (MMS) mutagenesis. pGW1975 increases UV mutagenesis less than pKM101 in a uvrA+ strain but more than pKM101 in a uvrA strain. muc point and insertion mutants of pKM101 and pGW1975 complement to restore the plasmid-mediated: (i) ability to reactivate UV-irradiated phage, (ii) resistance to killing by UV, and (iii) level of susceptibility to UV mutagenesis. We have identified a 2.0 kb region of pKM101 which is responsible for the complementation and which maps counterclockwise of mucAB.  相似文献   

9.
A screening procedure was developed for identifying mutants of the plasmid pKM101 no longer capable of enhancing mutagenesis. The test was based on the large pKM101-mediated increase in the number of Gal+ papillae observed on colonies of Salmonella typhimurium gal mutants plated on tetrazolium-galactose plates in the presence of a mutagen. The pKM101 mutant plasmids transferred normally, were stably maintained in cells, caused normal levels of ampicillin resistance, and still imparted sensitivity to phage Ike to their hosts. However, the pKM101 mutants had lost the ability to (i) enhance the reversion of both point and frameshift mutations, (ii) protect the cells against killing by UV irradiation, (iii) increase the spontaneous reversion rates of point mutations, (iv) enhance plasmid-mediated reactivation of UV-irradiated phage P22, (v) enhance Weigle reactivation. One pKM101 mutant with different properties from the others was identified by its increased spontaneous mutator effect. It is suggested that pKM101 amplifies the activity of the inducible error-prone repair systems in bacteria and that this is the function of pKM101 in the Ames Salmonella tester strains used for detection of carcinogens as mutagens.  相似文献   

10.
Fertility inhibition of RP1 by IncN plasmid pKM101.   总被引:7,自引:6,他引:1       下载免费PDF全文
IncN plasmids, including pKM101, strongly inhibit the conjugal transfer of cohabiting IncP plasmids. We localized the pKM101 DNA sufficient for this phenomenon to a 1.1-kilobase region (denoted fip). Two fip-deficient Tn5 insertion derivatives of pKM101 were isolated; neither affected other pKM101-mediated functions. fip did not inhibit either the synthesis of the IncP plasmid's sex pilus or its ability to mediate entry exclusion against other IncP plasmids.  相似文献   

11.
In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid pKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions.  相似文献   

12.
A physical and genetic map of the IncN plasmid R46   总被引:27,自引:0,他引:27  
A M Brown  N S Willetts 《Plasmid》1981,5(2):188-201
A combined physical and genetic map of the conjugative IncN plasmid R46 was obtained by restriction endonuclease cleavage analysis, followed by the construction and analysis of deletion and recombinant derivatives. The genetic determinants for the antibiotic resistance and uv-protection phenotypes were located, as well as the regions necessary for plasmid replication and for conjugal transfer. The end points of the deletion giving rise to the R46 derivative pKM101 were localized.  相似文献   

13.
Prival MJ 《Mutation research》2003,537(2):201-208
Acetaldehyde oxime was found to induce more revertants in Salmonella typhimurium strain TA1535 than in TA100 in the absence of S9 metabolic activation. TA100 was originally constructed from TA1535 by the addition of the plasmid pKM101, carrying mucAB which generally enhances sensitivity to the mutagenic effects of chemicals. The role of pKM101 in lowering the sensitivity to acetaldehyde oxime was explored by: (1) increasing the incubation time of the selective agar plates from 2 to 3 days; (2) using a new strain, isogenic to TA100, constructed by introducing pKM101 into the TA1535 isolate used in these experiments; (3) by testing a strain constructed by inserting into TA1535 a plasmid carrying mucAB but otherwise unrelated to pKM101. Each of these alterations increased the number of revertants per plate in the presence of acetaldehyde oxime, indicating that the apparent nonmutagenicity of this chemical in TA100 is due to multiple factors.  相似文献   

14.
Plasmid pKM101 provides UV protection and increases the frequency of spontaneous and UV-induced mutations in Escherichia coli. By analyzing reversion patterns of defined trpA alleles, we showed that pKM101 altered the mutational specificity of UV-induced mutations. Certain UV-induced base-pair substitutions were strongly enhanced, while others were decreased in frequency in the presence of pKM101. This result suggests an interaction between cellular misrepair and an error-prone repair function(s) provided by pKM101. We have also examined UV mutational specificity in the absence of pKM101 and found the following: (1) UV preferentially enhances missense, as well as nonsense, intergenic suppressor mutations; (2) UV causes all possible base-pair substitutions as well as frameshift mutations; (3) G·C base pairs are more susceptible to UV mutagenesis than A·T base pairs at the same nucleotide positions; and (4) UV-induced mutations can occur at nucleotide positions that are not part of pyrimidine-pyrimidine sequences.  相似文献   

15.
Functional organization of plasmid pKM101.   总被引:27,自引:18,他引:9       下载免费PDF全文
Tn5 insertion mutants and in vitro-generated deletion mutants of the mutagenesis-enhancing plasmid pKM101 have been used to identify several genetic regions on the pKM101 map. In clockwise order on the pKM101 map are: (i) the bla gene, coding for a beta-lactamase; (ii) the Slo region, responsible for retarding cell growth on minimal medium; (iii) the tra genes, enabling pKM101 to transfer conjugally; (iv) sensitivity to IKe phage (this function[s] maps within the tra region); (v) the muc gene(s), responsible for enhancing ultraviolet light and chemically induced mutagenesis in the cell; and (vi) the Rep region, essential for plasmid replication. The muc gene(s) and the Rep region are contained in a deoxyribonucleic acid region bounded by inverted repeated sequences.  相似文献   

16.
The effect of plasmid pKM101 on the survival of Escherichia coli AB1157, growing in minimal medium, in the presence of a 4-quinolone DNA gyrase inhibitor was investigated. The presence of this plasmid decreased susceptibility to the quinolone ciprofloxacin, whereas mucAB genes present in a multicopy plasmid did not. The same effect of pKM101 was detected in a recA430 mutant, confirming that it was not really related to the SOS response. In contrast, when survival assays were performed under amino acid starvation conditions, pKM101 did not confer protection against ciprofloxacin. All of these results indicated that the synthesis of a product(s), different from MucAB, which was encoded by the plasmid pKM101 increased the rate of survival of the AB1157 strain in the presence of quinolone. To identify the gene(s) responsible for this phenotype, several plasmid derivatives carrying different portions of pKM101 were constructed. The 2.2-kb region containing korB, traL, korA, and traM genes was sufficient to decrease susceptibility to quinolone. This plasmidic fragment also made the AB1157 host strain grow more slowly (the Slo phenotype). Moreover, the suppression of the Slo phenotype by addition of adenine to the cultures abolished the decreased susceptibility to quinolone. These results are evidence that the protection against quinolone conferred by this region of pKM101 in strain AB1157 is a direct consequence of the slow growth rate.  相似文献   

17.
Plasmid pKM101 enhances the frequency of spontaneous and ultraviolet light-induced mutations in Escherichia coli and protects the cells against the lethal effects of ultraviolet irradiation. By analyzing reversion patterns of defined trpA alleles, we showed that pKM101 caused all types of spontaneous base-pair substitution mutations with the possible exception of guanine . cytosine leads to adenine. thymine transitions. Neither insertion nor deletion frameshift mutations were enhanced. Transversions were more strongly enhanced than transitions, and adenine . thymine base pairs appeared more susceptible to pKM101 mutator activity than guanine . cytosine base pairs. In addition, there were effects from neighboring base pairs and genetic background that influenced the mutator activity of pKM101.  相似文献   

18.
An endonuclease was detected in strains of Salmonella typhimurium containing the drug resistance plasmid pKM101. The enzyme was not detectable in strains lacking this plasmid, but it was present in strains containing mutants of pKM101 that were no longer able to enhance host cell mutagenesis. The endonuclease had a molecular weight of roughly 75,000 and, at pH 7.0, was equally active on single-stranded and duplex deoxyribonucleic acid (DNA). The reaction with single-stranded DNA was optimal at pH 5.5, whereas with duplex DNA the optimum was pH 6.8. The enzyme required a divalent cation for activity, and it had no detectable exonuclease activity with single-stranded or duplex DNA. The endonuclease extensively degraded DNA with no apparent base specificity, forming 5'-phosphomonoester termini. Although characterization of the endonuclease has not revealed its function, the enzyme does not appear to be a restriction endonuclease.  相似文献   

19.
Neocarzinostatin, a protein with antibiotic activity, is a bacterial mutagen. We have investigated the mutagenicity of neocarzinostatin towards Salmonella typhimurium and discovered that, unlike the situation in Escherichia coli, neocarzinostatin will revert base pair substitution mutations (missense or nonsense). However, when the R46 factor derivative, plasmid pKM101, was introduced, the mutagenicity of neocarzinostatin towards base pair substitution-carrying mutants of S. typhimurium was readily detected. Neocarzinostatin had only modest activity in reverting a frameshift mutation in S. typhimurium, but that activity, too, required the presence of pKM101. Mutant pKM101 plasmids which no longer enhanced mutagenesis also lost their ability to promote neocarzinostatin-induced mutations. Finally, the umuC36 mutation, which renders E. coli nonmutable by ultraviolet light, also rendered the bacteria nonmutable by neocarzinostatin. The effect of the umuC36 mutation was suppressed by plasmid pKM101.  相似文献   

20.
Comparative studies of plasmids col I and pKM101 effect on lethal and mutagenic response to UV-light and chemical agents (4NQ0, EMS, agent N012074) has been carried out in Salmonella strains used for screening of mutagens (potential carcinogens). It has been found that the plasmid pKM101 has more pronounced effect as compared with coll plasmid. Contrary to plasmid pKM101-mediated ability to form UV-induced frameshift mutation, colI factor lacks this ability and very slightly enhances the rate of frameshift mutagenesis induced by chemical agents under study. The colicinogenic factor is found to enhance only the rate of base-pair substitutions, whereas plasmid pKM101 enhances the rate of both base-pair substitutions and frameshift mutations. We were unable to demonstrate combined effect of these two plasmids on the rate of either spontaneous or induced mutations. Possible mechanisms of plasmid-mediated bacterial mutagenesis and repair are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号