首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The Nodal signaling pathway is known from earlier work to be an essential mediator of oral ectoderm specification in the sea urchin embryo, and indirectly, of aboral ectoderm specification as well. Following expression of the Nodal ligand in the future oral ectoderm during cleavage, a sequence of regulatory gene activations occur within this territory which depend directly or indirectly on nodal gene expression. Here we describe additional regulatory genes that contribute to the oral ectoderm regulatory state during specification in Strongylocentrotus purpuratus, and show how their spatial expression changes dynamically during development. By means of system wide perturbation analyses we have significantly improved current knowledge of the epistatic relations among the regulatory genes of the oral ectoderm. From these studies there emerge diverse circuitries relating downstream regulatory genes directly and indirectly to Nodal signaling. A key intermediary regulator, the role of which had not previously been discerned, is the not gene. In addition to activating several genes earlier described as targets of Nodal signaling, the not gene product acts to repress other oral ectoderm genes, contributing crucially to the bilateral spatial organization of the embryonic oral ectoderm.  相似文献   

6.
7.
8.
9.
In the indirect developing sea urchin embryo, the primary mesenchyme cells (PMCs) acquire most of the positional and temporal information from the overlying ectoderm for skeletal initiation and growth. In this study, we characterize the function of the novel gene strim1, which encodes a tripartite motif-containing (TRIM) protein, that adds to the list of genes constituting the epithelial-mesenchymal signaling network. We report that strim1 is expressed in ectoderm regions adjacent to the bilateral clusters of PMCs and that its misexpression leads to severe skeletal abnormalities. Reciprocally, knock down of strim1 function abrogates PMC positioning and blocks skeletogenesis. Blastomere transplantation experiments establish that the defects in PMC patterning, number and skeletal growth depend upon strim1 misexpression in ectoderm cells. Furthermore, clonal expression of strim1 into knocked down embryos locally restores skeletogenesis. We also provide evidence that the Otp and Pax2/5/8 regulators, as well as FGFA, but not VEGF, ligand act downstream to strim1 in ectoderm cells, and that strim1 triggers the expression of the PMC marker sm30, an ectoderm-signaling dependent gene. We conclude that the strim1 function elicits specific gene expression both in ectoderm cells and PMCs to guide the skeletal biomineralization during morphogenesis.  相似文献   

10.
The distal region of the S. purpuratus actin CyIIIb gene, between −400 and −1400 nucleotides, contains at least three distinct cis-acting elements (C1R, C1L and E1) which are necessary for correct expression of fusion reporter genes in transgenic sea urchin embryos. The contribution of these elements in the temporal and spatial regulation of the gene was analyzed by single and double site-directed mutagenesis in fusion constructs which carry the bacterial chloramphenicol acetyl transferase (CAT) gene as a reporter. Following microinjection of the transgenes in sea urchin embryos, the activity of the mutants was compared to the wild type in time and space by measuring CAT activity at the blastula and pluteus embryonic stages and by in situ hybridization to the CAT mRNA at pluteus stage. Our results indicate that E1 involved in the temporal regulation of CyIIIb and that all three elements are necessary and sufficient to confer aboral (dorsal) ectoderm specificity to the proximal promoter. This is achieved by suppressing the promoter's activity in all other tissues by the cooperative interaction of the cis-acting elements. The C1R element, binding site of the nuclear receptors SpCOUP-TF and SpSHR2, is by itself sufficient to restrict expression in the ectoderm, whereas the aboral ectoderm restricted expression requires in addition the presence of both C1L adn E1. It is therefore evident, that the actin CyIIIb gene is exclusively expressed in the aboral ectoderm by a combinatorial repression in all other cell lineages of the developing embryo.  相似文献   

11.
12.
An antigen is described which is a marker for the oral ectoderm and foregut of the sea urchin embryo. In Lytechinus variegatus, the antigen is first detectable by immunofluorescence on the surface of fertilized eggs, and remains globally distributed through the early stages of gastrulation. Thereafter the antigen is localized to the oral ectoderm and foregut, coincident with the morphogenesis of these regions. The antigen is a large, detergent-insoluble, filamentous glycoprotein associated with the tips of the microvilli in the hyaline layer. This glycoprotein is present in two forms, a approximately 350-kDa form that is maternally synthesized and a much larger form which is synthesized at late gastrula stage as a 350-kDa precursor before becoming modified and assembled into the hyaline layer. The timing of synthesis of the zygotic form of the molecule correlates precisely with the localized expression of the antigen. The antigen copurifies with intact hyaline layers and cosediments with hyalin in the presence of calcium, suggesting that it is a structural component of the hyaline layer.  相似文献   

13.
14.
During development, cell migration plays an important role in morphogenetic processes. The construction of the skeleton of the sea urchin embryo by a small number of cells, the primary mesenchyme cells (PMCs), offers a remarkable model to study cell migration and its involvement in morphogenesis. During gastrulation, PMCs migrate and become positioned along the ectodermal wall following a stereotypical pattern that determines skeleton morphology. Previous studies have shown that interactions between ectoderm and PMCs regulate several aspects of skeletal morphogenesis, but little is known at the molecular level. Here we show that VEGF signaling between ectoderm and PMCs is crucial in this process. The VEGF receptor (VEGFR) is expressed exclusively in PMCs, whereas VEGF expression is restricted to two small areas of the ectoderm, in front of the positions where the ventrolateral PMC clusters that initiate skeletogenesis will form. Overexpression of VEGF leads to skeletal abnormalities, whereas inhibition of VEGF/VEGFR signaling results in incorrect positioning of the PMCs, downregulation of PMC-specific genes and loss of skeleton. We present evidence that localized VEGF acts as both a guidance cue and a differentiation signal, providing a crucial link between the positioning and differentiation of the migrating PMCs and leading to morphogenesis of the embryonic skeleton.  相似文献   

15.
Actin gene expression in developing sea urchin embryos.   总被引:1,自引:1,他引:0       下载免费PDF全文
We show that the synthesis of actin is regulated developmentally during early sea urchin embryogenesis and that the level of synthesis of this protein parallels the steady-state amounts of the actin messenger ribonucleic acids (RNA). An in vitro translation and RNA blotting analysis of embryo RNA from several stages of early development indicated that during the first 8 h after fertilization there was a low and relatively constant level of actin messenger RNA in the embryo. Between 8 and 13 h of development, the amount of actin messenger RNA began to increase both in the cytoplasm and on polysomes, and by 18 h the amounts of actin message per embryo had risen between approximately 10- and 25-fold in the cytoplasm and between 15- and 40-fold on polysomes. Two size classes of actin messenger RNA (2.2 and 1.8 kilobases) were identified in unfertilized eggs and in all of the developmental stages examined. The amount of each actin message class increased over a similar time interval during early development. However, the amounts of these size classes in the cytoplasm relative to each other shifted between the earliest stages examined (2 to 5 h) and the hatching blastula stage (18 h), with the ratio of the 1.8-kilobase actin messenger RNA to the 2.2-kilobase actin messenger RNA increasing almost threefold during this period.  相似文献   

16.
17.
18.
Using probes specific for several oncogenes/proto-oncogenes we have performed gel blot hybridization analyses of genomic DNA isolated from the sea urchinStrongylocentrotus droebachiensis. Probes prepared from v-erbB, v-myc, c-myb and v-fps were found to hybridize with discrete fragments of HindIII digested genomic DNA. In contrast, probes prepared from v-abl, v-fos, v-sis, v-src, and v-mos either hybridized with multiple fragments, indicating non-specific binding, or failed to hybridize at all above background levels. These results clearly demonstrate the presence of proto-oncogene homologous sequences in the sea urchin genome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号