首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Intranuclear degradation of nonsense codon-containing mRNA   总被引:3,自引:0,他引:3       下载免费PDF全文
  相似文献   

4.
T cell activation results from the integration of signals generated through the T cell antigen receptor-CD3 complex with those from additional positive and negative regulatory pathways mainly mediated by the engagement of costimulatory receptors on T cells. Disruption of this balance leads to a defective immune response or alternative over-activation of the immune system. CTLA-4 plays a critical role in downregulating T cell responses. Autoimmune diseases have shown genetic linkage to the CTLA4 locus. In this report we demonstrate that the 3' UTR of CTLA4 regulates firefly luciferase reporter gene expression, can confer instability to CTLA4 mRNA and can influence its translation efficiency in vitro.  相似文献   

5.
6.
Animal genomes contain hundreds of microRNAs (miRNAs), small regulatory RNAs that control gene expression by binding to complementary sites in target mRNAs. Some rules that govern miRNA/target interaction have been elucidated but their general applicability awaits further experimentation on a case-by-case basis. We use here an assay system in transgenic nematodes to analyze the interaction of the Caenorhabditis elegans lsy-6 miRNA with 3' UTR sequences. In contrast to many previously described assay systems used to analyze miRNA/target interactions, our assay system operates within the cellular context in which lsy-6 normally functions, a single neuron in the nervous system of C. elegans. Through extensive mutational analysis, we define features in the known and experimentally validated target of lsy-6, the 3' UTR of the cog-1 homeobox gene, that are required for a functional miRNA/target interaction. We describe that both in the context of the cog-1 3' UTR and in the context of heterologous 3' UTRs, one or more seed matches are not a reliable predictor for a functional miRNA/target interaction. We rather find that two nonsequence specific contextual features beyond miRNA target sites are critical determinants of miRNA-mediated 3' UTR regulation. The contextual features reside 3' of lsy-6 binding sites in the 3' UTR and act in a combinatorial manner; mutation of each results in limited defects in 3' UTR regulation, but a combinatorial deletion results in complete loss of 3' UTR regulation. Together with two lsy-6 sites, these two contextual features are capable of imparting regulation on a heterologous 3' UTR. Moreover, the contextual features need to be present in a specific configuration relative to miRNA binding sites and could either represent protein binding sites or provide an appropriate structural context. We conclude that a given target site resides in a 3' UTR context that evolved beyond target site complementarity to support regulation by a specific miRNA. The large number of 3' UTRs that we analyzed in this study will also be useful to computational biologists in designing the next generation of miRNA/target prediction algorithms.  相似文献   

7.
J M Bailey  M Verma 《Prostaglandins》1990,40(6):585-590
Prostaglandin H synthase (E.C. 1.14.99.1) is induced by growth factors and lymphokines such as EGF and IL-1, and is suppressed by anti-inflammatory glucocorticoids. Inhibition of enzyme synthesis by glucocorticoids is mediated by a novel translational control that appears to involve conversion of the PG synthase mRNA into a cryptic non-hybridizable form. In order to understand expression of the enzyme in more detail, a full length 2.8 Kb cDNA was cloned from a human embryonic lung cell cDNA library and the complete mRNA including the 3' untranslated region (3' UTR), was sequenced. The coding sequence for the human PG synthase shows greater than 90% homology with the sheep and mouse enzymes. A high degree of conservation (70%), however, was also observed in the approximately 750 nucleotide sequence that comprises the 3' non-coding domain of both sheep and human PG synthase mRNA's and with the approximately 900 nucleotide 3' UTR of the mouse RNA (68% sheep vs mouse; 47% human vs mouse). Extensive microregions of 10-30 nucleotides are distributed throughout the 3' UTR where homology between species is 95-100%. This high degree of conservation in a non-coding region and recent evidence from other genes suggests that these 3' UTR sequences have important regulatory functions possibly related to translational control of this mRNA by growth factors and glucocorticoids.  相似文献   

8.
9.
10.
11.
G Shaw  R Kamen 《Cell》1986,46(5):659-667
The mRNAs of transiently expressed genes frequently contain an AU-rich sequence in the 3' untranslated region. We introduced a 51 nucleotide AT sequence from a human lymphokine gene, GM-CSF, into the 3' untranslated region of the rabbit beta-globin gene. Our experiments demonstrate that this caused the otherwise stable beta-globin mRNA to become highly unstable in vivo. The instability conferred by the AU sequence in the mRNA was partially alleviated by treatment of the cells with cycloheximide. We propose that the AU sequences are the recognition signal for an mRNA processing pathway which specifically degrades the mRNAs for certain lymphokines, cytokines, and proto-oncogenes.  相似文献   

12.
Sidiropoulos KG  Pontrelli L  Adeli K 《Biochemistry》2005,44(37):12572-12581
Insulin has been shown to acutely regulate hepatic apolipoprotein B (apoB) secretion at both translational and post-translational levels; however, mechanisms of apoB mRNA translational control are largely unknown. Recent studies of apoB untranslated regions (UTRs) revealed a potentially important role for cis-trans interactions at the 5' and 3' UTRs. In the present paper, deletion constructs of the UTR regions of apoB revealed that the 5' UTR was necessary and sufficient for insulin to inhibit synthesis of apoB15. Metabolic radiolabeling and in vitro translation experiments in the presence of protease inhibitors confirmed that the effect of insulin on the apoB 5' UTR was translational in nature. Using the nondenaturing electrophoretic mobility shift assay (EMSA), protein-RNA complexes were detected binding to the apoB 5' and 3' UTRs. Denaturing EMSA identified a 110-kDa protein interacting at the 5' UTR. Nondenaturing EMSA determined that insulin altered binding of large protein complexes to the 5' UTR. Binding specificity was determined by competition with both specific and nonspecific competitors. Insulin treatment decreased binding of the 110-kDa protein to the 5' UTR as visualized by EMSA. Absence of insulin increased binding of this trans-acting factor to the 5' UTR by 2-fold. Analysis of the 3' UTR showed no significant insulin-mediated changes in binding of trans-acting factors. We thus propose the existence of a novel RNA-binding insulin-sensitive factor that binds to the 5' UTR and may regulate apoB mRNA translation. Perturbations in hepatic insulin signaling as observed in insulin-resistant states may alter cis-trans interactions at the 5' UTR, leading to alterations in the rate of apoB mRNA translation, thus contributing to apoB-lipoprotein overproduction.  相似文献   

13.
Conditional silencing of target genes in Saccharomyces cerevisiae by antisense RNAs expressed in vivo has been challenged. The MFalpha1::lacZ fusion present in S. cerevisiae SF51-3 was chosen as a model target, and fragments of this gene were cloned in reverse orientation into the expression vector pYES2, bearing the GAL1 promoter. Among the different antisense constructs tested, only the one complementary to the 5' UTR of target mRNA featured effective silencing. Nevertheless, the expression in vivo of this antisense RNA could not be properly tuned by the absence or presence of galactose in the culture medium. Accordingly, conditional silencing could not be attained by this antisense hosted into pYES2. On the contrary, cloning the same antisense construct into the expression vector pSAL4 yielded a fully conditional silencing linked to the control of antisense expression by the absence or presence of Cu(2+) into the culture medium.  相似文献   

14.
15.
16.
3' Rapid amplification of cDNA ends (3' RACE) is a polymerase chain reaction (PCR) based technique which has been developed to analyse 3' ends of partially known cDNA sequences. To improve the effectiveness of the technique, many investigators have modified the RACE protocol. Here, we describe an alternative procedure for analysing 3' mRNA ends which is based on DNA ligase-mediated self circularization and inverse PCR. This technique is simple and characterized by the exclusive use of gene-specific primers and the absence of unspecific adaptor sequences to obtain highly specific PCR products. We applied the method to analyze the 3' UTR of human mono-ADP-ribosyltransferase (ART) 3 mRNA in testis and heart muscle and of ART4 mRNA in HEL cells. The obtained sequences of ART3 and ART4 mRNA corresponded to data base entries of the respective mRNAs. No adenylate/uridylate-rich elements (AREs) were found in the 3' UTR of ART3 mRNA while one ARE class I motif was detected in the 3' UTR of ART4 mRNA.  相似文献   

17.
18.
The Mos proto-oncogene is a critical regulator of vertebrate oocyte maturation. The maturation-dependent translation of Mos protein correlates with the cytoplasmic polyadenylation of the maternal Mos mRNA. However, the precise temporal requirements for Mos protein function differ between oocytes of model mammalian species and oocytes of the frog Xenopus laevis. Despite the advances in model organisms, it is not known if the translation of the human Mos mRNA is also regulated by cytoplasmic polyadenylation or what regulatory elements may be involved. We report that the human Mos 3' untranslated region (3' UTR) contains a functional cytoplasmic polyadenylation element (CPE) and demonstrate that the endogenous Mos mRNA undergoes maturation-dependent cytoplasmic polyadenylation in human oocytes. The human Mos 3' UTR interacts with the human CPE-binding protein and exerts translational control on a reporter mRNA in the heterologous Xenopus oocyte system. Unlike the Xenopus Mos mRNA, which is translationally activated by an early acting Musashi/polyadenylation response element (PRE)-directed control mechanism, the translational activation of the human Mos 3' UTR is dependent on a late acting CPE-dependent process. Taken together, our findings suggest a fundamental difference in the 3' UTR regulatory mechanisms controlling the temporal induction of maternal Mos mRNA polyadenylation and translational activation during Xenopus and mammalian oocyte maturation.  相似文献   

19.
Feature on: Hogg JR, Goff SP. Upf1 senses 3'UTR length to potentiate mRNA decay. Cell. 2010; 143:379-89.  相似文献   

20.
The genome of the kinetoplastid parasite Trypanosoma brucei encodes four homologs of the Saccharomyces cerevisiae 5'-->3' exoribonucleases Xrn1p and Xrn2p/Rat1p, XRNA, XRNB, XRNC, and XRND. In S. cerevisiae, Xrn1p is a cytosolic enzyme involved in degradation of mRNA, whereas Xrn2p is involved in RNA processing in the nucleus. Trypanosome XRND was found in the nucleus, XRNB and XRNC were found in the cytoplasm, and XRNA appeared to be in both compartments. XRND and XRNA were essential for parasite growth. Depletion of XRNA increased the abundances of highly unstable developmentally regulated mRNAs, perhaps by delaying a deadenylation-independent decay pathway. Degradation of more stable or unregulated mRNAs was not affected by XRNA depletion although a slight decrease in average poly(A) tail length was observed. We conclude that in trypanosomes 5'-->3' exonuclease activity is important in degradation of highly unstable, regulated mRNAs, but that for other mRNAs another step is more important in determining the decay rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号