首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We determined the role of N-linked glycosylation of apolipoprotein B (apoB) in the assembly and secretion of lipoproteins using transfected rat hepatoma McA-RH7777 cells expressing human apoB-17, apoB-37, and apoB-50, three apoB variants with different ability to recruit neutral lipids. Substituting Asn residue with Gln at the single glycosylation site within apoB-17 (N(158)) decreased its secretion efficiency to a level equivalent to that of wild-type apoB-17 treated with tunicamycin, but had little effect on its synthesis or intracellular distribution. When selective N-to-Q substitution was introduced at one or more of the five N-linked glycosylation sites within apoB-37 (N(158), N(956), N(1341), N(1350), and N(1496)), secretion efficiency of apoB-37 from transiently transfected cells was variably affected. When all five N-linked glycosylation sites were mutated within apoB-37, the secretion efficiency and association with lipoproteins were decreased by >50% as compared with wild-type apoB-37. Similarly, mutant apoB-50 with all of its N-linked glycosylation sites mutagenized showed decreased secretion efficiency and decreased lipoprotein association in both d < 1.02 and d > 1.02 g/ml fractions. The inability of mutant apoB-37 and apoB-50 to associate with very low-density lipoproteins was attributable to impaired assembly and was not due to the limitation of lipid availability. The decreased secretion of mutant apoB-17 and apoB-37 was not accompanied by accumulation within the cells, suggesting that the proportion of mutant apoB not secreted was rapidly degraded. However unlike apoB-17 or apoB-37, accumulation of mutant apoB-50 was observed within the endoplasmic reticulum and Golgi compartments. These data imply that the N-glycans at the amino terminus of apoB play an important role in the assembly and secretion of lipoproteins containing the carboxyl terminally truncated apoB.  相似文献   

2.
Glucosamine-induced endoplasmic reticulum (ER) stress was recently shown to specifically reduce apolipoprotein B-100 (apoB-100) secretion by enhancing the proteasomal degradation of apoB-100. Here, we examined the mechanisms linking glucosamine-induced ER stress and apoB-lipoprotein biogenesis. Trypsin sensitivity studies suggested glucosamine-induced changes in apoB-100 conformation. Endoglycosidase H studies of newly synthesized apoB-100 revealed glucosamine induced N-linked glycosylation defects resulting in reduced apoB-100 secretion. We also examined glucosamine-induced changes in VLDL assembly and secretion. A dose-dependent (1-10 mM glucosamine) reduction was observed in VLDL-apoB-100 secretion in primary hepatocytes (24.2-67.3%) and rat McA-RH7777 cells (23.2-89.5%). Glucosamine also inhibited the assembly of larger VLDL-, LDL-, and intermediate density lipoprotein-apoB-100 but did not affect smaller HDL-sized apoB-100 particles. Glucosamine treatment during the chase period (posttranslational) led to a 24% reduction in apoB-100 secretion (P < 0.01; n = 4) and promoted post-ER apoB degradation. However, the contribution of post-ER apoB-100 degradation appeared to be quantitatively minor. Interestingly, the glucosamine-induced posttranslational reduction in apoB-100 secretion could be partially prevented by treatment with desferrioxamine or vitamin E. Together, these data suggest that cotranslational glucosamine treatment may cause defects in apoB-100 N-linked glycosylation and folding, resulting in enhanced proteasomal degradation. Posttranslationally, glucosamine may interfere with the assembly process of apoB lipoproteins, leading to post-ER degradation via nonproteasomal pathways.  相似文献   

3.
The complete cDNA and amino acid sequence of human apolipoprotein B-100   总被引:15,自引:0,他引:15  
We have determined the complete sequence of apolipoprotein (apo) B-100 cDNA. It is 14.1 kilobases in length and codes for a 4563-amino acid protein, including a 27-amino acid signal peptide and a 4536-amino acid mature protein. Further, we identified 2366 residues of apoB-100 by direct sequence analysis of apoB-100 tryptic peptides. The mature peptide is characterized by high hydrophobicity (0.916 kcal/residue) and predicted beta-sheet content (21%). Dot matrix analysis revealed the presence of many long internal repeats in apoB-100. The mature peptide contains 25 cysteine residues, 12 of which are in the N-terminal 500 residues. Twenty potential N-linked glycosylation sites were identified, of which 13 were proven to be glycosylated, and 4 were found not to be glycosylated by direct analysis of tryptic peptides. Our findings on apoB structure provide a basis for future experimentation on the role of apoB-100-containing lipoproteins in atherosclerosis.  相似文献   

4.
Cardozo C  Wu X  Pan M  Wang H  Fisher EA 《Biochemistry》2002,41(31):10105-10114
In the human hepatic cell line, HepG2, apolipoprotein B100 (apoB100) degradation is increased by inhibiting lipid transfer mediated by the microsomal triglyceride transfer protein (MTP) and is predominantly accomplished by the ubiquitin-proteasome pathway. In the current study, we determined whether this degradative pathway was restricted to HepG2 cells or was of more general importance in hepatic apoB100 metabolism. Rat hepatoma McArdle RH7777 cells (McA), compared to HepG2 cells, secrete a large fraction of apoB100 associated with VLDL particles, as does the normal mammalian liver. In McA cells studied under basal conditions, the proteasome inhibitor lactacystin (LAC) increased apoB100 recovery, indicating that the role of the proteasome in apoB100 metabolism is not restricted to HepG2 cells. When apoB100 lipidation was blocked by an inhibitor of MTP (MTPI), recovery of cellular apoB100 was markedly reduced, but LAC was only partially ( approximately 50%) effective in reversing the induced degradation. This partial effectiveness of LAC may have represented either (1) incomplete inhibition by LAC of its preferred target, the chymotrypsin-like activity of the proteasome, (2) the presence of an apoB100 proteolytic activity of the proteasome resistant to LAC, or (3) a nonproteasomal proteolytic pathway of apoB100 degradation. By studying immunoisolated proteasomes and McA cells treated with LAC and/or MTPI and a variety of protease inhibitors, we determined that the proteasomal component of apoB100 degradation was entirely attributable to the chymotrypsin-like catalytic activity, but only accounted for part of apoB100 degradation induced by MTPI. The nonproteasomal apoB100 degradative pathway was nonlysosomal and resistant to E64d, DTT, and peptide aldehydes such as MG132 or ALLN but was partially sensitive to the serine protease inhibitor APMSF. Furthermore, when the protein trafficking inhibitor, brefeldin A, was used to block endoplasmic reticulum (ER) to Golgi transport in MTPI-treated McA cells, degradative activity resistant to LAC was increased, suggesting that the nonproteasomal pathway is associated with the ER.  相似文献   

5.
Microsomal triglyceride transfer protein (MTP) is an intraluminal protein in the endoplasmic reticulum (ER) that is essential for the assembly of apolipoprotein B (apoB)-containing lipoproteins. In this study, we examine how the livers of mice respond to two distinct methods of blocking MTP function: Cre-mediated disruption of the gene for MTP and chemical inhibition of MTP activity. Blocking MTP significantly reduced plasma levels of triglycerides, cholesterol, and apoB-containing lipoproteins in both wild-type C57BL/6 and LDL receptor-deficient mice. While treating LDL receptor-deficient mice with an MTP inhibitor for 7 days lowered plasma lipids to control levels, liver triglyceride levels were increased by only 4-fold. Plasma levels of apoB-100 and apoB-48 fell by >90% and 65%, respectively, but neither apoB isoform accumulated in hepatic microsomes. Surprisingly, loss of MTP expression was associated with a nearly complete absence of apoB-100 in hepatic microsomes. Levels of microsomal luminal chaperone proteins [e.g., protein disulfide isomerase, glucose-regulated protein 78 (GRP78), and GRP94] and cytosolic heat shock proteins (HSPs) (e.g., HSP60, HSC, HSP70, and HSP90) were unaffected by MTP inhibition. These findings show that the liver responds rapidly to inhibition of MTP by degrading apoB and preventing its accumulation in the ER. The rapid degradation of secretion-incompetent apoB in the ER may block the induction of proteins associated with unfolded protein and heat shock responses.  相似文献   

6.
To study the mechanism of low levels of full length and truncated apoB in individuals heterozygous for apoB truncation, a non-sense mutation was introduced in one of the three alleles of apob gene of HepG2 cells by homologous recombination. Despite very low levels of apoB-82 (1-2%) in the media, a prominent N-terminal apoB protein of 85 kDa (apoB-15) was secreted that fractionated at d > 1.065 in density gradient ultracentrifugation. The mechanism of production of this short protein was studied by 35S-methionine pulse-chase experiment. Oleate prevented presecretory degradation of apoB-100 in the cell and resulted in increased secretion of newly synthesized apoB-100 with decreases in the apoB-15, suggesting that rescue of pre-secretary intracellular degradation of apoB restricted the production and secretion of apoB-15. Further investigation on the degradation of transmembrane forms of apoB, in the presence and absence of a cysteine protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal (ALLN), showed appearance of detectable levels of newly synthesized apoB-82 in the cell and the media together with increased apoB-100 secretion, and reduction in the secretion of apoB-15. Compared to ER membrane, the levels of apoB were higher in the luminal content, and presence of both oleate and ALLN had additive effect on apoB secretion. These results suggest that the presence of improper folding of apoB during translocation led to the cleavage of both apoB-100 and apoB-82 by ALLN-sensitive protease and generation of 85 kDa N-terminal fragment of apoB.  相似文献   

7.
Previous studies demonstrated that structural perturbation of the alpha(1) domain of apolipoprotein B (apoB) blocked the initiation of lipoprotein assembly. We explored the hypothesis that this domain may interact with the inner leaflet of the endoplasmic reticulum membrane in a manner that may nucleate microsomal triglyceride transfer protein-dependent lipid sequestration. ApoB-17 (amino-terminal 17% of apoB), which contains most of the alpha(1) domain, was expressed stably in rat hepatoma cells and recovered from medium in lipid-poor form. On incubation with phospholipid vesicles composed of 1-myristol-2-myristoyl-sn-glycero-3-phosphocholine or 1-palmitoyl-2-oleoyl-sn-gylycero-3-phosphocholine, apoB-17 underwent vesicle binding and was recovered in the d < 1.25 g/ml gradient fraction. To determine whether vesicle binding is disrupted by the same structural perturbations that block lipoprotein assembly in vivo, apoB-17 was subjected to partial and complete chemical reduction. Although normally a soluble peptide, mild reduction of apoB-17 caused its precipitation, suggesting that hydrophobic, solvent-inaccessible domains within the alpha(1) domain of apoB are stabilized by intramolecular disulfide bonds. In contrast to apoB-17 chemically reduced in vitro, forms of apoB-17 bearing pairwise cysteine-to-serine substitutions were recovered in soluble form from transiently transfected COS-1 cell extracts. Although individual disruption of disulfide bond 2 or 4 in apoB-28 and apoB-50 was previously shown to block lipoprotein assembly in vivo, these alterations had no impact on the ability of apoB-17 to bind to phospholipid vesicles in vitro or on its capacity to form recombinant lipoprotein particles. These results suggest that while the vesicle/lipid-binding property of the alpha(1) domain may reflect an essential role required for the initiation of lipoprotein formation, some other aspect of alpha(1) domain function is perturbed by disruption of native disulfide bonds. -- DeLozier, J. A., J. S. Parks, and G. S. Shelness. Vesicle-binding properties of wild-type and cysteine mutant forms of alpha(1) domain of apolipoprotein B. J. Lipid Res. 2001. 42: 399--406.  相似文献   

8.
The ATPase associated with various cellular activities (AAA-ATPase) p97 (p97) has been implicated in the retrotranslocation of target proteins for delivery to the cytosolic proteasome during endoplasmic reticulum-associated degradation (ERAD). Apolipoprotein B-100 (apoB-100) is an ERAD substrate in liver cells, including the human hepatoma, HepG2. We studied the potential role of p97 in the ERAD of apoB-100 in HepG2 cells using cell permeabilization, coimmunoprecipitation, and gene silencing. Degradation was abolished when HepG2 cytosol was removed by digitonin permeabilization, and treatment of intact cells with the proteasome inhibitor MG132 caused accumulation of ubiquitinated apoB protein in the cytosol. Cross-linking of intact cells with the thiol-cleavable agent dithiobis(succinimidylpropionate) (DSP), as well as nondenaturing immunoprecipitation, demonstrated an interaction between p97 and intracellular apoB. Small interfering ribonucleic acid (siRNA)-mediated reduction of p97 protein increased the intracellular levels of newly synthesized apoB-100, predominantly because of a decrease in the turnover of newly synthesized apoB-100 protein. However, although the posttranslational degradation of newly synthesized apoB-100 was delayed by p97 knockdown, secretion of apoB-100 was not affected. Knockdown of p97 also impaired the release of apoB-100 and polyubiquitinated apoB into the cytosol. In summary, our results suggest that retrotranslocation and proteasomal degradation of apoB-100 can be dissociated in HepG2 cells, and that the AAA-ATPase p97 is involved in the removal of full-length apoB from the biosynthetic pathway to the cytosolic proteasome.  相似文献   

9.
Apolipoprotein B-100 (apoB-100) is degraded by endoplasmic reticulum-associated degradation (ERAD) when lipid availability limits assembly of VLDLs. The ubiquitin ligase gp78 and the AAA-ATPase p97 have been implicated in the proteasomal degradation of apoB-100. To study the relationship between ERAD and VLDL assembly, we used small interfering RNA (siRNA) to reduce gp78 expression in HepG2 cells. Reduction of gp78 decreased apoB-100 ubiquitination and cytosolic apoB-ubiquitin conjugates. Radiolabeling studies revealed that gp78 knockdown increased secretion of newly synthesized apoB-100 and, unexpectedly, enhanced VLDL assembly, as the shift in apoB-100 density in gp78-reduced cells was accompanied by increased triacylglycerol (TG) secretion. To explore the mechanisms by which gp78 reduction might enhance VLDL assembly, we compared the effects of gp78 knockdown with those of U0126, a mitogen-activated protein kinase/ERK kinase1/2 inhibitor that enhances apoB-100 secretion in HepG2 cells. U0126 treatment increased secretion of both apoB100 and TG and decreased the ubiquitination and cellular accumu-lation of apoB-100. Furthermore, p97 knockdown caused apoB-100 to accumulate in the cell, but if gp78 was concomitantly reduced or assembly was enhanced by U0126 treatment, cellular apoB-100 returned toward baseline. This indicates that ubiquitination commits apoB-100 to p97-mediated retrotranslocation during ERAD. Thus, decreasing ubiquitination of apoB-100 enhances VLDL assembly, whereas improving apoB-100 lipidation decreases its ubiquitination, suggesting that ubiquitination has a regulatory role in VLDL assembly.  相似文献   

10.
We have studied the consequences of alterations to hepatic apoB mRNA editing on the biosynthesis and intracellular distribution of newly synthesized apoB variants together with their mass distribution in nascent Golgi very low density lipoproteins (VLDL). Radiolabeled liver membrane fractions were prepared from control or hypothyroid animals and separated by discontinuous sucrose gradient centrifugation. Hepatic apoB-100 synthesis in these groups accounted for 93-100% of total newly synthesized apoB species of Golgi fractions recovered from the sucrose gradients (G1 and G2). The analogous fractions isolated from the livers of hyperthyroid (treated with 3,3',5-triiodo-L-thyronine, T3) animals revealed that newly synthesized apoB-100 accounted for only 46 +/- 10% (G1) and 24 +/- 11% (G2), respectively, of total newly synthesized apoB. ApoB-100 mass in nascent Golgi VLDL from control and hypothyroid G1 fractions represented 70-78% total apoB as determined by Western blot analysis. By contrast, Golgi VLDL from hyperthyroid animals contained predominantly (greater than 78%) apoB-48 as the apoB species. Electron microscopy revealed that the morphology and size distribution of hyperthyroid G1 VLDL were similar to particles isolated from control animals. Thus, despite a profound reduction in the proportion of apoB-100 mRNA species containing an unmodified codon (CAA, B-GLN) at position 2153 in hyperthyroid animals (6 +/- 1% vs 50-61% in control and hypothyroid animals) apoB-100 biosynthesis was detectable in a defined membrane fraction isolated by discontinuous sucrose gradient centrifugation. However, no apoB-100 synthesis was detectable in liver samples prepared by Polytron disruption in Triton-containing buffers. These data suggest that effective hepatic VLDL assembly and secretion in the T3-treated rat continues despite a profound reduction in apoB-100 biosynthesis and implies that apoB-48 contains the requisite domains to direct this process, a situation analogous to that in the intestine.  相似文献   

11.
Apolipoprotein (apo) B-100, an essential protein for the assembly and secretion of very low density lipoproteins depends on lipid binding (lipidation) for its secretion. Seven of its 8 disulfides are clustered within the N-terminal 21%. The role of these disulfides in the secretion of lipidated or unlipidated truncated forms of apoB was studied in C127 cells expressing apoB-17, apoB-29, or apoB-41. These cells do not express microsomal triglyceride transfer protein yet secrete apoB-41 on triacylglycerol-rich lipoproteins while apoB-29 and apoB-17 are secreted with little or no lipid, respectively. Dithiothreitol utilized in pulse-chase studies prevented the cotranslational formation of disulfides and when added posttranslationally reduced native disulfides. As a result, the secretion of reduced apoB forms was blocked and they were retained in the cells. Reduced apoB polypeptides were rescued following removal of dithiothreitol, as they underwent post-translational disulfide bonding, attained their mature form, and were subsequently secreted. Together the data suggest that in C127 cells the formation of native disulfides is critical for the folding and secretion of apoB independent of its length, its requirement for lipidation or microsomal triglyceride transfer protein expression. Therefore, these cells provide an appropriate model to study the folding of apoB in great detail.  相似文献   

12.
13.
14.
V Bruss  X Lu  R Thomssen    W H Gerlich 《The EMBO journal》1994,13(10):2273-2279
The preS domain at the N-terminus of the large envelope protein (LHBs) of the hepatitis B virus is involved in (i) envelopment of viral nucleocapsids and (ii) binding to the host cell. While the first function suggests a cytosolic location of the preS domain during virion assembly, the function as an attachment site requires its translocation across the lipid bilayer and final exposure on the virion surface. We compared the transmembrane topology of newly synthesized LHBs in the endoplasmic reticulum (ER) membrane with its topology in the envelope of secreted virions. Protease sensitivity and the absence of glycosylation suggest that the entire preS domain of newly synthesized LHBs remains at the cytosolic side of ER vesicles. However, virions secreted from transfected cell cultures or isolated from the blood of persistent virus carriers expose antibody binding sites and proteolytic cleavage sites of the preS domain at their surface in approximately half of the LHBs molecules. Thus, preS domains appear to be transported across the viral lipid barrier by a novel post-translational translocation mechanism to fulfil a dual function in virion assembly and attachment to the host cell.  相似文献   

15.
Very low density lipoprotein (VLDL), a large particle containing apolipoprotein B (apoB) and large amounts of neutral lipids, is formed in the luminal space within the endoplasmic reticulum (ER) of hepatic cells. The assembly mechanism of VLDL particles is a tightly regulated process where apoB, associated with an insufficient amount of lipids, is selectively degraded intracellularly. In this study we found that treatment of HuH-7 human hepatoma cells with verapamil inhibited secretion of apoB-containing lipoprotein particles through increasing degradation of apoB. Addition of N-acetylleucyl-leucyl-norleucinal, an inhibitor of proteasome and other cysteinyl proteases that are responsible for apoB degradation, restored apoB recovery from verapamil-treated cells. De novo synthesis of lipids from [14C]acetate was increased in the presence of verapamil, suggesting that verapamil decreases lipid availability for apoB thus leading to the secretion of apoB-containing lipoprotein. We prepared cytosolic fractions from cells preincubated with [14C]acetate and used as a donor of radioactive lipids. When this cytosolic fraction was incubated with microsomes isolated separately, radioactive triglyceride (TG) accumulated in the luminal space of the microsomes. The transfer of radioactive TG from the cytosolic fraction to the microsomal lumen was inhibited in the presence of verapamil, suggesting that there is a verapamil-sensitive mechanism for TG transfer across ER membranes that is involved in formation of apoB-containing lipoprotein particles in ER. Verapamil showed no inhibitory effect on microsomal TG transfer protein, a well known lipid transfer protein in ER. We propose from these results that there is novel machinery for transmembrane movement of neutral lipids, which is involved in providing TG for apoB during VLDL assembly in ER.  相似文献   

16.
Studies of truncated apoB peptides in human subjects with familial hypobetalipoproteinemia, as well as of puromycin-generated spectra of nascent apoB peptides in rat and hamster liver, suggest that a minimum size is required for N-terminal fragments of apoB to be efficiently assembled into full-sized VLDL. We report here results of experiments undertaken to examine this phenomenon in greater detail by expressing individual carboxyl-truncated human apoB constructs in McArdle cells. Thus, apoB-29, -32, -37, -42, -47, -53, -70 and full length apoB-100 were transiently expressed in rat McA-RH7777 hepatoma cells, or human apoB-31 and apoB-53 were stably expressed in the same cells, and the secreted VLDL particles were characterized by kinetic gradient ultracentrifugal flotation. Calibration with rat plasma VLDL subfractions showed that about 90 and 50%, respectively, of lipoprotein particles containing endogenous rat B-100 and B-48 floated between fractions 2;-8 of the 11-fraction gradient. This corresponds to the normal VLDL diameter range of about 47 to 28 nm, with the remaining half of rat B-48 recovered as HDL particles in the 1.1 g/ml range. In contrast, regardless of their size, only 2;-5% of any of the truncated human apoB peptides expressed in these cells was recovered in the VLDL region of the gradient. The remaining 95+% of the lipoproteins were found as high density particles; as previously found in other systems the densities of the latter were inversely related to their peptide chain-length. Furthermore, transiently expressed full-length human apoB-100 was inefficiently secreted as VLDL by these cells, with the remainder appearing as LDL-sized particles. Thus, although we showed that McA-RH7777 cells secreted endogenous rat apoB as normal-sized VLDL, we found them unsuitable for our original purpose of using human apoB fragments to further define effects of apoB size on VLDL assembly. These cells appeared unable to efficiently use any size of human apoB for that process. Pulse-labeled untransfected McA-RH7777 cells chased in the presence of puromycin did, however, show a sharp decline in VLDL assembly efficiency for endogenous nascent rat apoB peptides shorter than B-48, similar to that originally found in normal rat liver.  相似文献   

17.
Inhibition of esterified and non-esterified cholesterol synthesis by lovastatin in primary rat hepatocytes suppressed the net synthesis and very-low-density lipoprotein (VLDL) secretion of apolipoprotein B (apoB)-48 and apoB-100. Lovastatin did not alter the rates of apoB-48 and apoB-100 post-translational degradation. 25-Hydroxycholesterol, which inhibited non-esterified cholesterol synthesis but increased the synthesis of cholesteryl ester, showed differential effects on the metabolism of apoB-48 and apoB-100. Whereas the secretion of apoB-48 VLDL was suppressed there was no effect on the secretion of apoB-100 VLDL. The post-translational degradation of apoB-48, but not of apoB-100, was enhanced by 25-hydroxycholesterol. The net synthesis rates of apoB-48 and apoB-100 were unaffected by 25-hydroxycholesterol. The inhibitory effect of lovastatin alone on the net synthesis of apoB-48 and apoB-100 was reversed by the simultaneous presence of 25-hydroxycholesterol, suggesting a role for newly synthesised cholesteryl ester. Prevention of the reversal effect by the acyl-CoA: cholesterol acyltransferase (ACAT) inhibitor YM 17E supported this interpretation. In the presence of lovastatin, restoration of the net synthesis of apoB by 25-hydroxycholesterol was not accompanied by an increased VLDL output of apoB-48 and apoB-100. However, under these conditions there was an increased post-translational degradation of apoB-48 and apoB-100. These results suggest that interference with intracellular cholesterol and cholesteryl ester metabolism interrupts VLDL assembly at sites of both apoB net synthesis and post-translational degradation.  相似文献   

18.
Hepatic lipoprotein assembly and secretion can be regulated by proteasomal degradation of newly synthesized apoB, especially if lipid synthesis or lipid transfer is low. Our previous studies in HepG2 cells showed that, under these conditions, newly synthesized apoB remains stably associated with the endoplasmic reticulum (ER) membrane (Mitchell, D. M., Zhou, M., Pariyarath, R., Wang, H., Aitchison, J. D., Ginsberg, H. N., and Fisher, E. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 14733-14738). We now show that independent of lipid synthesis, apoB chains that appear full-length are, in fact, incompletely translated polypeptides still engaged by the ribosome and associated with the ER translocon. In the presence of active lipid synthesis and transfer, translation and lipoprotein assembly are completed, and the complexes exit the ER. Upon omitting fatty acids from, or adding a microsomal triglyceride transfer protein inhibitor to, culture media to reduce lipid synthesis or transfer, respectively, apoB was degraded while it remained associated with the ER and complexed with cytosolic hsp70 and proteasomes. Thus, unlike other ER substrates of the proteasome, such as major histocompatibility complex class I molecules, apoB does not fully retrotranslocate to the cytosol before entering the ubiquitin-proteasome pathway. Although, upon immunofluorescence, apoB in proteasome-inhibited cells accumulated in punctate structures similar in appearance to aggresomes (cytosolic structures containing molecules irreversibly lost from the secretory pathway), these apoB molecules could be secreted when lipid synthesis was stimulated. The results suggest a model in which 1) apoB translation does not complete until lipoprotein assembly terminates, and 2) assembly with lipids or entry into the ubiquitin-proteasome pathway occurs while apoB polypeptides remain associated with the translocon and attached to the ribosome.  相似文献   

19.
To examine the role of apolipoprotein A-IV (apoA-IV) in the intracellular trafficking and secretion of apoB, COS cells were cotransfected with microsomal triglyceride transfer protein (MTP), apoB-41 (amino terminal 41% of apoB), and either native apoA-IV or apoA-IV modified with the carboxy-terminal endoplasmic reticulum (ER) retention signal, KDEL (apoA-IV-KDEL). As expected, apoA-IV-KDEL was inefficiently secreted relative to native apoA-IV. Coexpression of apoB-41 with apoA-IV-KDEL reduced the secretion of apoB-41 by approximately 80%. The apoA-IV-KDEL effect was specific, as neither KDEL-modified forms of human serum albumin or apoA-I affected apoB-41 secretion. Similar results were observed in McA-RH7777 rat hepatoma cells, which express endogenous MTP. The full inhibitory effect of apoA-IV-KDEL on apoB secretion was observed only for forms of apoB containing a minimum of the amino-terminal 25% of the protein (apoB-25). However, apoA-IV-KDEL inhibited the secretion of both lipid-associated and lipid-poor forms of apoB-25. Dual-label immunofluorescence microscopy of cells transfected with native apoA-IV and apoB-25 revealed that both apolipoproteins were localized to the ER and Golgi, as expected. However, when apoA-IV-KDEL was cotransfected with apoB-25, both proteins localized primarily to the ER. These data suggest that apoA-IV may physically interact with apoB in the secretory pathway, perhaps reflecting a role in modulating the process of triglyceride-rich lipoprotein assembly and secretion.  相似文献   

20.
We investigated how asparagine (N)-linked glycosylation affects assembly of acetylcholine receptors (AChRs) in the endoplasmic reticulum (ER). Block of N-linked glycosylation inhibited AChR assembly whereas block of glucose trimming partially blocked assembly at the late stages. Removal of each of seven glycans had a distinct effect on AChR assembly, ranging from no effect to total loss of assembly. Because the chaperone calnexin (CN) associates with N-linked glycans, we examined CN interactions with AChR subunits. CN rapidly associates with 50% or more of newly synthesized AChR subunits, but not with subunits after maturation. Block of N-linked glycosylation or trimming did not alter CN-AChR subunit associations nor did subunit mutations prevent N-linked glycosylation. Additionally, CN associations with subunits lacking N-linked glycans occurred without subunit aggregation or misfolding. Our data indicate that CN associates with AChR subunits without N-linked glycan interactions. Furthermore, CN-subunit associations only occur early in AChR assembly and have no role in events later that require N-linked glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号