首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PGE2 is essential for mammalian female reproduction. This study was to examine the expression of EP2 gene in the rat uterus during early pregnancy, delayed implantation and artificial decidualization by in situ hybridization and immunohistochemistry. There was no detectable EP2 mRNA expression in the uterus from days 1 to 4 of pregnancy (day 1 = day of vaginal sperm). A low level of EP2 immunostaining was observed in the luminal and glandular epithelium from days 1 to 4 of pregnancy. Both EP2 mRNA and protein expression were highly detected in the luminal epithelium at implantation sites on day 6 of pregnancy. EP2 expression decreased from day 7 of pregnancy and was undetectable on days 8 and 9 of pregnancy. After delayed implantation was terminated by estrogen treatment and the embryo implanted, both EP2 mRNA and protein expression were strongly observed in the luminal epithelium at the implantation site. There was no detectable EP2 expression in both control and decidualized uteri. In conclusion, these data suggest that EP2 expression at implantation site may play an important role during embryo implantation in rats.  相似文献   

3.
Cai L  Zhang J  Duan E 《Cytokine》2003,23(6):193-178
Embryo implantation depends on the synchronized development of the blastocyst and the endometrium. This process is highly controlled by the coordinated action of the steroid hormones: estrogen and progesterone. By autocrine, paracrine or juxtacrine routes, some growth factors or cytokines are involved in this steroidal regulation pathway. Here we report the effects of epidermal growth factor (EGF) on embryo implantation in the mouse, the expression and distribution patterns of EGF protein in the mouse blastocyst, ectoplacental cone (EPC) and peri-implantation uterus on days 1-8 of gestation.By RT-PCR and dot blot, we found that EGF and its receptor (EGFR) are co-expressed in the blastocyst and peri-implantational uteri of pregnant days 2-8 (D2-D8) mice. Injection of EGF antibody into a uterine horn on the third day of pregnancy (D3) significantly reduced the number of mouse embryos that implanted on D8, indicating EGF have a function in the mouse embryo implantation.Further investigation by using indirect immunofluorescence and confocal microscope was made to trace EGF and EGFR protein localization during the mouse embryo implantation. EGF and EGFR are co-localized in the blastocyst, and in the secondary trophoblastic giant cells (SGC) of the EPC. At the pre-implantation stage, the distribution of EGF protein in the mouse uterus changes from epithelium to stroma. On D1 of pregnancy, EGF is mainly distributed in uterine stroma and myometrium. On D2, it is present in the uterine epithelium. On D3, it changes again from the uterine epithelium to the stroma. By D4, EGF is predominantly in the stroma. This dynamic distribution correlates with the proliferation activity of uterine cells at each period. On D6-D8 of embryo implantation, EGF 3 protein accumulates at the uterine mesometrial pole, a region that contributes to the trophoblastic invasiveness and placentation.This temporal and spatial localization of EGF protein in the mouse uterus implicates the cytokine in the regulation of trophoblastic invasiveness and uterine receptiveness.  相似文献   

4.
Epidemiological reports and laboratory data have associated soy and genistein with reduced incidence of uterine, breast, and prostate cancers, cardiovascular disease and osteoporosis, and lower total blood cholesterol. The aim of this study was to investigate the effect of genistein in the uterus and vagina of rats, focusing our attention on the distribution of transforming growth factor (TGF) alpha, epidermal growth factor (EGF), and EGF receptor. A pharmacological dose of genistein (500 microg/g body weight) injected in rats on days 16,18, and 20 postpartum resulted in significant uterine wet weight gain, with hypertrophy of the luminal and glandular epithelium of the uteri, and squamous epithelium of the vagina in 21-day-old animals. At 50 days of age, hypertrophy was no longer evident in the uterus and vagina. Prepubertal genistein treatment resulted in significantly increased EGF immunostaining in individual stromal cells and reduced EGF receptor immunostaining in blood vessels of the uterus. Genistein-treated rats had decreased TGF-alpha immunostaining in glandular and luminal epithelium and a slight increase in EGF receptor immunostaining in stromal cells of the uterus. This suggests paracrine interaction between cells elevating the level of EGF ligand in the stroma and the EGF receptor in the luminal and glandular epithelium, resulting in uterine hypertrophy. In the vagina, genistein did not cause significant alterations to the EGF-signaling pathway in 21- and 50-day-old rats. We conclude that pharmacological doses of genistein during the prepubertal period can modulate the EGF-signaling pathway in the uterus and exert a uterotrophic response in a short-term manner.  相似文献   

5.
Control over the action of steroid hormones in the uterus and conceptus during the initial period of gestation appears to be regulated locally by growth factors. This study involved immunohistochemical detection of epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha) and transforming growth factor-beta s (TGF-beta s), to determine their role in the caprine peri-implantation period. Epidermal growth factor was expressed in the luminal and glandular endometrial epithelium of goats on all days studied (Days 22 to 30 post coitum), but it was not detected in trophoblastic cells or in other embryonic structures. Between Days 22 and 30 post coitum, TGF-alpha was detected in the epithelial cells and superficial stroma of the uterus and in the trophoendodermic cells of the embryo. Transforming growth factor-beta s expression, observed in the endometrium, embryo and extraembryonic membranes on Day 22 post coitum, decreased by Day 24 post coitum and disappeared in the embryo by Day 30 post coitum, while remaining in the other structures. The presence of these growth factors during the peri-implantation period in the goat suggests their participation in proliferation and differentiation phenomena which occur during implantation and embryonic development.  相似文献   

6.
Molecular cloning of the partial cDNA coding sequences of the four erbB receptors and the epidermal growth factor (EGF)-like ligands EGF, transforming growth factor alpha (TGF), and heparin-binding EGF (HB-EGF) has provided the basis for a comprehensive analysis of the spatiotemporal expression pattern of the EGF receptor/ligand system during the peri-implantation period in the rabbit. Employing nonradioactive in situ hybridization and immunolocalization, we observed differential expression of erbB1-erbB3 within the trophectoderm of the blastocyst. ErbB1 was strongly expressed in the cytotrophoblast but was downregulated upon syncytium formation. ErbB3 was a product of both the cyto- and syncytiotrophoblast. Despite the expression of erbB2 mRNA, the trophectoderm was devoid of immunoreactive ErbB2. ErbB4 gene activity was exclusively detected in the trophoblast at midpregnancy. The luminal and glandular epithelium and stroma of the nonpregnant, pseudopregnant, and pregnant rabbit uterus at Day 6 of gestation also expressed ErbB1-ErbB3. In the peri-implantation period, gene activities of erbB1-erbB3 were upregulated upon decidualization. At the site of implantation, uterine luminal epithelial cells apposing the preimplantation blastocyst displayed a distinct membrane immunolocalization of ErbB2, identifying the uterine epithelium as target for EGF, TGFalpha, and HB-EGF derived from both the embryonic trophectoderm and the uterine epithelium. In the luminal epithelium at the antimesometrial uterine site, HB-EGF gene activity was upregulated at the time of blastocyst attachment, but this upregulation was not reflected in an increase in immunoreactive HB-EGF. The detection of tyrosine phosphorylated ErbB2 in the rabbit placenta indicated the presence of a functional ErbB/EGF-like system in the pregnant rabbit uterus. This study provides strong evidence for a role of the ErbB/EGF-like system in embryo/maternal interactions during the peri-implantation period in the rabbit.  相似文献   

7.
The aim of this study was to investigate the spatiotemporal expression and regulation of GRP78 in the mouse uterus during the peri-implantation period. The GRP78 protein was mainly detected in the luminal and glandular epithelia on days 1–4 of pregnancy. On day 5 of pregnancy, the GRP78 protein was more highly observed around the implanted embryo at the implantation site. There was no detectable GRP78 protein signal on day 5 of pseudopregnancy. GRP78 mRNA and protein levels gradually increased on days 6–8 of pregnancy, and the expression pattern was also expanded, coinciding with the development of decidua. Similarly, GRP78 expression was also strongly expressed in decidualised cells following artificial decidualisation. Compared with the results obtained with the delayed uterus, a high level of GRP78 expression was detected in the implantation-activated uterus. In the uteri of ovariectomised mice, GRP78 expression increased and reached its highest level after injection of oestrogen, and progesterone seemed to have an antagonistic effect on oestrogen up-regulation of GRP78 expression. Our data indicate that GRP78 might play an important role during the process of mouse embryo implantation, and GRP78 expression was mainly regulated by active blastocysts and maternal oestrogen.  相似文献   

8.
The aim of this study was to examine the expression and regulation of peroxisome proliferator-activated receptor (PPAR) PPARdelta gene in mouse uterus during early pregnancy by in situ hybridization and immunohistochemistry. PPARdelta expression under pseudopregnancy, delayed implantation, hormonal treatment, and artificial decidualization was also investigated. There was a very low level of PPARdelta expression on days 1-4 of pregnancy. On day 5 when embryo implanted, PPARdelta expression was exclusively observed in the subluminal stroma surrounding the implanting blastocyst. No corresponding signals were seen in the uterus on day 5 of pregnancy. There was no detectable PPARdelta signal under delayed implantation. Once delayed implantation was terminated by estrogen treatment and embryo implanted, a strong level of PPARdelta expression was induced in the subluminal stroma surrounding the implanting blastocyst. Estrogen treatment induced a moderate level of PPARdelta expression in the glandular epithelium, while progesterone treatment had no effects in the ovariectomized mice. A strong level of PPARdelta expression was seen in the decidua on days 6-8 of pregnancy. PPARdelta expression was also induced under artificial decidualization. These data suggest that PPARdelta expression at implantation sites require the presence of an active blastocyst and may play an essential role for blastocyst implantation.  相似文献   

9.
10.
Prostaglandin E(2) (PGE(2)) is considered important for blastocyst spacing, implantation, and decidualization in rodent uteri. PGE synthase (PGES) catalyzes the isomerization of PGH(2) to PGE(2). Two isoforms of PGES exist: microsomal PGES (mPGES) and cytosolic PGES (cPGES); however, the expression and regulation of cPGES in the mammalian uterus during early pregnancy are still unknown. The aim of this study was to investigate the differential expression of cPGES in mouse uterus during early pregnancy and its regulation under different conditions using in situ hybridization and immunohistochemistry. A strong level of cPGES mRNA signal was exhibited in the stromal cells at the implantation site on Day 5 of pregnancy, whereas cPGES immunostaining was strongly detected in the luminal epithelium. The signals for both cPGES mRNA and immunostaining were strongly detected in the decidualized cells from Days 6-8 of pregnancy. A basal level of cPGES mRNA signal and immunostaining was exhibited in the uterus in delayed implantation. After delayed implantation was terminated by estrogen treatment and embryo implantation was initiated, cPGES mRNA signal was strongly detected in the stroma underlying the luminal epithelium at the implantation site, and cPGES immunostaining was strongly observed in the luminal epithelium surrounding the implanting blastocyst. A strong cPGES mRNA signal and immunostaining were detected in decidualized cells under artificial decidualization, whereas only a basal level of cPGES mRNA signal and immunostaining were observed in the control horn. Our data suggest that cPGES may play an important role during implantation and decidualization.  相似文献   

11.
Basigin, a transmembrane glycoprotein belonging to the immunoglobulin superfamily, has been shown to be essential for fertilization and implantation. The aim of this study was to determine the expression and hormonal regulation of basigin gene in mouse uterus during the peri-implantation period. Basigin immunostaining and mRNA were strongly localized in luminal and glandular epithelium on day 1 of pregnancy and gradually decreased to a basal level from day 2-4 of pregnancy. Basigin mRNA expression in the sub-luminal stroma was first detected on day 3 of pregnancy and increased on day 4 of pregnancy. On day 5 of pregnancy, the expression of basigin protein and mRNA was only detected in the implanting embryos, and the luminal epithelium and sub-luminal stroma surrounding the embryos. A similar expression pattern of basigin was also induced in the delayed-implantation uterus which was activated by estrogen injection. On day 6-8 of pregnancy, although a basal level of basigin protein was detected in the secondary decidual zone, basigin mRNA expression was strongly seen in this location. Basigin mRNA was also highly expressed in the decidualized cells under artificial decidualization. Estrogen significantly stimulated basigin expression in the ovariectomized mouse uterus. A high level of basigin immunostaining and mRNA was also seen in proestrus and estrus uteri. These results suggest that basigin expression is closely related to mouse implantation and up-regulated by estrogen.  相似文献   

12.
13.
14.
Yang YJ  Liu WM  Zhou JX  Cao YJ  Li J  Peng S  Wang L  Yuan JG  Duan EK 《Life sciences》2006,78(7):753-760
Calcyclin-binding protein (Siah-1-Interacting Protein, CacyBP/SIP), is a calcium signaling protein involved in the degradation of beta-catenin, however, little is known about its role in reproductive biology. The present study was to character its temporospatial expression pattern and regulation in mouse uterus and to investigate whether it plays a role in the regulation of normal endometrial events. While prominently expressed in both luminal and glandular epithelia, CacyBP underwent dynamic changes during early pregnancy. CacyBP expression was observed weakly from days 1-4. An intense accumulation in luminal and glandular epithelia as well as decidua surrounding the embryo at later stages (days 5-7) was observed. Most notably, CacyBP accumulation in trophoblast was pronounced at day 7. Using ovariectomized and pseudopregnant mice, we found that progesterone (P(4)) and 17beta-estradiol (E(2)) led to increased expression of CacyBP gene and this could be abolished by Ru486 and tamoxifen, respectively. Antisense oligonucleotides (ODNs) against CacyBP significantly inhibited cultured endometrial stromal cells' (ESCs) apoptosis induced by UV irradiation. Injection of antisense ODNs into mouse uterine horn severely impaired the number of implanted blastocysts. Taken together, our results suggested that CacyBP expression was positively regulated by P(4) and E(2). CacyBP may be involved in the regulation of endometrial cell apoptosis during early pregnancy and play an important role in mouse endometrial events such as pregrancy establishment.  相似文献   

15.
Liu G  Zhang X  Lin H  Li Q  Wang H  Ni J  Amy Sang QX  Zhu C 《Life sciences》2005,77(26):3355-3365
Matrix metalloproteinases (MMPs) and their tissue inhibitors play important roles in the remodeling of extracellular matrix (ECM). MMP-26, also called endometase or matrilysin-2, is a novel member of the MMP family. The present study was to investigate the temporal and spatial expression of MMP-26 mRNA in mouse uterus during the estrous cycle and early pregnancy by using in situ hybridization and semi-quantitative RT-PCR. In this study, MMP-26 mRNA was found to be localized to the luminal and glandular epithelium at proestrus and estrus, and the expression level was decreased significantly from metestrus to dioestrus. During pre-implantation period, MMP-26 mRNA was predominantly expressed in luminal and glandular epithelium at much higher level; whereas it switched to stroma during peri-implantation period, and also appeared in the blastocysts and the implantation sites. The results suggested that MMP-26 might play a role in the cycling changes of mouse uterus during the estrous cycle and embryo implantation.  相似文献   

16.
Immunohistochemistry as well as in situ and Northern blot hybridization were employed to determine temporal and cell-type-specific expression of transforming growth factor-alpha (TGF-alpha) in the mouse uterus during the peri-implantation period. The co-localization of TGF-alpha (by immunohistochemistry) with its mRNA (by in situ hybridization) in the luminal and glandular epithelia on Days 1-4 of pregnancy (Day 1 = vaginal plug) and also in many stromal cells on Days 3 and 4 indicates that these cells are the primary sites of TGF-alpha synthesis during the preimplantation period. The higher levels of TGF-alpha mRNA in total uterine RNA on Day 4, as shown by Northern blotting, is consistent with the recruitment of stromal cells expressing this gene. During the post-implantation period (Days 5-8), the co-localization of the mRNA and protein in the decidua at the implantation sites suggests that the decidualizing stromal cells synthesize TGF-alpha. Although in situ hybridization showed the presence of mRNA in embryos on Days 5-8, immunostaining was noted in the embryo only on Days 5 and 6. These results suggest that uterine and embryonic expression of TGF-alpha during the peri-implantation period could be involved in embryonic development, preparation of the uterus for implantation, and decidualization.  相似文献   

17.
18.
This study examines immunohistochemically the presence of EGF, TGFalpha, HB-EGF, AR, and EGFR, members of the EGF family in the monkey uterus during the menstrual cycle and early pregnancy. EGF, TGFalpha, HB-EGF, AR, and EGFR were mainly localized in glandular and luminal epithelium. TGFalpha, HB-EGF, and AR staining were stronger in the glandular epithelium closer to the myometrium than in that closer to the luminal epithelium. The level of EGF, TGFalpha, HB-EGF, AR, and EGFR staining was low on days 1 and 6, and began to increase on day 9 of the menstrual cycle. A high level of EGF, and EGFR staining was maintained on days 16, 20, and 25 of the menstrual cycle. The highest levels of TGFalpha, AR, and HB-EGF staining were seen on days 16 and 20 of the menstrual cycle. In early pregnancy, a low level of EGF, TGFalpha, HB-EGF, AR, and EGFR staining appeared on days 1 and 2 of pregnancy, and then gradually increased from day 3 of pregnancy. The highest levels of EGF, TGFalpha, HB-EGF, and EGFR were detected on days 9, and 11 of pregnancy. Our data suggest that the EGF family may play a role in monkey implantation. Mol. Reprod. Dev. 55:164-174, 2000.  相似文献   

19.
In the mouse, the process of implantation is initiated by the attachment reaction between the blastocyst trophectoderm and uterine luminal epithelium that occurs at 2200–2300 h on day 4 (day 1 = vaginal plug) of pregnancy. Several members of the EGF family are considered important in embryo–uterine interactions during implantation. This investigation demonstrates that the expression of two additions to the family, betacellulin and epiregulin, are exquisitely restricted to the mouse uterine luminal epithelium and underlying stroma adjacent to the implanting blastocyst. These genes are not expressed during progesterone-maintained delayed implantation, but are rapidly switched on in the uterus surrounding the implanting blastocyst following termination of the delay by estrogen. These results provide evidence that expression of betacellulin and epiregulin in the uterus requires the presence of an active blastocyst and suggest an involvement of these growth factors in the process of implantation.  相似文献   

20.
Vitamin A (retinol) and its active metabolite, retinoic acid (RA), serve dual roles in the female reproductive tract. Cytochrome P450 26A1 (Cyp26a1), an RA-metabolizing enzyme, is involved in mammalian early pregnancy. In order to investigate the role of RA synthesis and metabolism during embryo implantation, we first investigated the spatiotemporal expression of RA-signal in the mouse uterus during the peri-implantation period. RA-signal-related molecules, including binding proteins, synthesizing enzymes, catabolizing enzymes and receptors, were all expressed in the mouse uterus during embryo implantation. The locations of the RA synthetic system (Aldh1a1, Aldh1a2, CRBP1) and catabolizing enzyme (Cyp26a1) were distinctive in the mouse uterus during the peri-implantation period. Aldh1a1 was located in the gland epithelium, whereas Aldh1a2 and CRBP1 were located in the stroma and Cyp26a1 was expressed in the luminal and glandular epithelium. These results demonstrate that RA synthesis occurs in the stroma, whereas RA metabolism takes place in the endometrial epithelium. When endometrial epithelial cells were isolated on day 4.5 of pregnancy and treated with E2 (17beta-estradiol) or a combination of E2 and progesterone, all-trans-RA (10???M) significantly down-regulated the expression of LIF, HB-EF and CSF-1 in these cells in vitro. Taken together, these results suggest that the accumulation of RA in the stroma during mouse embryo implantation has an inhibitory effect on the expression of the three implantation-essential genes, LIF, HB-EGF and CSF-1. Therefore, the expression of Cyp26a1 in luminal and glandular epithelium might block the adverse effect of RA in order to promote successful embryo implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号