首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is much evidence that suggests that freshwater systems are more sensitive to introduced predators than are terrestrial or marine systems. We argue here that this dichotomy reflects widespread naiveté toward introduced predators among freshwater prey. Continental terrestrial animals are seldom naive toward novel predators owing to the homogenizing effects of historical biotic interchanges. Comparable biotic interchanges might have also precluded prey naiveté in most marine systems. By contrast, freshwater systems exhibit persistent large- and small-scale heterogeneity in predation regimes. This heterogeneity promotes naiveté at multiple spatial scales in freshwater prey, thereby producing a systemic vulnerability to introduced predators that is not seen in continental terrestrial or marine systems.  相似文献   

2.
Rodents on tropical land-bridge islands   总被引:2,自引:0,他引:2  
The results are reported of a survey of rodents on 10 forested land-bridge islands ranging in size from 0.2 to 350 ha in the state of Bolívar, Venezuela. The islands were contained within a lake formed c. 12 years before the study by the damming of the Caroni River for hydroelectric power. Rodents were sampled on each island by live-trapping along transects that sampled all available habitat types on each island, and microhabitat structure was measured at each trap station. A total of 674 captures of 359 individuals of six species of rodents was recorded. Species composition changed from the largest to the smallest islands, and small and medium islands (0.2–11 ha) displayed the typical effects of insularity, with fewer species and increased abundances and biomass. The largest island (350 ha) seemed to function more like a mainland. Most species were associated with a suite of microhabitat variables. It is suggested that release from top-down control by predators was responsible for higher abundances and biomass on the smaller islands and that predators moving between large islands and other nearby landmasses help maintain a mainland community structure on large islands. However, changes in species composition on smaller islands may be the result of patchy occurrences of some species before isolation, changes in microhabitat structure following isolation, and species-specific microhabitat requirements.  相似文献   

3.
Naiveté in prey arises from novel ecological mismatches in cue recognition systems and antipredator responses following the arrival of alien predators. The multilevel naiveté framework suggests that animals can progress through levels of naiveté toward predator awareness. Alternatively, native prey may be preadapted to recognize novel predators via common constituents in predator odors or familiar predator archetypes. We tested predictions of these competing hypotheses on the mechanisms driving behavioral responses of native species to alien predators by measuring responses of native free‐living northern brown bandicoots (Isoodon macrourus) to alien red fox (Vulpes vulpes) odor. We compared multiple bandicoot populations either sympatric or allopatric with foxes. Bandicoots sympatric with foxes showed recognition and appropriate antipredator behavior toward fox odor via avoidance. On the few occasions bandicoots did visit, their vigilance significantly increased, and their foraging decreased. In contrast, bandicoots allopatric with foxes showed no recognition of this predator cue. Our results suggest that vulnerable Australian mammals were likely naïve to foxes when they first arrived, which explains why so many native mammals declined soon after fox arrival. Our results also suggest such naiveté can be overcome within a relatively short time frame, driven by experience with predators, thus supporting the multilevel naiveté framework.  相似文献   

4.
The prey naiveté hypothesis suggests that native prey may be vulnerable to introduced predators because they have not evolved appropriate defenses. However, recent evidence suggests that native prey sometimes exhibit induced defenses to introduced predators, as a result of rapid evolution or other processes. We examined whether Olympia oysters (Ostrea lurida) display inducible defenses in the presence of an invasive predator, the Atlantic oyster drill (Urosalpinx cinerea), and whether these responses vary among oyster populations from estuaries with and without this predator. We spawned oysters from six populations distributed among three estuaries in northern California, USA, and raised their offspring through two generations under common conditions to minimize effects of environmental history. We exposed second-generation oysters to cue treatments: drills eating oysters, drills eating barnacles, or control seawater. Oysters from all populations grew smaller shells when exposed to drill cues, and grew thicker and harder shells when those drills were eating oysters. Oysters exposed to drills eating other oysters were subsequently preyed upon at a slower rate. Although all oyster populations exhibited inducible defenses, oysters from the estuary with the greatest exposure to drills grew the smallest shells suggesting that oyster populations have evolved adaptive differences in the strength of their responses to predators. Our findings add to a growing body of literature that suggests that marine prey may be less likely to exhibit naiveté in the face of invasive predators than prey in communities that are more isolated from native predators, such as many freshwater and terrestrial island ecosystems.  相似文献   

5.
Aposematic animals advertise their unprofitability to potential predators with conspicuous coloration, occasionally in combination with other life-history traits. Theory posits that selection on functionally interrelated aposematic characters promotes the unidirectional evolution of these characters, resulting in an increase or decrease in the effectiveness of the signal. To test whether this prediction applies on a microevolutionary scale, the intra- and interpopulational variations in aposematic coloration, behaviour (which enhances the effectiveness of the coloration) and body size of newts, Cynops pyrrhogaster (Urodela: Salamandridae), were investigated. A parallel geographical mosaic of variation in aposematic coloration and behaviour among populations, independent of body size, was found. Newts on islands displayed more conspicuous aposematic traits than those on the mainland, both morphologically and behaviourally. There was no significant relationship between variation in coloration and behaviour within populations. Male newts displayed more conspicuous coloration than females. Surveys of potential predators suggest that variable natural selection at a local scale, such as predation pressure, may primarily be responsible for the microevolution of variable aposematic traits in newts.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 613–622.  相似文献   

6.
Studies of naturally predator-naïve adult birds (finches on predator-free islands) and birds experimentally hand reared in isolation from predators indicate that birds can recognise predators innately; that is, birds show anti-predator behaviour without former experience of predators. To reduce predation risk efficiently during the vulnerable fledgling period, we would predict an innate response to be fully developed when the chicks leave the nest. However, 30-day-old naïve great tit fledglings ( Parus major ) did not respond differently to a model of a perched predator than to a similarly sized model of a non-predator. Although chicks showed distress responses such as warning calls and freezing behaviour, they did not differentiate between the stimuli. In contrast, wild-caught first-year birds (4 mo old) and adults responded differentially to the two stimuli. Lack of recognition of a perched predator might be one explanation for the high mortality rate found in newly fledged great tits. Our results imply that parental care is not only important for food provisioning, but also to reduce predation risk during the time when fledglings are most vulnerable.  相似文献   

7.
Alien predators have wreaked havoc on isolated endemic and island fauna worldwide, a phenomenon generally attributed to prey naiveté, or a failure to display effective antipredator behaviour due to a lack of experience. While the failure to recognise and/or respond to a novel predator has devastating impacts in the short term after predators are introduced, few studies have asked whether medium to long term experience with alien predators enables native species to overcome their naiveté. In Australia, introduced dogs Canis lupus familiaris, foxes Vulpes vulpes and cats Felis catus have caused rapid extinctions and declines in small–medium sized native mammals since they were introduced ~150 years ago. However, native wildlife have had ~4000 years experience with another dog – the dingo Canis lupus dingo. Native bush rats Rattus fuscipes remain common despite predation from these predators. We predicted that prior experience with dingoes would mean that bush rats recognise and respond to dogs, but suspect that hundreds of years experience may not be enough for effective responses to cats and foxes. To test these predictions, we combined the giving‐up density (GUD) with analysis of remote camera footage to measure bush rat foraging and behavioural responses to body odour from dogs, foxes, cats and native spotted‐tail quolls Dasyurus maculatus. Bush rats responded strongly to dogs with increased GUDs, increased vigilance and decreased foraging. However, mixed responses to foxes and cats suggest that at least some individuals remain naïve towards these predators. Naiveté is not necessarily forever: alien predators devastate many native prey species, but others may learn or adapt to the new threat.  相似文献   

8.
We studied the effects of sex, age, density and island size and isolation on tail autotomy within twelve island populations of the Central American spiny rat (Proechimys semispinosus, Rodentia: Echimyidae). The proportion of individuals losing their tail differed among islands but not between sexes. Most P. semispinosus lost their tail as adults. Population density and island size and isolation did not influence tail autotomy. Overall tail loss (8.0%) was lower than that previously reported in other populations of P. semispinosus. We suggest that low frequencies of tail loss were due to low rates of attack by mammalian predators typical of small, isolated islands and that differences among islands were due largely to the occasional appearance of transient predators such as coatis (Nasua narica). However, we caution against using tail loss as an index of predation because such a link has not been established yet.  相似文献   

9.
Populations of the water snake, Nerodia sipedon, on islands in western Lake Erie are polymorphic for color pattern. These populations include banded, intermediate, and unbanded morphs while surrounding mainland populations consist solely of the banded morph. The hypothesis that this polymorphism is maintained by strong selection and migration pressures is widely accepted. Unbanded morphs are apparently more cryptic along island shorelines while banded morphs are more cryptic on the mainland. Migration of banded morphs from the mainland explains their persistence in island populations. Data collected in a capture-mark-recapture program on six islands provide no evidence of differential selection among morphs; morph frequencies do not differ among age classes, between once-captured and multiply-captured snakes, or between scarred and unscarred snakes. Furthermore, herring gulls, the most common snake predators in the island area, appear to detect banded and unbanded model snakes with equal ease. High site fidelity of water snakes and the distribution of morphs among islands suggest that migration from the mainland is not common. However, islands close to each other are similar in morph frequency, and water snakes have colonized islands elsewhere in the Great Lakes, indicating that some migration does occur. Recently, the frequency of banded morphs has increased in island populations while adult population sizes have declined. This increase in banded morphs is interpreted as reflecting an increased impact of migration from the mainland into these reduced populations. One scenario for the evolution and maintenance of this polymorphism is that selection was important in establishing unbanded morphs in island populations as they became isolated from the mainland. As populations declined to their present size, the impact of migration from the mainland increased and is now swamping the effect of selection. Further declines in island population size may result in fixation of the banded morph.  相似文献   

10.
Insular assemblages of species are often considered unique because they are exposed to unpredictable patterns of colonization/extinction that depend on distance from other sources of colonists and on size of islands. An alternative explanation is that islands provide fundamentally different habitats of those of the mainland, regardless of any possible effect of size and isolation. These alternatives were examined by comparing assemblages of rocky shores on islands of the Tuscany Archipelago with those of the mainland in the same geographical region. Sandy beaches created a pattern of discrete areas of rock along the mainland with spatial discontinuities and extents comparable to those of the insular environment. Possible effects of isolation and size were therefore controlled in this study, so that one would expect no difference between islands and the mainland if only size and isolation matter. In contrast, differences are expected if historical events or other processes have distinct influences on assemblages in these environments. These hypotheses were tested by comparing assemblages of midshore and lowshore habitats of two islands with those of two similarly distributed locations on the mainland over a period of 2 years, using a hierarchical sampling design. Multivariate and univariate analyses revealed various patterns in the data. There were differences between islands and the mainland in structure of assemblages, in mean abundance of common taxa and in the magnitude of spatial and temporal variance in abundance in both habitats. Collectively, these findings support the model that islands in the Tuscany Archipelago have distinct assemblages from the mainland, thereby contributing to the regional diversity and complexity of assemblages of rocky shores over and above any possible effect of size or isolation.  相似文献   

11.
The strong impact of non‐native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non‐native predators found in the Everglades, the African jewelfish, Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer‐established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free‐ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish‐savvy and jewelfish‐naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non‐native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.  相似文献   

12.
Populations on continental islands are often distinguishable from mainland conspecifics with respect to body size, appearance, behaviour or life history, and this is often congruent with genetic patterns. It is commonly assumed that such differences developed following the complete isolation of populations by sea-level rise following the Last Glacial Maximum (LGM). However, population divergence may predate the LGM, or marine dispersal and colonization of islands may have occurred more recently; in both cases, populations may have also diverged despite ongoing gene flow. Here, we test these alternative hypotheses for the divergence between wedge-tailed eagles from mainland Australia (Aquila audax audax) and the threatened Tasmanian subspecies (Aquila audax fleayi), based on variation at 20 microsatellite loci and mtDNA. Coalescent analyses indicate that population divergence appreciably postdates the severance of terrestrial habitat continuity and occurred without any subsequent gene flow. We infer a recent colonization of Tasmania by marine dispersal and cannot discount founder effects as the cause of differences in body size and life history. We call into question the general assumption of post-LGM marine transgression as the initiator of divergence of terrestrial lineages on continental islands and adjacent mainland, and highlight the range of alternative scenarios that should be considered.  相似文献   

13.
Prey naiveté is proposed as one of the main reasons behind species extinctions attributed to invasive predators. This study examined whether the naiveté hypothesis could explain extinctions after the introduction of peacock bass (Cichla kelberi) in Paraná River, Brazil. Our results show that prey responded to both visual and chemical cues of peacock bass. Displayed avoidance behaviors were equal to or greater than those observed with a native predator, Hoplias malabaricus. We conclude that lack of recognition was not responsible for the observed vulnerability of native species to this introduced predator. Finally, we discuss implications of these findings for the native biodiversity and convene other potential explanations for the observed effects of peacock bass on native prey.  相似文献   

14.
The island rule refers to the tendency of small vertebrates to become larger when isolated on islands and the frequent dwarfing of large forms. It implies genetic control, and a necessary linkage, of size and body‐mass differences between insular and mainland populations. To examine the island rule, we compared body size and mass of gray jays (Perisoreus canadensis) on Anticosti Island, Québec, located in the Gulf of St. Lawrence, with three mainland populations (2 in Québec and 1 in Ontario). Although gray jays on Anticosti Island were ca 10% heavier, they were not structurally larger, than the three mainland populations. This suggests that Anticosti jays are not necessarily genetically distinct from mainland gray jays and that they may have achieved their greater body masses solely through packing more mass onto mainland‐sized body frames. As such, they may be the first‐known example of a proposed, purely phenotypic initial step in the adherence to the island rule by an insular population. Greater jay body mass is probably advantageous in Anticosti's high‐density, intensely competitive social environment that may have resulted from the island's lack of mammalian nest predators.  相似文献   

15.
Alien species experience both costs and benefits in invaded environments, through naiveté of potential prey species, but also predation pressure from native predators. The question of whether alien prey recognise and respond to native predators has been relatively understudied, despite the hypothesised potential for native predators to provide biotic resistance to invasion. There are two main hypotheses about whether exotic prey should recognise native and exotic predators in their new ranges: (1) naiveté—predicting recognition of evolutionarily familiar predators only, and (2) pre-adaptation—predicting recognition of all predators through a generalist recognition template. With regards to antipredator responses, (3) naïveté theory presumes that exotic prey will respond to the predators they recognise, but we suggest that (4) a bold behavioural syndrome, and/or a high marginal value of food in invaded environments might result in weak or absent responses, even to recognised predators. Here we combine the giving-up density framework with behavioural analysis of remote camera footage to experimentally test these ideas in a disturbed, peri-urban, Australian ecosystem, where alien black rats are predated on by alien dogs, foxes, cats, and native quolls. Black rats recognised dogs and foxes, but appear naïve towards quolls. However, they showed no antipredator responses at all, consistent with a bold behavioural syndrome, elevated predation risk, and/or a high marginal value of food in invaded environments.  相似文献   

16.
One of Darwin''s most widely known conjectures is that prey are tame on remote islands, where mammalian predators are absent. Many species appear to permit close approach on such islands, but no comparative studies have demonstrated reduced wariness quantified as flight initiation distance (FID; i.e. predator–prey distance when the prey begins to flee) in comparison with mainland relatives. We used the phylogenetic comparative method to assess influence of distance from the mainland and island area on FID of 66 lizard species. Because body size and predator approach speed affect predation risk, we included these as independent variables. Multiple regression showed that FID decreases as distance from mainland increases and is shorter in island than mainland populations. Although FID increased as area increased in some models, collinearity made it difficult to separate effects of area from distance and island occupancy. FID increases as SVL increases and approach speed increases; these effects are statistically independent of effects of distance to mainland and island occupancy. Ordinary least-squares models fit the data better than phylogenetic regressions, indicating little or no phylogenetic signal in residual FID after accounting for the independent variables. Our results demonstrate that island tameness is a real phenomenon in lizards.  相似文献   

17.
Dispersal behaviour and edge effects are two potential factors determining population densities, and both effects are likely to vary with patch size. However, the relative importance of these two effects may be hard to separate because they may produce similar patterns. Here, we separate these two effects on population densities of seven groups of arthropods on small islands. To separate dispersal behaviour and edge effects, we use the fact that the slope of the density–area relationships (DAR-slope) should change with the absolute rates of dispersal, as would occur in response to island isolation, whereas the edge effect is expected not to be dependent on island isolation. For lycosid spiders, parasitic wasps and possibly herbivorous Homoptera DAR-slopes changed between isolated and non-isolated islands, suggesting dispersal behaviour to be relatively more important for explaining variation in their densities. Other arthropods (ants and Collembola), typically those with a predicted low dispersal among islands, showed similar DAR-slopes between isolated and non-isolated islands consistent with dominant edge effects. For two groups (web spiders and Diptera) the results were inconclusive. We conclude that both migratory processes and edge effects should be considered in the evaluation of patch size and isolation on density–area relationships.  相似文献   

18.
Following habitat fragmentation, the remnant faunal community will undergo a period of species loss or 'relaxation.' Theory predicts that species with particular life-history traits, such as a small population size, small geographical range, low fecundity and large body size, should be more vulnerable to fragmentation. In this study, we investigated the relationships between the above life-history traits and the fragmentation vulnerability index (the number of islands occupied) of five lizard species inhabiting recently isolated land-bridge islands in the Thousand Island Lake, China. Data on life-history traits were collected from field surveys (population density) and from the literature (body size, clutch size and geographical range size). The species–area relationships for lizards sampled from the mainland versus on the islands differed significantly (i.e. the number of species inhabiting islands was decreased relative to similar-sized areas on the mainland), indicating that species extinction has occurred on all of the study islands following isolation. For the fragmentation vulnerability index, model selection based on Akaike's information criterion identified natural density at mainland sites as the best correlate of vulnerability to fragmentation, supporting the hypothesis that rare species are most vulnerable to local extinction and will be lost first from fragmented landscapes. In contrast, there was little evidence for an effect of lizards' snout–vent length, clutch size or geographical range size on fragmentation vulnerability. Identification of species traits that render some species more vulnerable to fragmentation than others has important implications for conservation and can be used to aid direct management efforts.  相似文献   

19.
Aposematic passion-vine butterflies from the genus Heliconius form communal roosts on a nightly basis. This behaviour has been hypothesized to be beneficial in terms of information sharing and/or anti-predator defence. To better understand the adaptive value of communal roosting, we tested these two hypotheses in field studies. The information-sharing hypothesis was addressed by examining following behaviour of butterflies departing from natural roosts. We found no evidence of roost mates following one another to resources, thus providing no support for this hypothesis. The anti-predator defence hypothesis was tested using avian-indiscriminable Heliconius erato models placed singly and in aggregations at field sites. A significantly higher number of predation attempts were observed on solitary models versus aggregations of models. This relationship between aggregation size and attack rate suggests that communally roosting butterflies enjoy the benefits of both overall decreased attack frequency as well as a prey dilution effect. Communal roosts probably deter predators through collective aposematism in which aggregations of conspicuous, unpalatable prey communicate a more effective repel signal to predators. On the basis of our results, we propose that predation by birds is a key selective pressure maintaining Heliconius communal roosting behaviour.  相似文献   

20.
为研究轮虫通过母体效应诱导能否产生行为响应, 以萼花臂尾轮虫(Brachionus calyciflorus)为例, 研究其反捕食漂浮行为响应的母体效应。通过控制轮虫母体在捕食者诱导液中的暴露时间及带卵状态, 收集母体产生的后代, 再将这些后代再次用捕食者诱导液处理, 观察后代的漂浮行为及形态特征。研究发现: 暴露于捕食者诱导液诱导较长时间的母体产生的后代个体, 当再次暴露于捕食者诱导液时, 其产生的行为响应强于没有母体暴露经历的后代; 母体暴露时间越长, 后代形态和行为响应均更加强烈。研究显示萼花臂尾轮虫可通过母体效应产生漂浮行为响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号