首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high throughput screening campaign revealed compound 1 as a potent antagonist of the human CCK(1) receptor. Here, we report the syntheses and SAR studies of 1,5-diarylpyrazole analogs with various structural modifications of the alkane side chain of the molecule. The difference in affinity between the two enantiomers for the CCK(1) receptor and the flexible nature of the linker led to the design of constrained analogs with increased potency.  相似文献   

2.
The initial goal of this study was to analyze, using photolabeling, the interactions between Substance P and its tachykinin NK-1 receptor. Therefore, the photoreactive amino acid para-benzoyl-phenylalanine (pBzl)Phe was incorporated into the Substance P sequence from position 4 to 11 leading to Bapa0[(pBzl)Phex]SP analogs. Biotinyl sulfone-5-aminopentanoic acid (Bapa) was introduced in order to purify the covalent complex. These photoreactive SP analogs were first assayed for their affinity for the two binding sites associated with the NK-1 receptor, as well as for their potency in activating the phospholipase C and adenylate cyclase pathways. All analogs photoreactive from position 4 to 11 have moderate to high affinity for the two NK-1 receptor-binding sites, except for the analog modified at position 7. This affinity could be correlated to their potency to activate the phospholipase C and adenylate cyclase pathways, except for the analog photoreactive at position 11. Bapa0[(pBzl)Phe11]SP was found to be an agonist in the phospholipase C pathway and an antagonist in the adenylate cyclase pathway, other analogs modified at position 11 were therefore analyzed. Among these, Bapa0[Pro9, (pBzl)Hcy(O2)11]SP is a partial agonist, whereas Bapa0[Hcy(ethylaminodansyl)11]SP is a full agonist in the phospholipase C pathway, the two analogs being antagonist in the adenylate cyclase pathway. These results show that analogs of SP can be simultaneously agonist at one binding site and antagonist at the other binding site associated with the NK-1 receptor.  相似文献   

3.
Studies on opioid receptor selectivity of beta-endorphin antagonists   总被引:1,自引:0,他引:1  
Opioid receptor selectivity of several beta-endorphin (beta-EP) analogs which antagonize beta-EP-induced analgesia has been assessed using partially selective binding assays. Although the apparent affinity dissociation constant of beta-EP in these assays varies from 0.2 to 360 nm, the potency of beta-EP antagonists relative to beta-EP remains largely unchanged. It is unlikely that differences in receptor affinities can account for the antagonist properties of these analogs in vivo.  相似文献   

4.
Degarelix is a potent very long-acting GnRH antagonist after subcutaneous administration. In this paper, we describe the synthesis of two analogs of degarelix incorporating racemic 3-(2-methoxy-5-pyridyl)-alanine (2-OMe-5Pal, 5) at position 3. The two diastereomers were separated by reverse-phase high-performance liquid chromatography (RP-HPLC) and the absolute stereochemistry at position 3 in the peptides was determined by enzymatic digestion with proteinase K. These analogs were tested in vitro for their ability to antagonize the GnRH receptor and in vivo for duration of action in a castrated male rat assay. Analog 7 with D2-OMe-5Pal was potent in vitro (IC50 = 5.22 nM); however, analog 8 with L2-OMe-5Pal at position 3 in degarelix lost potency as an antagonist of the human GnRH receptor (IC50 = 36.95 nM). Both the analogs were found to be short-acting in vivo.  相似文献   

5.
Piperazine-bisamide analogs were discovered as partial agonists of human growth hormone secretagogue receptor (GHSR) in a high throughput screen. The partial agonists were optimized for potency and converted into antagonists through structure–activity relationship (SAR) studies. The efforts also led to the identification of potent antagonist with favorable PK profile suitable as a tool compound for in vivo studies.  相似文献   

6.
Human beta-endorphin (beta h-EP) analogs of variable chain lengths have been investigated for their potency in inhibiting analgesia induced by beta h-EP or by the potent opiate etorphine. It was found that beta h-EP-(1-28) inhibits the analgesic effect of beta h-EP and etorphine when co-injected intracerebroventricularly into mice. Antagonism by competition at same opioid receptor subtypes is suggested from parallel shifts of the dose-response curve of etorphine or beta h-EP in the presence of increasing doses of beta h-EP-(1-28). On a molar basis, beta h-EP-(1-28) is nearly 10 times more potent than naloxone. The reduction of the chain length from residues 1-28 to 1-27 lowered the antagonist potency while further reduction of the peptide chain led to a complete loss of inhibitory activity. From comparison of the opioid-receptor binding affinity, analgesic activity and antagonist potency, it is concluded that the C-terminus of beta-EP is critical to the biological efficacy of the molecule and that the antagonist activity of C-terminal deletion analogs is probably mediated through residues 27 and 28.  相似文献   

7.
A series of benzodiazepine antagonists of the human ghrelin receptor GHSR1a were synthesized and their antagonism and metabolic stability were evaluated. The potency of these analogs was determined using a functional aequorin (Euroscreen) luminescent assay measuring the intracellular Ca(2+) concentration, and their metabolic stability was measured using an in vitro rat and human S9 hepatocyte assay. These efforts led to the discovery of a potent ghrelin antagonist with good rat pharmacokinetic properties.  相似文献   

8.
4-{[2-[(2-Furylsulfonyl)(isobutyl)amino]-5-(trifluoromethyl)phenoxy]methyl}benzoic acid analogs 2a and b and a series of the acid analogs, in which the carboxylic acid residue of 2b was replaced with various kinds of carboxylic acid bioisosteres, were synthesized and evaluated as EP1 receptor antagonists. Compound 2b and its monocyclic acid analogs, in which the carboxylic acid residue of 2b was replaced with monocyclic acid bioisosteres, were found to show potent EP1 receptor antagonist activity. Optimization of the linker Y between the phenyl moiety and the carboxylic acid residue of 2b was also carried out (Table 5). Compounds 2b and 16 and 17 possessing conformationally restricted linker Y were found to show the most optimized potency among the tested compounds. Cytochrome P450 inhibition of optimized compounds was also investigated. Details of the structure-activity relationship study are presented.  相似文献   

9.
The development of the prototype synthetic delta-opioid receptor antagonist peptides TIPP [(H-Tyr-Tic-Phe- Phe-OH); Tic: tetrahydroisoquinoline-3-carboxylic acid] and TIPPpsi (H-Tyr-psiTic-Phe-Phe-OH) by Schiller and coworkers was followed by extensive structure-activity relationship studies, leading to the emergence of numerous analogs that are of pharmacological interest. Eight novel diastereomeric compounds in this peptide family were designed, prepared, and tested biologically to gain structure-activity relationship information. The new multisubstituted tetrapeptide analogs contain both a 2',6'-dimethyltyrosine residue at the N-terminus and beta-methyl-cyclohexylalanine at the third position as replacements for the original first tyrosine and the third phenylalanine, respectively. These derivatives wear either free acidic (-COOH) or amidated (-CONH2) C-terminal. The potency and delta- versus mu-opioid receptor selectivity were evaluated by in vitro radioreceptor-binding assays, while the intrinsic G-protein-activating efficacy of these analogs was tested in [35S]GTPgammaS-binding assays using rat brain membranes or Chinese hamster ovary cells stably expressing mu- or delta-opioid receptors. The analogs showed delta-antagonist selectivity with differences regarding their isomeric forms, and these analogs containing a C-terminal carboxamide group displayed a mixed mu-agonist/delta-antagonist profile, thus they are expected to be safer analgesics with a low propensity to produce tolerance and physical dependence. These results constitute further examples of the influence of beta-methyl substitution and C-terminal amidation on potency, selectivity, and signal transduction properties of TIPP-related peptides as well as they represent valuable pharmacological tools for opioid research.  相似文献   

10.
Analogs of morphiceptin (Tyr-Pro-Phe-Pro-NH2), a mu-selective opioid receptor ligand, with position 3-modifications, including altered size, lipophilicity, and electronic character, while maintaining aromaticity were synthesized. The activity of the new analogs in in vitro assays and in in vivo hot-plate test of analgesia was compared and the results were consistent. [D-1-Nal3]Morphiceptin was the most potent analog of this series with a 26-fold increase in mu-opioid receptor affinity, a 15-fold potency increase in the GPI assay, and a significant potency increase in the hot-plate analgesic test, as compared with morphiceptin. [d-Qal3]Morphiceptin was found to be a weak antagonist in the GPI assay.  相似文献   

11.
We have prepared a series of adenosine analogs based on the bicyclo[2.2.1]heptane scaffold of locked nucleic acid (LNA) and tested them for both agonist and antagonist activity at the adenosine A(3) receptor. The design of these derivatives was based on the known A(3) agonist IB-MECA and related compounds. Modifications thus include the 5'-uronamides and N(6)-(3-iodobenzyl) derivatives. In this way we have prepared analogs of known A(3) agonists with the sugar ring restricted in an N-conformation. For comparison we have also prepared 2'-O-methyl derivatives of IB-MECA. The LNA nucleosides showed no agonist activity but some of them are potent antagonists. The 2'-O-methyl derivative of IB-MECA is an agonist with similar potency as the parent compound.  相似文献   

12.
A series of analogs of the ORL1 receptor antagonist [Nphe1]-NC(1-13)-NH2 was prepared and tested for agonistic and antagonistic activities in the mouse vas deferens, a preparation that shows high sensitivity to nociceptin and related peptides. The purpose of this study was to determine the role of the aromatic residue at the N-terminal for antagonism and eventually identify compounds with improved potency. Results indicated that all 23 compounds are inactive as agonists, and the antagonistic potency of the initial template [Nphe1]-NC(1-13)-NH2 is high (pKB 6.43) compared with those of all other compounds except [(S)(betaMe)Nphe1]NC(1-13)-NH2 (pK(B) 6.48). The other 22 compounds can be divided into two groups: 10 show antagonistic potencies (pK(B)) ranging from 5.30 to 5.86, whereas the other 12 compounds are inactive. This study clearly shows that the aromatic ring of Nphe is very critical for the interaction with the ORL1 receptor and can not be enlarged or sterically modified without significant loss of antagonistic potency.  相似文献   

13.
A series of octahydropyrrolo[3,4-c]pyrroles were synthesized and evaluated by orexin 1 and 2 receptor (OX1 & 2 R) antagonists assays. Compound 14l with potent OXR antagonist activity and suitable pharmacokinetic behavior was chosen to be investigated in an EEG study, which demonstrated effects of sleep promotion comparable to Suvorexant. Furthermore, the di-fluro substituted analogs exhibited reduced hERG inhibition while maintaining moderate potency.  相似文献   

14.
A useful strategy for identifying ligand binding domains of G protein-coupled receptors has been the exploitation of species differences in antagonist potencies. We have used this approach for the CCR1 chemokine receptor with a novel series of antagonists, the 4-hydroxypiperidines, which were discovered by high throughput screening of human CCR1 and subsequently optimized. The structure-activity relationships for a number of different 4-hydroxypiperidine antagonists for human and mouse CCR1 were examined by receptor binding and functional assays. These compounds exhibit major differences in their rank order of potency for the human and mouse chemokine receptor CCR1. For example, the initial lead template, BX 510, which was a highly potent functional antagonist for human CCR1 (K(i) = 21 nM) was >400-fold less active on mouse CCR1 (K(i) = 9150 nM). However, increasing the length of the linker between the piperidine and dibenzothiepine groups by one methylene group generated a compound, BX 511, which was equipotent for both human and mouse CCR1. These and other analogs of the lead template BX 510, which have major differences in potency for human and mouse CCR1, are described, and a model for their interaction with human CCR1 is presented.  相似文献   

15.
Somatostatin inhibited secretin-stimulated cyclic AMP formation in pancreatic acinar cells. The inhibition was only partial. Maximal inhibition reached about 50%. Somatostatin analogs tested inhibited secretin-stimulated cyclic AMP formation with a lower potency than somatostatin. Cys-Aza Ala-Phe-Phe-DTrp-Lys-Thr-Phe-Phe-Cys was found to be an antagonist of somatostatin in inhibiting secretin-stimulated cyclic AMP. Analogs inhibited the binding of 125I-[Tyr11] somatostatin to pancreatic acini. There was a good correlation (r = 0.97) between concentration for inhibiting 50% secretin-stimulated cyclic AMP and receptor binding affinities.  相似文献   

16.
Efforts to understand the chemical-physical basis for peptide hormone and neurotransmitter action requires integration of conformational parameters and biological properties. Since most peptide hormones are conformationally flexible, the question arises as to which of the manifold of conformations is of biological significance. In molecular terms, it is necessary to carefully distinguish chemical-physical features important to binding (the binding message) from those involved in transduction (the biological activity message). One approach to this involves the design, synthesis, and conformational analysis of semirigid hormone analogs. The distinction between binding and transduction can best be examined by evaluation of full biological profiles of partial agonists, antagonists, and analogs with prolonged biological activity. Using this multidisciplinary approach, we have prepared several semirigid [Pen1]-oxytocin antagonist analogs and evaluated their conformational properties and biological activities. Specific conformational features can be related to inhibitory activities in several cases. On the basis of structure–activity relationships and conformational considerations, we have designed a series of conformationally restricted cyclic and acyclic analogs of the linear peptide α-melanotropin. Some of these peptides have exceptionally prolonged in vivo activity (weeks), and others exhibit superagonist potency (10,000 times the native hormone). We have evidence that potency and prolonged activity have different structural and conformational requirements. It is suggested that potency is primarily a function of receptor recognition (the binding message), whereas prolonged activity is related to transduction (the biological activity message).  相似文献   

17.
Prior studies have shown that the cerebral cortex cholecystokinin (CCK) receptor can bind CCK and gastrin analogs with high affinity. In the present work the brain CCK receptor had approximately a three times greater affinity for CCK8 than its C-terminal tetrapeptide (CCK4) while the C-terminal tripeptide (CCK3) was 1000-fold less potent than CCK4. Thus the C-terminal tetrapeptide appears to be the minimal C-terminal CCK sequence required for high affinity binding. Since brain membranes degrade various peptides including CCK, we also evaluated the stability of CCK analogs under the conditions used to measure receptor binding by the following three methods: (1) Studies of degradation-resistant analogs in binding assays; (2) analysis of analog degradation by high performance liquid chromatography (HPLC); and (3) determination of the change in potency of CCK analogs in competitive binding studies subsequent to preincubation with brain membranes. These studies indicated that degradation of analogs by the brain membranes although significant did not account for the differences in potency of analogs in competitive binding studies. Therefore, the observed differences in potencies of the analogs tested are due to the receptor affinity and not sensitivity of the analog to degradation.  相似文献   

18.
Evidence for A1 and A2 adenosine receptors in guinea pig trachea   总被引:4,自引:0,他引:4  
The adenosine analogs [5'-N-ethylcarboxamideadenosine (NECA), 2-Chloro-adenosine (2-ClA), R-phenylisopropyladenosine (R-PIA), N6-cyclohexyl adenosine (CHA), and N6-cyclopentyladenosine (CPA)] produced both relaxation and contraction responses in isolated guinea-pig trachea. A concentration-related relaxation response was observed in trachea which were precontracted with either histamine or KC1. This response followed an order of analog potency that was indicative of the A2 receptor subtype (NECA greater than 2-ClA greater than R-PIA greater than CPA greater than CHA). Theophylline, an adenosine-receptor antagonist, blocked this relaxation response. In addition, a concentration-related contractile response was produced with adenosine analogs in those trachea that were not previously contracted. In contrast, the contractile response followed an analog potency indicative of the A1 receptor subtype (R-PIA greater than 2-ClA = CPA = CHA). This contractile response was not mediated by cholinergic, adrenergic or histaminergic receptors. 2-ClA induced a biphasic response, while NECA only relaxed these tissue under basal tone. Unlike the relaxation response, these contractile responses were not attenuated by theophylline, but were blocked by 1,3 dipropyl-8-(2 amino-4-chlorophenyl)xanthine (PACPX). These findings confirm the existence of two subpopulations of adenosine receptors in guinea pig trachealis muscle.  相似文献   

19.
A number of β-carboline analogs have been obtained or synthesized, and their in vitro receptor affinities and in vivo antagonist activities determined. The choice of analogs was made in order to explore the importance of the N9-H, the aromatic nitrogen and the C3-ester moiety for high-receptor affinity and antagonist activity of this class of benzodiazepine antagonist. Among the analogs investigated, we describe the properties of 3-cyano-β-carboline (lh), the first potent β-carboline antagonist without a carbonyl at the C3-position.The results obtained indicate: (1) Specific interactions of the C3-substituent with key cationic receptor sites rather than electron-withdrawing properties are important for high-receptor affinity and antagonist activity. (2) Specific in-plane interactions of the atomatic nitrogen with a cationic receptor site, rather than stacking with neutral aromatic residues of the receptor are also important for high affinity and antagonist activity. (3) While the presence of an N9H enhances receptor affinity, interaction with an anionic receptor site does not appear essential for antagonist activity.  相似文献   

20.
The introduction of conformational constraints into a flexible peptide hormone can be exploited to develop models for the conformation required for receptor binding and activity. In this review, we illustrate this approach to analog design using our work on antagonists of gonadotropin-releasing hormone (GnRH). Design of a conformationally constrained, competitive antagonist of GnRH, cyclo[delta 3,4 Pro-D4ClPhe-DTrp-Ser-Tyr-DTrp-NMeLeu-Arg-Pro-bet a Ala] led to the prediction of its bioactive conformation. Template forcing experiments show that this conformation is accessible to other active GnRH analogs. Two-dimensional NMR studies verified the predicted conformation in solution. The predicted binding conformation has recently been used to design two new analogs incorporating side chain-side chain linkages suggested by the conformational model: Ac-delta 3,4Pro-D4FPhe-DTrp-Dap-Tyr-DTrp-Leu-Arg-Asp-Gly- NH2 and Ac-delta 3,4Pro-D4FPhe-DTrp-Dap-Tyr-D2Nal-Leu-Arg-Pro-Asp -NH2. These analogs were synthesized and the one predicted to be most similar to the parent conformation had equivalent potency while the second, designed to refine the conformational hypothesis, was found to exhibit enhanced potency, thus confirming the original binding conformation hypothesis. These compounds and their derivatives now provide a new class of GnRH antagonists possessing both high biological potency and limited conformational flexibility, thus making them ideal for both biophysical and structure-activity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号