首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynactin complex contains proteins including p150 that interacts with cytoplasmic dynein and an actin-related protein Arp1 that forms a minifilament. Proteins including Arp11 and p62 locate at the pointed end of the Arp1 filament, but their biochemical functions are unclear (Schroer TA. Dynactin. Annu Rev Cell Dev Biol 2004;20:759–779). In Aspergillus nidulans , loss of Arp11 or p62 causes the same nu clear d istribution (nud) defect displayed by dynein mutants, indicating that these pointed-end proteins are essential for dynein function. We constructed a strain with S-tagged p150 of dynactin that allows us to pull down components of the dynactin and dynein complexes. Surprisingly, while the ratio of pulled-down Arp1 to S-p150 in Arp11-depleted cells is clearly lower than that in wild-type cells, the ratio of pulled-down dynein to S-p150 is significantly higher. We further show that the enhanced dynein–dynactin interaction in Arp11-depleted cells is also present in the soluble fraction and therefore is not dependent upon the affinity of these proteins to the membrane. We suggest that loss of the pointed-end proteins alters the Arp1 filament in a way that affects the conformation of p150 required for its proper interaction with the dynein motor.  相似文献   

2.
Of the actin-related proteins, Arp1 is the most similar to conventional actin, and functions solely as a component of the multisubunit complex dynactin. Dynactin has been identified as an activator of the microtubule-associated motor cytoplasmic dynein. The role of Arp1 within dynactin is two-fold: (1) it serves as a structural scaffold protein for other dynactin subunits; and (2) it has been proposed to link dynactin, and thereby dynein, with membranous cargo via interaction with spectrin. Using the filamentous fungus Neurospora crassa, we have identified genes encoding subunits of cytoplasmic dynein and dynactin. In this study, we describe a genetic screen for N. crassa Arp1 (ro-4) mutants that are defective for dynactin function. We report that the ro-4(E8) mutant is unusual in that it shows alterations in the localization of cytoplasmic dynein and dynactin and in microtubule organization. In the mutant, dynein/dynactin complexes co-localize with bundled microtubules at hyphal tips. Given that dynein transports membranous cargo from hyphal tips to distal regions, the cytoplasmic dynein and dynactin complexes that accumulate along microtubule tracts at hyphal tips in the ro-4(E8) mutant may have either reduced motor activity or be delayed for activation of motor activity following cargo binding.  相似文献   

3.
Dynactin is an essential part of the cytoplasmic dynein motor that enhances motor processivity and serves as an adaptor that allows dynein to bind cargoes. Much is known about dynactin''s interaction with dynein and microtubules, but how it associates with its diverse complement of subcellular binding partners remains mysterious. It has been suggested that cargo specification involves a group of subunits referred to as the “pointed-end complex.” We used chemical cross-linking, RNA interference, and protein overexpression to characterize interactions within the pointed-end complex and explore how it contributes to dynactin''s interactions with endomembranes. The Arp11 subunit, which caps one end of dynactin''s Arp1 filament, and p62, which binds Arp11 and Arp1, are necessary for dynactin stability. These subunits also allow dynactin to bind the nuclear envelope prior to mitosis. p27 and p25, by contrast, are peripheral components that can be removed without any obvious impact on dynactin integrity. Dynactin lacking these subunits shows reduced membrane binding. Depletion of p27 and p25 results in impaired early and recycling endosome movement, but late endosome movement is unaffected, and mitotic spindles appear normal. We conclude that the pointed-end complex is a bipartite structural domain that stabilizes dynactin and supports its binding to different subcellular structures.  相似文献   

4.
Targeting of the minus-end directed microtubule motor cytoplasmic dynein to a wide array of intracellular substrates appears to be mediated by an accessory factor known as dynactin [1-4]. Dynactin is a multi-subunit complex that contains a short actin-related protein 1 (Arp 1) filament with capZ at the barbed end and p62 at the pointed end [5]. The location of the p62 subunit and the proposed role for dynactin as a multifunctional targeting complex raise the possibility of a dual role for p62 in dynein targeting and in Arp1 pointed-end capping. In order to gain further insight into the role of p62 in dynactin function, we have cloned cDNAs that encode two full-length isoforms of the protein from rat brain. We found that p62 is homologous to the nuclear migration protein Ropy-2 from Neurospora [6]; both proteins contain a zinc-binding motif that resembles the LIM domain of several other cytoskeletal proteins [7]. Overexpression of p62 in cultured mammalian cells revealed colocalization with cortical actin, stress fibers, and focal adhesion sites, sites of potential interaction between microtubules and the cell cortex [8,9]. The p62 protein also colocalized with polymers of overexpressed wild-type or barbed-end-mutant Arp1, but not with a pointed-end mutant. Deletion of the LIM domain abolished targeting of p62 to focal-adhesion sites but did not interfere with binding of p62 to actin or Arp1. These data implicate p62 in Arp1 pointed-end binding and suggest additional roles in linking dynein and dynactin to the cortical cytoskeleton.  相似文献   

5.
The multisubunit protein, dynactin, is a critical component of the cytoplasmic dynein motor machinery. Dynactin contains two distinct structural domains: a projecting sidearm that interacts with dynein and an actin-like minifilament backbone that is thought to bind cargo. Here, we use biochemical, ultrastructural, and molecular cloning techniques to obtain a comprehensive picture of dynactin composition and structure. Treatment of purified dynactin with recombinant dynamitin yields two assemblies: the actin-related protein, Arp1, minifilament and the p150(Glued) sidearm. Both contain dynamitin. Treatment of dynactin with the chaotropic salt, potassium iodide, completely depolymerizes the Arp1 minifilament to reveal multiple protein complexes that contain the remaining dynactin subunits. The shoulder/sidearm complex contains p150(Glued), dynamitin, and p24 subunits and is ultrastructurally similar to dynactin's flexible projecting sidearm. The dynactin shoulder complex, which contains dynamitin and p24, is an elongated, flexible assembly that may link the shoulder/sidearm complex to the Arp1 minifilament. Pointed-end complex contains p62, p27, and p25 subunits, plus a novel actin-related protein, Arp11. p62, p27, and p25 contain predicted cargo-binding motifs, while the Arp11 sequence suggests a pointed-end capping activity. These isolated dynactin subdomains will be useful tools for further analysis of dynactin assembly and function.  相似文献   

6.
Movement and distribution of nuclei in fungi have been shown to be dependent on cytoplasmic microtubules and the microtubule-associated motor cytoplasmic dynein. We have isolated hundreds of Neurospora crassa mutants, known as ropy, that are defective in nuclear distribution. Three of the ro genes, ro-1, ro-3 and ro-4, have been shown to encode subunits of either cytoplasmic dynein or the dynein activator complex, dynactin. In this report, we describe the isolation and initial characterization of two additional ro genes, ro-10 and ro-11. ro-10 and ro-11 are non-essential genes that encode novel 24 kDa and 75 kDa proteins respectively. Both ro-10 and ro-11 mutants retain the ability to generate long cytoplasmic microtubule tracks, suggesting that the nuclear distribution defect is not caused by a gross defect in the microtubule cytoskeleton. RO10, as well as RO4 (actin-related protein ARP1, the most abundant subunit of dynactin), appears to be required for the stability of RO3 (p150Glued), the largest subunit of dynactin. We propose that ro-10 mutants lack proper nuclear distribution, because RO10 is either a subunit of dynactin and required for dynactin activity or essential for assembly of the dynactin complex. ro-11 mutations have no effect on RO1 or RO3 levels and have only a very slight effect on the localization pattern of cytoplasmic dynein and dynactin. The role of RO11 in the movement and distribution of nuclei in N. crassa hyphae remains unknown.  相似文献   

7.
Arp1p is the only actin-related protein (ARP) known to form actin-like filaments. Unlike actin, Arp1p functions with microtubules, as part of the dynein regulator, dynactin. Arp1p's dissimilar functions imply interactions with a distinct set of proteins. To distinguish surface features relating to Arp1p's core functions and to identify the footprint of protein interactions essential for dynactin function, we performed the first complete charge-cluster-to-alanine scanning mutagenesis of an ARP and compared the results with a similar study of actin. The Arp1p mutations revealed three nonoverlapping surfaces with distinct genetic properties. One of these surfaces encompassed a region unique to Arp1p that is crucial for Jnm1p (dynamitin/p50) and Nip100p (p150Glued) association as well as pointed-end associations. Unlike the actin mutations, none of the ARP1 alleles disrupt filament formation; however, one pointed-end allele delayed the elution of Arp1p on gel filtration, consistent with loss of additional subunits.  相似文献   

8.
In metazoans, dynein-dependent vesicle transport is mediated by dynactin, containing an actin-related protein, Arp1p, together with a cargo-selection complex containing a second actin-related protein, Arp11. Paradoxically, in budding yeast, models of dynactin function imply an interaction with membranes, whereas the lack of microtubule-based vesicle transport implies the absence of a cargo-selection complex. Using both genetic and biochemical approaches, we demonstrate that Arp10p is the functional yeast homologue of Arp11, suggesting the possible existence of a pointed-end complex in yeast. Specifically, Arp10p interacts with Arp1p and other dynactin subunits and is dependent on Arp1p for stability. Conversely, Arp10p stabilizes the dynactin complex by association with the Arp1p filament pointed end. Using a novel hRAS-Arp1p one-hybrid assay, we show that Arp1p associates with the plasma membrane dependent on dynactin subunits, but independent of dynein, and sensitive to cell wall damage. We directly show the association of Arp1p with not only the plasma membrane but also with a less dense membrane fraction. Based on the hRAS-Arp1p assay, loss of Arp10p enhances the apparent association of dynactin with the plasma membrane and suppresses the loss of signaling conferred by cell wall damage.  相似文献   

9.
Movement and distribution of nuclei in fungi has been shown to be dependent on microtubules and the microtubule-associated motor cytoplasmic dynein. Neurospora crassa mutants known as ropy are defective in nuclear distribution. We have shown that three of the ro genes, ro-1, ro-3, and ro-4, encode subunits of either cytoplasmic dynein or the dynein activator complex, dynactin. Three other ro genes, ro-7, ro-10, and ro-11, are required for the integrity or localization of cytoplasmic dynein or dynactin. In this report, we describe a microscopic analysis of N. crassa ro mutants. Our results reveal that defects in germination of conidia, placement of septa, and mitochondrial morphology are typical of ro mutants. Two classes of cytoplasmic microtubules are identified in wild-type and ro mutants. One class of microtubules has no obvious association with nuclei while the other class of microtubules connects spindle pole bodies of adjacent nuclei. The possible role of internuclear microtubule tracts in the movement and distribution of nuclei is discussed.  相似文献   

10.
Dynactin is a multisubunit complex that is required for cytoplasmic dynein, a minus-end-directed, microtubule-associated motor, to efficiently transport vesicles along microtubules in vitro. p150Glued, the largest subunit of dynactin, has been identified in vertebrates and Drosophila and recently has been shown to interact with cytoplasmic dynein intermediate chains in vitro. The mechanism by which dynactin facilitates cytoplasmic dynein-dependent vesicle transport is unknown. We have devised a genetic screen for cytoplasmic dynein/dynactin mutants in the filamentous fungus Neurospora crassa. In this paper, we report that one of these mutants, ro-3, defines a gene encoding an apparent homologue of p150Glued, and we provide genetic evidence that cytoplasmic dynein and dynactin interact in vivo. The major structural features of vertebrate and Drosophila p150Glued, a microtubule-binding site at the N-terminus and two large alpha-helical coiled-coil regions contained within the distal two-thirds of the polypeptide, are conserved in Ro3. Drosophila p150Glued is essential for viability; however, ro-3 null mutants are viable, indicating that dynactin is not an essential complex in N. crassa. We show that N. crassa cytoplasmic dynein and dynactin mutants have abnormal nuclear distribution but retain the ability to organize cytoplasmic microtubules and actin in anucleate hyphae.  相似文献   

11.
Dynactin is a multiprotein complex that works with cytoplasmic dynein and other motors to support a wide range of cell functions. It serves as an adaptor that binds both dynein and cargoes and enhances single-motor processivity. The dynactin subunit dynamitin (also known as p50) is believed to be integral to dynactin structure because free dynamitin displaces the dynein-binding p150Glued subunit from the cargo-binding Arp1 filament. We show here that the intrinsically disordered dynamitin N-terminus binds to Arp1 directly. When expressed in cells, dynamitin amino acids (AA) 1–87 causes complete release of endogenous dynamitin, p150, and p24 from dynactin, leaving behind Arp1 filaments carrying the remaining dynactin subunits (CapZ, p62, Arp11, p27, and p25). Tandem-affinity purification–tagged dynamitin AA 1–87 binds the Arp filament specifically, and binding studies with purified native Arp1 reveal that this fragment binds Arp1 directly. Neither CapZ nor the p27/p25 dimer contributes to interactions between dynamitin and the Arp filament. This work demonstrates for the first time that Arp1 can directly bind any protein besides another Arp and provides important new insight into the underpinnings of dynactin structure.  相似文献   

12.
13.
Dynactin is a multimeric protein essential for the minus-end-directed transport driven by microtubule-based motor dynein. The pointed-end subcomplex in dynactin contains p62, p27, p25, and Arp11 subunits, and is thought to participate in interactions with membranous cargoes. We used sequence and structure prediction analysis to study dynactins p25 and p27. Here we present evidence that strongly supports that dynactins p27 and p25 contain the isoleucine-patch motif and adopt the left-handed parallel beta-helix fold. The structural models we obtained could contribute to the understanding of the complex interactions that dynactins are able to establish with cargo particles, microtubules or other dynactin subunits.  相似文献   

14.
Cytoplasmic dynein transports various cellular cargoes including early endosomes, but how dynein is linked to early endosomes is unclear. We find that the Aspergillus nidulans orthologue of the p25 subunit of dynactin is critical for dynein-mediated early endosome movement but not for dynein-mediated nuclear distribution. In the absence of NUDF/LIS1, p25 deletion abolished the localization of dynein-dynactin to the hyphal tip where early endosomes abnormally accumulate but did not prevent dynein-dynactin localization to microtubule plus ends. Within the dynactin complex, p25 locates at the pointed end of the Arp1 filament with Arp11 and p62, and our data suggest that Arp11 but not p62 is important for p25-dynactin association. Loss of either Arp1 or p25 significantly weakened the physical interaction between dynein and early endosomes, although loss of p25 did not apparently affect the integrity of the Arp1 filament. These results indicate that p25, in conjunction with the rest of the dynactin complex, is important for dynein-early endosome interaction.  相似文献   

15.
Cytoplasmic dynein is a microtubule-associated motor that utilizes ATP hydrolysis to conduct minus-end directed transport of various organelles. Dynactin is a multisubunit complex that has been proposed to both link dynein with cargo and activate dynein motor function. The mechanisms by which dynactin regulates dynein activity are not clear. In this study, we examine the role of dynactin in regulating dynein ATPase activity. We show that dynein-microtubule binding and ATP-dependent release of dynein from microtubules are reduced in dynactin null mutants, Deltaro-3 (p150(Glued)) and Deltaro-4 (Arp1), relative to wild-type. The dynein-microtubule binding activity, but not the ATP-dependent release of dynein from microtubules, is restored by in vitro mixing of extracts from dynein and dynactin mutants. Dynein produced in a Deltaro-3 mutant has approximately 8-fold reduced ATPase activity relative to dynein isolated from wild-type. However, dynein ATPase activity from wild-type is not reduced when dynactin is separated from dynein, suggesting that dynein produced in a dynactin mutant is inactivated. Treatment of dynein isolated from the Deltaro-3 mutant with lambda protein phosphatase restores the ATPase activity to near wild-type levels. The reduced dynein ATPase activity observed in dynactin null mutants is mainly due to altered affinity for ATP. Radiolabeling experiments revealed that low molecular mass proteins, particularly 20- and 8-kDa proteins, that immunoprecipitate with dynein heavy chain are hyperphosphorylated in the dynactin mutant and dephosphorylated upon lambda protein phosphatase treatment. The results suggest that cytoplasmic dynein ATPase activity is regulated by dynactin-dependent phosphorylation of dynein light chains.  相似文献   

16.
The actin-related protein Arp1 works in conjunction with the microtubule-based motor cytoplasmic dynein to drive many types of intracellular motility. In vertebrate cells, Arp1 is present exclusively in the form of a 37-nm filament that constitutes the backbone of dynactin, a 1.2-MDa macromolecular complex containing nine other polypeptides. Dynactin has been proposed to function as the link between dynein and its cargo. Recent work indicates that the dynactin subunit p150(Glued) mediates the interaction of the dynactin molecule with dynein and microtubules, leaving the Arp1 filament as a possible cargo-binding domain. Mechanisms for binding of F-actin to membranes are discussed as models of the Arp1-membrane interaction.  相似文献   

17.
Dynactin function in mitotic spindle positioning   总被引:1,自引:0,他引:1  
Dynactin is a multisubunit protein complex necessary for dynein function. Here, we investigated the function of dynactin in budding yeast. Loss of dynactin impaired movement and positioning of the mitotic spindle, similar to loss of dynein. Dynactin subunits required for function included p150Glued, dynamitin, actin-related protein (Arp) 1 and p24. Arp10 and capping protein were dispensable, even in combination. All dynactin subunits tested localized to dynamic plus ends of cytoplasmic microtubules, to stationary foci on the cell cortex and to spindle pole bodies. The number of molecules of dynactin in those locations was small, less than five. In the absence of dynactin, dynein accumulated at plus ends and did not appear at the cell cortex, consistent with a role for dynactin in offloading dynein from the plus end to the cortex. Dynein at the plus end was necessary for dynactin plus-end targeting. p150Glued was the only dynactin subunit sufficient for plus-end targeting. Interactions among the subunits support a molecular model that resembles the current model for brain dynactin in many respects; however, three subunits at the pointed end of brain dynactin appear to be absent from yeast.  相似文献   

18.
The multisubunit protein complex, dynactin, is an essential component of the cytoplasmic dynein motor. High-resolution structural work on dynactin and the dynein/dynactin supercomplex has been limited to small subunits and recombinant fragments that do not report fully on either ≈ 1 MDa assembly. In the present study, we used negative-stain electron microscopy and image analysis based on random conical tilt reconstruction to obtain a three-dimensional (3D) structure of native vertebrate dynactin. The 35-nm-long dynactin molecule has a V-shaped shoulder at one end and a flattened tip at the other end, both offset relative to the long axis of the actin-related protein (Arp) backbone. The shoulder projects dramatically away from the Arp filament core in a way that cannot be appreciated in two-dimensional images, which has implications for the mechanism of dynein binding. The 3D structure allows the helical parameters of the entire Arp filament core, which includes the actin capping protein, CP, to be determined for the first time. This structure exhibits near identity to F-actin and can be well fitted into the dynactin envelope. Molecular fitting of modeled CP-Arp polymers into the envelope shows that the filament contains between 7 and 9 Arp protomers and is capped at both ends. In the 7 Arp model, which agrees best with measured Arp stoichiometry and other structural information, actin capping protein (CP) is not present at the distal tip of the structure, unlike what is seen in the other models. The 3D structure suggests a mechanism for dynactin assembly and length specification.  相似文献   

19.
The actin-related protein Arp1 (or centractin, actin RPV) is the major subunit of dynactin, a key component of the cytoplasmic dynein motor machinery [1] [2] [3]. Of the ubiquitously expressed members of the Arp superfamily, Arp1 is most similar to conventional actin [4] [5] [6] and, on the basis of conserved sequence features, is predicted to bind ATP and possibly polymerize. In vivo, all cytosolic Arp1 sediments at 20S [7] suggesting that it assembles into oligomers, most likely dynactin - a multiprotein complex known to contain eight or nine Arp1 monomers in a 37 nm filament [8]. The uniform length of Arp1 polymers suggests a novel assembly mechanism that may be governed by a 'ruler' activity. In dynactin, the Arp1 filament is bounded by actin-capping protein at one end and a heterotetrameric protein complex containing the p62 subunit (D.M. Eckley, S.R. Gill, J.B.B., J.E. Heuser, T.A.S., unpublished observations) at the other [8]. In the present study, we analyzed the behavior of highly purified, native Arp1. Arp1 was found to polymerize rapidly into short filaments that were similar, but not identical, in length to those in dynactin. With time, these filaments appeared to anneal to form longer assemblies but never attained the length of conventional actin filaments.  相似文献   

20.
Motor proteins play a fundamental role in the congression and segregation of chromosomes in mitosis as well as the formation of the mitotic spindle. In particular, the dynein/dynactin complex is involved in the maintenance of the spindle, formation of astral microtubules, chromosome motion, and chromosome segregation. Dynactin is a multisubunit, high molecular weight protein that is responsible for the attachment of cargo to dynein. There are a number of major subunits in dynactin that are presumed to be important during mitosis. Arp1 is thought to be the attachment site for cargo to the complex while p150(Glued), a side arm of this complex regulates binding to MTs and the binding of dynactin to dynein. We performed colocalization studies of Arp1 and p150(Glued) to spindle microtubules. Both Arp1 and p150(Glued) colocalize with spindle MTs as well as cytoplasmic components. When treated with cytochalasin J, Arp1 concentrates at the centrosomes and is less co-localized with spindle MTs. Cytochalasin J has less of an effect on the colocalization of p150(Glued) with spindle MTs, suggesting that Arp1 may have a cytochalasin J sensitive site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号