首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
J W Lee  G A Vidaver 《Cell calcium》1984,5(6):501-524
Cells were subjected to a range of 45Ca2+ influx loads with A23187. We measured cell 45Ca2+ with time and A23187 dose, and the apparent 45Ca2+ influxes (identical to "J(in,app)") at Ca2+ steady state. We also measured endogeneous exchangeable and total cell Ca2+, which were 50 and 17-220 microM respectively. The effects of A23187 and Ca2+ on cell ATP, swelling, net Cl- permeability, and cell morphology were measured. These were modest and do not affect our conclusions. J(in,app) congruent to 3 X 10(-4) [A23187]2.9 X [Ca2+(o)]mumoles/l X min with 92-552 microM [Ca2+(o)] (identical to external Ca2+ concentration) and 0-7 microM A23187. J(in,app) was increased an order of magnitude by vanadate and is probably much less than the true influx. The least unlikely explanation found for the high [A23187] exponent, 2.9, was that most of the Ca2+ crossing the membrane is expelled by the pump before it can move deeper into the cell. Calcium pumping increased rapidly in response to increased influx, but the steady state cell 45Ca2+ was approximately proportional to J(in,app) rather than approximately constant between 10 and 120 mumoles/l X min with 184 microM [Ca2+(o)]. This is not the result expected from a simple feedback mechanism. At high A23187 doses the pump appears fully activated resulting in a linear relation between cell/medium 45Ca2+ and [A23187]-2. From the plot we calculated alpha identical to free/total exchangeable Ca2+ = 0.38 +/- 0.08 (n = 3) and a maximum pump rate, "Pmax" = 78 mumole/l X min. Pmax is underestimated insofar as J(in,app) is less than the true influx.  相似文献   

2.
Cells were subjected to a range of 45Ca2+ influx loads with A23187. We measured cell 45Ca2+ with time and A23187 dose, and the apparent 45Ca2+ influxes (≡“J(in,app)”) at Ca2+ steady state. We also measured endogeneous exchangeable and total cell Ca2+, which were 50 and 17–220 μM respectively. The effects of A23187 and Ca2+ on cell ATP, swelling, net Cl permeability, and cell morphology were measured. These were modest and do not affect our conclusions.J(in,app) 3 × 10−4 [A23187]2.9·[Ca2+(o)]μmoles/l·min with 92–552 μM [Ca2+(o)] (≡ external Ca2+ concentration) and 0–7 μM A23187. J(in,app) was increased an order of magnitude by vanadate and is probably much less than the true influx. The least unlikely explanation found for the high [A23187] exponent, 2.9, was that most of the Ca2+ crossing the membrane is expelled by the pump before it can move deeper into the cell.Calcium pumping increased rapidly in response to increased influx, but the steady state cell 45Ca2+ was approximately proportional to J(in,app) rather than approximately constant between 10 and 120 μmoles/l·min with 184 μM [Ca2+(o)]. This is not the result expected from a simple feedback mechanism.At high A23187 doses the pump appears fully activated resulting in a linear relation between cell/medium 45Ca2+ and [A23187]−2. From the plot we calculated α≡free/total exchangeable Ca2+ = 0.38 ± 0.08 (n = 3) and a maximum pump rate, “Pmax” = 78 μmole/l·min. Pmax is underestimated insofar as J(in,app) is less than the true influx.  相似文献   

3.
Pigeon erythrocytes expelled preloaded 45Ca2+ in response to a low dose of A23187 at 0 degrees C. We call this phenomenon 'paradoxical' expulsion. Within the first minute, 1.85 +/- 0.38 mumol/l cell water was expelled; after that the internal 45Ca2+ began to rise. The rises in Ca2+ uptake with and without A23187 addition were essentially paralleled. No premonitory rise of 45Ca2+ upon the addition of A23187 was observed. Expulsion of 45Ca2+ in response to A23187 was probably by the action of the Ca2+ pump and not by Na+-Ca2+ exchange since vanadate inhibited, but K+ replacement of Na+ in the medium had no effect. Lysophosphatidylcholine (lysoPC) caused an abrupt increase in 45Ca2+ influx by cells at 0 degrees C and was dose dependent. However, a very low dose of lysoPC induced expulsion of preloaded 45Ca2+ similar to that by A23187, the response was fast and transitory, without any premonitory rise in 45Ca2+ uptake. The results lend support to the suggestion that the signal to which cells respond may be a sudden change in Ca2+ influx per se rather than a change in internal Ca2+ concentration. These features of 'paradoxical' 45Ca2+ expulsion induced by A23187 and lysoPC are not expected from mass-action equilibria but, instead, agree with the characteristics of an energy-dissipating control mechanism.  相似文献   

4.
The effect of platelet-derived growth factor (PDGF) on cellular Ca2+ was examined in BALB/c-3T3 cells. PDGF induced: A decrease in cell 45Ca2+ content. An apparent increased rate of efflux of preloaded 45Ca2+. A decrease in residual intracellular 45Ca2+ remaining after rapid efflux. When added after the rapid phase of efflux of 45Ca2+ had occurred, an immediate decrease in post-efflux residual intracellular 45Ca2+. All of the observed changes in 45Ca2+ induced by PDGF are consistent with a rapid release of Ca2+ from an intracellular Ca2+ pool that has the slowest efflux and is relatively inaccessible to extracellular EDTA. When incubated with chlortetracycline (CTC), a fluorescent Ca2+ probe, 3T3 cell mitochondria became intensely fluorescent. Addition of PDGF resulted in a rapid decrease in CTC fluorescence intensity in both adherent and suspended 3T3 cells. The effects of PDGF on 3T3 cell Ca2+ stores and CTC fluorescence intensity were identical with the effects of the Ca2+ ionophore A23187 and of the proton ionophore carbonyl cyanide m-chlorophenyl hydrazone. Serum, which contains PDGF, also altered intracellular Ca2+ stores, but platelet-poor plasma, which does not contain PDGF, had no effect. EGF, insulin, and tetradecanoyl phorbol acetate (TPA), other factors which stimulate 3T3 cell growth, did not alter 3T3 cell Ca2+ stores. Release of Ca2+ from intracellular sequestration sites may be a mechanism by which PDGF stimulates cell growth.  相似文献   

5.
Gangliosides suppress lymphocyte mitogenesis when added exogenously to the cells. On the premise that the mechanism of ganglioside action may be an interference with primary induction events, mitogen-induced 45Ca2+ influx in murine lymphocytes was studied. Disialoganglioside (GD1a) at physiopathological concentrations inhibits concanavalin A-induced 45Ca2+ uptake as well as blast transformation. The suppressive action of GD1a is both concentration dependent (50% suppression at 13 microM) and very rapid (within 1 min). GD1a is not cytotoxic nor does it significantly alter the rate of Ca2+ efflux. The uptake studies were extended to A23187, a compound with mitogenic and specific divalent cation ionophore activities. Ca2+ uptake by lymphoid cells from AKR/J, Swiss, and CBA mice is stimulated by A23187; and GD1a, in a dose-dependent manner, inhibits the ionophore-induced 45Ca2+ influx. Pretreatment of thymocytes with GD1a renders the cells greatly insensitive to the subsequent ionophore activity of A23187. The results suggest that exogenous gangliosides may function as an inhibitor of some of the mitogen-triggered early events, including Ca2+ metabolism, and thus influence the immunological behavior of intact lymphoid cells.  相似文献   

6.
7.
We tested the hypothesis that increased Ca2+ uptake in rat extensor digitorum longus (EDL) muscle elicits cell membrane damage as assessed from release of the intracellular enzyme lactate dehydrogenase (LDH). This was done by using 1) electrostimulation, 2) electroporation, and 3) the Ca2+ ionophore A23187. Stimulation at 1 Hz for 120-240 min caused an increase in 45Ca uptake that was closely correlated to LDH release. This LDH release increased markedly with temperature. After 120 min of stimulation at 1 Hz, resting 45Ca uptake was increased 5.6-fold compared with unstimulated muscles. This was associated with an eightfold increase in LDH release, and this effect was halved by lowering extracellular Ca2+ concentration ([Ca2+]o). The poststimulatory increase in resting 45Ca uptake persisted for at least 120 min. An acute increase in sarcolemma leakiness induced by electroporation markedly increased 45Ca uptake and LDH leakage. Both effects depended on [Ca2+]o. A23187 increased 45Ca uptake. Concomitantly, LDH leakage increased 18-fold within 30 min, and this effect was abolished by omitting Ca2+ from the buffer. We conclude that increased Ca2+ influx may be an important cause of cell membrane damage that arises during and after exercise or electrical shocks. Because membrane damage allows further influx of Ca2+, this results in positive feedback that may further increase membrane degeneration.  相似文献   

8.
The regulation of Ca2+ transport by intracellular compartments was studied in digitonin-permeabilized human neutrophils, using a Ca2+-selective electrode. When incubated in a medium containing ATP and respiratory substrates, the cells lowered within 6 min the ambient [Ca2+] to a steady state of around 0.2 microM. A vesicular ATP-dependent and vanadate-sensitive non-mitochondrial pool maintained this low [Ca2+] level. In the absence of ATP, a higher Ca2+ steady state of 0.6 microM was seen, exhibiting the characteristics of a mitochondrial Ca2+ "set point." Both pools were shown to act in concert to restore the previous ambient [Ca2+] following its elevation. Thus, the mitochondria participate with the other pool(s) in decreasing [Ca2+] to the submicromolar range whereas only the nonmitochondrial pool(s) lowers [Ca2+] to the basal level. The action of inositol 1,4,5-triphosphate (IP3) which has been inferred to mediate Ca2+ mobilization in a few cell types was studied. IP3 released (detectable within 2 s) Ca2+ accumulated in the ATP-dependent pool(s) but had no effect on the mitochondria. The response was transient and resulted in desensitization toward subsequent IP3 additions. Under experimental conditions in which the ATP-dependent Ca2+ influx was blocked, the addition of IP3 resulted in a very large Ca2+ release from nonmitochondrial pool. The results strongly suggest that IP3 is a second messenger mediating intracellular Ca2+ mobilization in human neutrophils. Furthermore, the nonmitochondrial pool appears to have independent influx and efflux pathways for Ca2+ transport, a Ca2+ ATPase (the influx component) and an IP3-sensitive efflux component activated during Ca2+ mobilization.  相似文献   

9.
Vasopressin caused a 40% inhibition of 45Ca uptake after the addition of 0.1 mM-45Ca2+ to Ca2+-deprived hepatocytes. At 1.3 mM-45Ca2+, vasopressin and ionophore A23187 each caused a 10% inhibition of 45Ca2+ uptake, whereas La3+ increased the rate of 45Ca2+ uptake by Ca2+-deprived cells. Under steady-state conditions at 1.3 mM extracellular Ca2+ (Ca2+o), vasopressin and La3+ each increased the rate of 45Ca2+ exchange. The concentrations of vasopressin that gave half-maximal stimulation of 45Ca2+ exchange and glycogen phosphorylase activity were similar. At 0.1 mM-Ca2+o, La3+ increased, but vasopressin did not alter, the rate of 45Ca2+ exchange. The results of experiments performed with EGTA or A23187 or by subcellular fractionation indicate that the Ca2+ taken up by hepatocytes in the presence of La3+ is located within the cell. The addition of 1.3 mM-Ca2+o to Ca2+-deprived cells caused increases of approx. 50% in the concentration of free Ca2+ in the cytoplasm [( Ca2+]i) and in glycogen phosphorylase activity. Much larger increases in these parameters were observed in the presence of vasopressin or ionophore A23187. In contrast with vasopressin, La3+ did not cause a detectable increase in glycogen phosphorylase activity or in [Ca2+]i. It is concluded that an increase in plasma membrane Ca2+ inflow does not by itself increase [Ca2+]i, and hence that the ability of vasopressin to maintain increased [Ca2+]i over a period of time is dependent on inhibition of the intracellular removal of Ca2+.  相似文献   

10.
Concanavalin A binding and Ca2+ fluxes in rat spleen cells   总被引:3,自引:0,他引:3  
Addition of the mitogenic lectin concanavalin A to rat spleen cells results in a small increase in the steady-state Ca2+ content of the cells. 45Ca2+ fluxes were measured under conditions where artifacts due to Ca2+ binding to concanavalin A could be excluded. Both 45Ca2+ influx into and efflux from these cells are significantly activated by the lectin. If 45Ca2+ is added 30 min after concanavalin A the rate of influx is further enhanced. The increase in 45Ca2+ influx correlates well with binding of concanavalin A to the cells. At low concentrations (optimal mitogenic) of the lectin (1 and 3 micrograms/ml) no significant increase in 45Ca2+ influx occurs but an increase in 45Ca2+ efflux is still observed. The results suggest that concanavalin A binding to the cell surface causes an increase in Ca2+ influx into the cells and that activation of Ca2+ efflux occurs as a response to an increase in the cytosolic Ca2+ activity. Thus, Ca2+ may well play a role in triggering lymphocyte activation.  相似文献   

11.
Y Tsunoda 《FEBS letters》1986,207(1):47-52
In digitonin-permeabilized parietal cells, myo-inositol 1,4,5-trisphosphate (Ins P3) or Ca2+ ionophore (A23187) increased the cytosolic Ca2+ concentration due to the intracellular Ca2+ release. Addition of ATP decreased the cytosolic Ca2+ concentration due to the rapid Ca2+ re-uptake into the same or similar pool which releases Ca2+ from a non-mitochondrial location (measured by quin2/AM and 45Ca2+). Cytochalasin B failed to increase the cytosolic Ca2+ concentration in response to Ins P3 or A23187 and even failed to decrease the cytosolic Ca2+ concentration in response to ATP. This implies that the ATP-dependent and Ins P3-sensitive Ca2+ pool is linked with the microfilaments of the parietal cell. In intact parietal cells, A23187 increased the amino[14C]pyrine accumulation (an index of acid secretion), that was independent of medium Ca2+. This increase of acid secretion was inhibited by the pretreatment with cytochalasin B. This suggests that medium Ca2+-independent acid secretion (by A23187) is regulated by the microfilaments. Therefore, there is a close relationship between the intracellular Ca2+ metabolism, microfilaments and acid secretion.  相似文献   

12.
Analysis of Ca2+ fluxes and Ca2+ pools in pancreatic acini   总被引:2,自引:0,他引:2  
45Ca2+ movements have been analysed in dispersed acini prepared from rat pancreas in a quasi-steady state for 45Ca2+. Carbamyl choline (carbachol; Cch) caused a quick 45Ca2+ release that was followed by a slower 45Ca2+ 'reuptake'. Subsequent addition of atropine resulted in a further transient increase in cellular 45Ca2+. The data suggest the presence of a Cch-sensitive 'trigger' pool, which could be refilled by the antagonist, and one or more intracellular 'storage' pools. Intracellular Ca2+ sequestration was studied in isolated acini pretreated with saponin to disrupt their plasma membranes. In the presence of 45Ca2+ (1 microM), addition of ATP at 5 mM caused a rapid increase in 45Ca2+ uptake exceeding the control by fivefold. Maximal ATP-promoted Ca2+ uptake was obtained at 10 microM Ca2+ (half-maximal at 0.32 microM Ca2+). In the presence of mitochondrial inhibitors it was 0.1 microM (half-maximal at 0.014 microM). 45Ca2+ release could still be induced by Cch but the subsequent reuptake was missing. The latter was restored by ATP and atropine caused further 45Ca2+ uptake. Electron microscopy showed electron-dense precipitates in the rough endoplasmic reticulum of saponin-treated cells in the presence of Ca2+, oxalate and ATP which were absent in intact cells or cells pretreated with A23187. The data suggest the presence of a plasma membrane-bound Cch-sensitive 'trigger' Ca2+ pool and ATP-dependent Ca2+ storage systems in mitochondria and rough endoplasmic reticulum of pancreatic acini. It is assumed that Ca2+ is taken up into these pools after secretagogue-induced Ca2+ release.U  相似文献   

13.
Vasopressin stimulated gluconeogenesis from proline in hepatocytes from starved rats; this was attributed to an activation of oxoglutarate dehydrogenase (EC 1.2.4.2) [Staddon & McGivan (1984) Biochem. J. 217, 477-483]. The role of Ca2+ in the activation mechanism was investigated. (1) In the absence of extracellular Ca2+, vasopressin caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content that were markedly transient when compared with the effects in the presence of Ca2+. (2) Ca2+ added to cells stimulated for 2 min by vasopressin in the absence of extracellular Ca2+ sustained the initial effects of vasopressin. Ca2+ added 15 min after vasopressin, a time at which both the rate of gluconeogenesis and the cell oxoglutarate content were close to the control values, caused a stimulation of gluconeogenesis and a decrease in cell oxoglutarate content. (3) Under conditions of cell-Ca2+ depletion, vasopressin had no effect on gluconeogenesis or cell oxoglutarate content. (4) Ionophore A23187 stimulated gluconeogenesis and caused a decrease in cell oxoglutarate content, but the phorbol ester 4 beta-phorbol 12-myristate 13-acetate had no effects. (5) These data suggest that the initial activation of oxoglutarate dehydrogenase by vasopressin is dependent on an intracellular Ca2+ pool and independent of extracellular Ca2+. For activation of a greater duration, a requirement for extracellular Ca2+ occurs. The activation of oxoglutarate dehydrogenase by A23187 is consistent with a mechanism involving Ca2+, but the lack of effect of 4 beta-phorbol 12-myristate 13-acetate indicates that protein kinase C is not involved in the mechanism of activation by vasopressin.  相似文献   

14.
Ca2+-activated Na+ fluxes in human red cells. Amiloride sensitivity   总被引:4,自引:0,他引:4  
The effect of Ca2+ on the ouabain- and bumetanide-resistant Na+ fluxes in intact red cells was studied at relatively constant internal Ca2+, membrane potential, and cell volume. The red cell calcium concentration was modified using the ionophore A23187. In fresh red cells, the Na+ influx and efflux (1.2 +/- 0.13 and 0.26 +/- 0.07 mmol/liter cells x h, respectively) were not affected by amiloride (1 mM). When external Ca2+ was raised from 0 to 150 microM, in the presence of A23187, both the Na+ influx and efflux were stimulated (about 3.5-fold). The Ca2+-activated Na+ efflux and influx had an apparent Km for activation by Ca2+o of about 25 microM. The Ca2+-dependent Na+ transport was inhibited 30-60% by amiloride (ID50 = 17.3 +/- 8 microM). Amiloride, however, had no effect on the Ca2+-dependent K+ influx. The amiloride-sensitive (AS) transport pathway was a linear function of the Na+o concentration in the range from 0 to 75 mM. The Ca2+i activation seems to depend on the metabolic integrity of red cells. 1) It does not take place in ATP-depleted red cells; 2) ATP-repletion of ATP-depleted red cells fully restored AS Na influx; and 3) ATP-enrichment (ATP-red cells) enhanced the AS Na influx by about 100%. The Ca2+-activated AS Na+ influx was not affected by either DIDS or trifluoperazine. The present results indicate that in human erythrocytes an increase in internal Ca2+ activates on otherwise silent AS Na+-transport system, which is dependent on the metabolic integrity of the red cells.  相似文献   

15.
Ca2+ homeostasis in unstimulated platelets   总被引:4,自引:0,他引:4  
Unstimulated platelets maintain a low cytosolic free Ca2+ concentration and a steep plasma membrane Ca2+ gradient. The mechanisms that are required have not been completely defined. In the present studies, 45Ca2+ was used to examine the kinetics of Ca2+ exchange in intact unstimulated platelets. Quin2 was used to measure the cytosolic free Ca2+ concentration. Under steady-state conditions, the maximum rate of Ca2+ exchange across the platelet plasma membrane, 2 pmol/10(8) platelets/min, was observed at extracellular free Ca2+ concentrations 20-fold less than in plasma. Two intracellular exchangeable Ca2+ pools were identified. The size of the more rapidly exchanging pool (t 1/2, 17 min) and the cytosolic free Ca2+ concentration were relatively unaffected by large changes in the extracellular Ca2+ concentration. In contrast, the size of the more slowly exchanging Ca2+ pool (t 1/2, 300 min) varied with the extracellular Ca2+ concentration, which suggests that it is physically as well as kinetically distinct from the rapidly exchangeable Ca2+ pool. The locations of the Ca2+ pools were determined by differential permeabilization of 45Ca2+-loaded platelets with digitonin. 45Ca2+ in the rapidly exchanging pool was released with lactate dehydrogenase, which suggests that it is located in the cytosol. 45Ca2+ in the slowly exchanging pool was released with markers for both the dense tubular system and mitochondria, but inhibition of mitochondrial Ca2+ uptake with carbonyl cyanide m-chlorophenylhydrazone had no effect on the size of the slowly exchangeable Ca2+ pool or the cytosolic free Ca2+ concentration. In contrast, addition of metabolic inhibitors (KCN plus carbonyl cyanide m-chlorophenylhydrazone plus deoxyglucose) or trifluoperazine caused a decrease in the size of the slowly exchangeable Ca2+ pool and an increase in the cytosolic free Ca2+ concentration. These observations suggest that Ca2+ homeostasis in unstimulated platelets is maintained by limiting Ca2+ influx from plasma, actively promoting Ca2+ efflux, and sequestering Ca2+ within an internal site, which is most likely the dense tubular system and not mitochondria.  相似文献   

16.
The time-course of 45Ca2+ influx into yeast cells was measured under non-steady-state conditions obtained by preincubating the cells in a Ca2+-free medium containing glucose and buffer. Two components were distinguished: a saturable component which reached a steady-state after about 40 s of 45Ca2+ uptake and a linear increase in cellular 45Ca2+ starting after 60-90 s. Using differential extraction methods it was determined that after 20 s of uptake, 45Ca2+ was localized in the cytoplasmic pool and in bound form with no 45Ca2+ in the vacuole. After 3 min most of the cellular 45Ca2+ was concentrated in the vacuole and in bound form. The initial rate of 45Ca2+ uptake under non-steady-state conditions thus measured 45Ca2+ transport across the plasma membrane without interference by vacuolar uptake. The effect of membrane potential (delta psi) on this transport was investigated in cells depleted of ATP. A high delta psi was produced by preincubating the cells with trifluoperazine (TFP) and subsequently washing the cells free from TFP. Substantial 45Ca2+ influx was measured in the absence of metabolic energy in cells with a high delta psi. Below a threshold value of -69.5 mV the logarithms of the initial rate of 45Ca2+ influx and of the steady-state level of the first component were linear with respect to delta psi. It is suggested that 45Ca2+ influx across the plasma membrane is mediated by channels which open when delta psi is below a threshold value. The results indicated that Ca2+ influx across the plasma membrane was driven electrophoretically by delta psi.  相似文献   

17.
A perfused liver system incorporating a Ca2+-sensitive electrode was used to study the long-term effects of glucagon and cyclic AMP on the mobilization of Ca2+ induced by phenylephrine, vasopressin and angiotensin. At 1.3 mM extracellular Ca2+ the co-administration of glucagon (10 nM) or cyclic AMP (0.2 mM) and a Ca2+-mobilizing hormone led to a synergistic potentiation of Ca2+ uptake by the liver, to a degree which was dependent on the order of hormone administration. A maximum net amount of Ca2+ influx, corresponding to approx. 3800 nmol/g of liver (the maximum rate of influx was 400 nmol/min per g of liver), was induced when cyclic AMP or glucagon was administered about 4 min before vasopressin and angiotensin. These changes are over an order of magnitude greater than those induced by Ca2+-mobilizing hormones alone [Altin & Bygrave (1985) Biochem. J. 232, 911-917]. For a maximal response the influx of Ca2+ was transient and was essentially complete after about 20 min. Removal of the hormones was followed by a gradual efflux of Ca2+ from the liver over a period of 30-50 min; thereafter, a similar response could be obtained by a second administration of hormones. Dose-response measurements indicate that the potentiation of Ca2+ influx by glucagon occurs even at low (physiological) concentrations of the hormone. By comparison with phenylephrine, the stimulation of Ca2+ influx by vasopressin and angiotensin is more sensitive to low concentrations of glucagon and cyclic AMP, and can be correlated with a 20-50-fold increase in the calcium content of mitochondria. The reversible uptake of such large quantities of Ca2+ implicates the mitochondria in long-term cellular Ca2+ regulation.  相似文献   

18.
The characteristics of Ca2+ entry activated by surface receptor agonists and membrane depolarization were studied in the rat pancreatoma cell line, AR4-2J. Ca2+ mobilization activated by substance P, bombesin, or muscarinic receptor stimulation was found to involve both Ca2+ release and entry. In addition, depolarization of the surface membrane of AR4-2J cells with elevated concentrations of K+ activated Ca2+ entry. Ca2+ entry induced by membrane depolarization was inhibited by the L-channel antagonist, nimodipine, while that due to surface receptor agonists was not inhibited by this agent. The microsomal Ca(2+)-ATPase inhibitor, thapsigargin, caused both depletion of the agonist-sensitive intracellular Ca2+ pool and sustained Ca2+ influx indistinguishable from that produced by bombesin or methacholine. These results confirm that, unlike the pancreatic acinar cells from which they are presumably derived, AR4-2J cells express voltage-sensitive, dihydropyridine-inhibitable Ca2+ channels. However, in contrast to previous reports with this cell line, in the AR4-2J cells in use in our laboratory, and under our experimental conditions, surface receptor agonists (including substance P) do not cause Ca2+ influx through voltage-sensitive Ca2+ channels. Instead, we conclude that agonist-activated Ca2+ mobilization is initiated by (1,4,5)IP3-mediated intracellular Ca2+ release and that Ca2+ influx is regulated primarily, if not exclusively, by the state of depletion of the (1,4,5)IP3-sensitive intracellular Ca2+ pool.  相似文献   

19.
Regulation of cellular Ca2+ movements by alpha 1-adrenergic receptors has been studied using 45Ca2+ flux techniques in monolayer cultures of intact BC3H-1 cells. Unidirectional 45Ca2+ efflux from BC3H-1 cells reveals multiphasic kinetics, with a major fraction of cellular Ca2+ residing in a slowly exchanging intracellular compartment. Stimulation of alpha 1-adrenergic receptors by the agonist phenylephrine substantially increases 45Ca2+ unidirectional efflux, accompanied by a far smaller increase in 45Ca2+ influx. The selective enhancement of 45Ca2+ unidirectional efflux upon alpha 1-adrenergic receptor activation results in a net 30-40% decline in total cell Ca2+ content, measured either by radioisotopic equilibrium techniques or by atomic absorption spectroscopy. The relatively large pool of Ca2+ responsive to alpha-adrenergic stimulation is not displaced by La3+ but can be depleted with the Ca2+ ionophore A-23187. These results indicate that alpha 1-adrenergic receptor activation predominantly mobilizes Ca2+ from intracellular stores, together with a much smaller increase in transmembrane Ca2+ permeability. This interpretation is supported by comparative 45Ca2+ flux studies using a sister clone of BC3H-1 cells possessing surface nicotinic acetylcholine receptors but no alpha 1-adrenergic receptors. Agonist stimulation of the cholinergic receptor opens a well characterized transmembrane ion permeability gate. Cholinergic receptor activation greatly enhances the observed 45Ca2+ unidirectional influx relative to efflux, leading to net elevation of cellular Ca2+ content as Ca2+ moves down its inwardly directed concentration gradient.  相似文献   

20.
The properties of both Ca2+ influx and efflux in the mycelium during the life cycle of Trichoderma viride were studied by means of 45Ca2+ and by X-ray fluorescence spectroscopy measurements. The properties of the 45Ca2+ influx and effluxes indicate that they are mediated by different transport systems. The Ca2+ influx could be mediated by an electrogenic Ca2+/nH+ antiport, or by an Ca2+ uniport system. Both Ca2+ influx and efflux were stimulated by the uncouplers (and the treatment leading to the suppression of energy metabolism) and by azalomycin F, an antifungal agent. Salicylate stimulated the Ca2+ efflux, but inhibited the Ca2+ influx. In the isolated preparation of crude vacuolar/mitochondrial fraction, salicylate induced the Ca2+ release, as did A23187. Azalomycin F moderately released Ca2+ from the microsomal fraction. On the other hand, uncouplers did not release Ca2+ from the isolated organelles, but inhibited to a different extent the ATP-dependent and -independent Ca2+ influx. The results could be explained in terms of the capacitative Ca2+ influx mechanism. The rate of 45Ca2+ influx, or of the 40Ca2+ content, was maximal after about 30 h of submerged cultivation, and then decreased. The results show that loading of internal Ca2+ stores occurs in the early stages of the development of mycelium only, and the Ca2+ influx mechanism is developmentally down-regulated, being almost nonexistent during its later stages. In older mycelium, growth seems to be autonomous of the extracellular Ca2+ until the onset of conidiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号