首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brush border myosin I from chicken intestine is phosphorylated in vitro by chicken intestinal epithelial cell protein kinase C. Phosphorylation on serine and threonine to a maximum of 0.93 mol of P/mol of myosin I occurs within an approximately 20 kDa region at the end of the COOH-terminal tail of the 119-kDa heavy chain. The effects of Ca2+ on myosin I phosphorylation by protein kinase C are complex, with up to 4-fold stimulation occurring at 0.5-3 microM Ca2+, and up to 80% inhibition occurring at 3-320 microM Ca2+. Phosphorylation required that brush border myosin I be in its phosphatidylserine vesicle-bound state. Previously unknown Ca2+ stimulation of brush border myosin I binding to phosphatidylserine vesicles was found to coincide with Ca2+ stimulation of phosphorylation. A myosin I proteolytic fragment lacking approximately 20 kDa of its tail retained Ca(2+)-stimulated binding, but showed reduced Ca(2+)-independent binding. Ca(2+)-dependent phosphatidylserine binding is apparently due to the concomitant phosphatidylserine-promoted, Ca(2+)-induced dissociation of up to three of the four calmodulin light chains from myosin I. Four highly basic putative calmodulin-binding sites in the Ca(2+)-dependent phosphatidylserine binding region of the heavy chain were identified based on the similarity in their sequence to the calmodulin- and phosphatidylserine-binding site of neuromodulin. Calmodulin dissociation is now shown to occur in the low micromolar Ca2+ concentration range and may regulate the association of brush border myosin I with membranes and its phosphorylation by protein kinase C.  相似文献   

2.
Phloretin and phlorizin adsorb to the tegument surface of Hymenolepis diminuta, with KDs of 2.39 mM and 14.7 microM, respectively, and Vmaxs of 1446 and 12.54 nmoles/g tissue per 2 min, respectively. Phloretin adsorption is not inhibited by phlorizin or glucose. Glucose partially inhibits phlorizin adsorption. Phlorizin, but not phloretin, adsorption to isolated tegument brush border membrane preparations is partially inhibited by N-ethylmaleimide. No indications of phlorizin hydrolysis to phloretin during incubation with H. diminuta were obtained. The data are supportive of spacially separate and distinct binding sites for phloretin and phlorizin in the tegument brush border.  相似文献   

3.
A method for subcellular fractionation of Hymenolepis diminuta using whole worm homogenization and differential centrifugation is presented. Different fractions obtained in this study were screened for the presence of enzymes that serve as markers for plasma membrane, brush border, mitochondria, Golgi complex, endoplasmic reticulum, peroxisomes, lysosomes and cytosol. The purity of fractions was also monitored by transmission electron microscopy. The purity of fractions, particularly the brush border membranes, are compared to those obtained by previous methods for H. diminuta or other tissues.  相似文献   

4.
Concentrative uptake of 32Pi induced by the dissipation of a Na+ gradient (overshoot) was demonstrated in brush border membrane vesicles obtained from isolated perfused canine kidneys. Na+-dependent 32Pi transport was decreased in brush border vesicles from isolated kidneys perfused with parathyroid hormone (PTH) for 2 h compared to uptake measured in vesicles from kidneys perfused without PTH. Cyclic AMP-dependent 32P phosphorylation of a 62,000 Mr protein band was demonstrable on autoradiograms of sodium dodecyl sulfate-polyacrylamide gels of membrane suspensions from kidneys perfused +/- PTH. Evidence that perfusion with PTH resulted in cAMP-dependent phosphorylation in isolated kidneys from parathyroidectomized dogs (decreased cAMP-dependent 32P phosphorylation of the 62,000-Mr band in brush border vesicles) was obtained after 2-h perfusion with PTH. Decreased 32P phosphorylation was not observed if membranes were allowed to dephosphorylate prior to 32P phosphorylation in vitro. We conclude that brush border vesicles from isolated perfused canine kidneys can be used to study the action of PTH on Na+-Pi cotransport in brush border membranes and on cAMP-dependent phosphorylation of the membrane. It is strongly suggested that PTH effects changes in Na+-dependent 32Pi transport in isolated brush border vesicles and changes in 32P phosphorylation of vesicles via a direct action on the renal cortical cell rather than as a consequence of extrarenal actions of the hormone.  相似文献   

5.
Renal basal-lateral and brush border membrane preparations were phosphorylated in the presence of [gamma-32P]ATP. The 32P-labeled membrane proteins were analysed on SDS-polyacrylamide gels. The phosphorylated intermediates formed in different conditions are compared with the intermediates formed in well defined membrane preparations such as erythrocyte plasma membranes and sarcoplasmic reticulum from skeletal muscle, and with the intermediates of purified renal enzymes such as (Na+ + K+)-ATPase and alkaline phosphatase. Two Ca2+-induced, hydroxylamine-sensitive phosphoproteins are formed in the basal-lateral membrane preparations. They migrate with a molecular radius Mr of about 130 000 and 100 000. The phosphorylation of the 130 kDa protein was stimulated by La3+-ions (20 microM) in a similar way as the (Ca2+ + Mg2+)-ATPase from erythrocytes. The 130 kDa phosphoprotein also comigrated with the erythrocyte (Ca2+ + Mg2+)-ATPase. In addition in the same preparation, another hydroxylamine-sensitive 100 kDa phosphoprotein was formed in the presence of Na+. This phosphoprotein comigrates with a preparation of renal (Na+ + K+)-ATPase. In brush border membrane preparations the Ca2+-induced and the Na+-induced phosphorylation bands are absent. This is consistent with the basal-lateral localization of the renal Ca2+-pump and Na+-pump. The predominant phosphoprotein in brush border membrane preparations is a 85 kDa protein that could be identified as the phosphorylated intermediate of renal alkaline phosphatase. This phosphoprotein is also present in basal-lateral membrane preparations, but it can be accounted for by contamination of those membranes with brush border membranes.  相似文献   

6.
Cholera toxin is very well characterized in terms of the activation of adenylate cyclase. In some systems, however, this cyclase activation does not seem to account for all of the physiological responses to the toxin. On the premise that cholera toxin may also exert effects through other second messenger compounds we have studied the effect of cholera toxin on the rate of Ca2+ movement across the membrane of intestinal brush border vesicles. Increasing concentrations of cholera toxin progressively accelerated the passive uptake of Ca2+ into, and the efflux of Ca2+ from, an osmotically active space in brush border membrane vesicles. This effect of cholera toxin was saturable by excess Ca2+ and was relatively specific, as the toxin did not affect vesicle permeability to an uncharged polar solute. The toxin had two high affinity Ca2+ binding sites on the A subunit as measured by equilibrium dialysis. Ca2+ transport facilitated by cholera toxin was temperature dependent, required the holotoxin, and could be inhibited by preincubation of the toxin with excess free ganglioside GM1. This increased rate of Ca2+ influx caused by the in vitro addition of cholera toxin to brush border membrane vesicles may have physiological significance as it was comparable to rates observed with the Ca ionophore A23187. Similar effects occurring in vivo could permit cholera toxin to increase cytoplasmic Ca2+ concentrations and to produce accompanying second messenger effects.  相似文献   

7.
Isolated rat kidney proximal tubule brush border membrane vesicles exhibit an increase in diacylglycerol levels (20- to 30-fold) and a concomitant decrease in phosphatidylinositol when incubated with [3H]arachidonate-labeled lipids, Ca2+, and deoxycholate. Levels of free arachidonate, triglyceride, and noninositol phospholipids are not altered. These results suggest phosphatidylinositol phosphodiesterase activity is associated with rat proximal tubule brush border membrane. Presence of both deoxycholate and certain divalent cations was necessary to demonstrate enzyme activity. Optimum pH ranged from 7.0 to 8.5. Ca2+, Mg2+, and Mn2+ stimulated diglyceride production while Ba2+, Zn2+, Hg2+, and K+ were ineffective. HgCl2 inhibited Ca2+-stimulated phosphatidylinositol phosphodiesterase. Mg2+ and deoxycholate-dependent enzyme activity was shown to be phosphatidylinositol specific. Sodium lauryl sulfate, tetradecyltrimethylammonium bromide, and Triton X-100 did not activate phosphatidylinositol phosphodiesterase in the presence of Ca2+. In combination with deoxycholate, diglyceride formation was not affected by sodium lauryl sulfate, partially inhibited by Triton X-100, and completely abolished by tetradecyltrimethylammonium bromide. Diglyceride kinase activity was not found associated with brush border membrane phosphatidylinositol phosphodiesterase. ATP (1-5 mM) inhibited Ca2+- or Mg2+-stimulated, deoxycholate-dependent phosphatidylinositol hydrolysis by chelating the required divalent cation.  相似文献   

8.
This review contrasts the glucose transport mechanisms at opposing surfaces of the renal proximal convoluted tubule: the Na+-dependent D-glucose transporter localized at the brush border membrane and the Na+-independent transporter localized at the basolateral surface. The two sugar transport mechanisms are discussed from the point of view of their specificity, kinetic, and regulatory behaviors. Recent results focussing on molecular characterization of these different carrier proteins are also described, including some newer information on purification of the Na+-dependent glucose carrier from the brush border membrane.  相似文献   

9.
A rapid method for the isolation of kidney brush border membranes.   总被引:17,自引:0,他引:17  
A simple rapid method for the preparation of purified brush border membranes from rabbit kidney proximal tubules is described. The method is based on hypotonic lysis, Ca2+ aggregation of contaminants and differential centrifugation. In contrast to most other published methods, the brush border membranes are free of contamination by basolateral membranes.  相似文献   

10.
Proteins from rabbit kidney brush border membranes were solubilized with 1% Nonidet P-40 (crude membrane proteins) and fractionated according to their isoelectric points (pI) by chromatofocusing. The eluate was pooled into three fractions according to the pI of the samples (1, greater than 6.8; 2, 6.8-5.4; 3, 5.4-4.0). The crude membrane proteins as well as the three fractions were reconstituted into liposomes and transport of Pi was measured by a rapid filtration technique in the presence of an inwardly directed K+ or Na+ gradient. Arsenate-inhibitable Na+-dependent transport of Pi was reconstituted into an osmotically active intravesicular space from both the crude membrane proteins and Fraction 1. In contrast, Fractions 2 and 3 were inactive. Treatment of the crude membrane proteins and the three fractions with the method for extracting phosphorin (a Pi-binding proteolipid found in brush border membranes) yielded Mn2+-dependent binding of Pi characteristic of phosphorin only in the extracts from crude membrane proteins and Fraction 1, the same fractions in which Na+-dependent transport of Pi was found in the reconstituted system. When reconstituted into liposomes, phosphorin was, however, unable to yield Na+-dependent transport of Pi. Moreover, we cannot eliminate the possibility that Na+-Pi transport can occur in the absence of phosphorin, since complete recovery of Na+-Pi transport was not achieved. However, the present data showing localization of the recovered binding and transport systems for Pi in the same protein fraction lend support to the hypothesis that phosphorin might be a constituent of the renal Pi transport system. Whether the presence of phosphorin is necessary or accessory for Na+-dependent Pi transport in intact brush border membrane vesicles or in liposomes reconstituted with crude or purified membrane proteins requires further investigation.  相似文献   

11.
Intelectin is a mammalian Ca2+-dependent, D-galactosyl-specific lectin expressed in Paneth and goblet cells of the small intestine and proposed to serve a protective role in the innate immune response to parasite infection. In addition, it is structurally identical to the intestinal lactoferrin receptor known to reside in the enterocyte brush border. To clarify this apparent discrepancy with regard to localization, the aim of this work was to study the cellular and subcellular distribution of small intestinal intelectin by immunofluorescence and immunogold electron microscopy. Secretory granules of lysozyme-positive Paneth cells in the bottom of the crypts as well as goblet cells along the crypt-villus axis were intensively labeled with intelectin antibodies, but quantitatively, the major site of intelectin deposition was the enterocyte brush border. This membrane is organized in stable glycolipid-based lipid raft microdomains, and like the divalent lectin galectin-4, intelectin was enriched in microvillar "superrafts", i.e., membranes that resist solubilization with Triton X-100 at 37 degrees C. This strategic localization suggests that the trimeric intelectin, like galectin-4, serves as an organizer and stabilizer of the brush border membrane, preventing loss of digestive enzymes to the gut lumen and protecting the glycolipid microdomains from pathogens.  相似文献   

12.
This paper describes a new method for solubilization and partial purification of a Na+-dependent phlorizin receptor from dog kidney proximal convoluted tubule. Selective solubilization is carried out with 0.1% Na+-deoxycholate followed by complete solubilization with 0.5% deoxycholate. The 100,000 X g supernatant of the deoxycholate extract is then subjected to a combination of chromatofocusing and gel exclusion chromatography. Purification is monitored by a new column assay which permits detection of the Na+-dependent high affinity phlorizin receptor in solubilized preparations. Na+-dependent phlorizin binding exhibits the same characteristics on the column assay as in intact brush border vesicles. Binding is temperature-dependent, inhibited by proteolytic agents, Na+-dependent, and inhibited by excess cold phlorizin and D-glucose but not L-glucose. Quantitation of specific binding at different stages of the isolation procedure indicates a final purification of approximately 80-140-fold compared to intact brush border membrane fragments. Enrichment of specific phlorizin binding is paralleled by enrichment of a 61-66-kDa polypeptide on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. It is postulated that this polypeptide contains both the Na and the sugar specific binding site and represents a subunit of the intact Na+-dependent glucose transporter from dog kidney proximal tubule brush border membrane.  相似文献   

13.
We undertook a study of the mechanism by which rhesus monkey rotavirus (RRV) impairs the expression and enzyme activity of brush border-associated sucrase isomaltase (SI) in cultured, human, fully differentiated, intestinal Caco-2 cells. We provide evidence that the RRV-induced defects in the expression and enzyme activity of SI are not related to the previously observed, RRV-induced, Ca2+ -dependent, disassembly of the F-actin cytoskeleton. This conclusion is based on the facts that: (i) the intracellular Ca2+ blocker, BAPTA/AM, which antagonizes the RRV-induced increase in [Ca2+](i), fails to inhibit the RRV-induced decrease in SI expression and enzyme activity; and (ii) Jasplakinolide (JAS) treatment, known to stabilize actin filaments, had no effect on the RRV-induced decrease in SI expression. Results reported here demonstrate that the RRV-induced impairment in the expression and enzyme activity of brush border-associated SI results from a hitherto unknown mechanism involving PKA signalling. This conclusion is based on the observations that (i) intracellular cAMP was increased in RRV-infected cells and (ii) treatment of RRV-infected cells with PKA blockers resulted in the reappearance of apical SI expression, accompanied by the restoration of the enzyme activity at the brush border. In addition, in RRV-infected cells a twofold increase of phosphorylated form of cytokeratin 18 was observed after immunopurification and Western Blot analysis, which was antagonized by exposing the RRV-infected cells to the PKA blockers.  相似文献   

14.
J S Wu  J E Lever 《Biochemistry》1987,26(18):5783-5790
Phlorizin is a specific, high-affinity ligand that binds the active site of the Na+/glucose symporter by a Na+-dependent mechanism but is not itself transported across the membrane. We have isolated a panel of monoclonal antibodies that influence high-affinity, Na+-dependent phlorizin binding to pig renal brush border membranes. Antibodies were derived after immunization of mice either with highly purified renal brush border membranes or with apical membranes purified from LLC-PK1, a cell line of pig renal proximal tubule origin. Antibody 11A3D6, an IgG2b, reproducibly stimulated Na+-dependent phlorizin binding whereas antibody 18H10B12, an IgM, strongly inhibited specific binding. These effects were maximal after 30-min incubation and exhibited saturation at increased antibody concentrations. Antibodies did not affect Na+-dependent sugar uptake in vesicles but significantly prevented transport inhibition by bound phlorizin. Antibodies recognized a 75-kDa antigen identified by Western blot analysis of brush border membranes, and a 75-kDa membrane protein could be immunoprecipitated by 18H10B12. These properties, taken together with results in the following paper [Wu, J.-S.R., & Lever, J.E. (1987) Biochemistry (following paper in this issue)], provide compelling evidence that the 75-kDa antigen recognized by these antibodies is a component of the renal Na+/glucose symporter.  相似文献   

15.
The calcium (Ca2+) uptake by brush border membrane vesicles isolated from fresh human placentas has been characterized. This process was saturable and time- and concentration-dependent. It exhibited a double Michaelis-Menten kinetics, with apparent Km values of 0.17 +/- 0.03 and 2.98 +/- 0.17 mM Ca2+, and Vmax values of 0.9 +/- 0.13 and 2.51 +/- 0.45 pmol.micrograms-1.5 s-1. It was not influenced by the presence of Na+ or Mg2+ in the incubation medium. It was not increased by K+ or anion diffusion potentials, inside negative. At a steady state of 1 mM Ca2+ uptake, a large proportion (approximately 94%) of the Ca2+ was bound to the internal surface of the membranes. Preincubation of these membrane vesicles with voltage-dependent Ca2+ channel blockers (nifedipine and verapamil) had no influence on Ca2+ uptake. However, this uptake was very sensitive to pH. In the absence of a pH gradient, the Ca2+ uptake increased with alkalinity. When the intravesicular pH was kept constant while the pH of the incubation medium was increased, Ca2+ uptake was also stimulated by alkaline pH. In contrast, when the pH of the incubation medium was kept constant and the intravesicular pH was progressively increased, Ca2+ uptake was diminished with alkaline pH. Therefore, H+ gradient (H+ in trans-position greater than H+ in cis-position) favored Ca2+ transport, suggesting a H+/Ca2+ exchange mechanism. Finally, in contrast to the basal plasma membrane, the brush border membrane did not show any ATP-dependent Ca2+ transport activity.  相似文献   

16.
Mg2+ transport across the brush border of proximal intestinal epithelium of the teleost fish Oreochromis mossambicus was investigated, using 27Mg2+ to trace movement of Mg2+. Mg2+ uptake in brush border membrane vesicles was stimulated by a K+ diffusion potential (inside negative). Electrodiffusive Mg2+ transport obeyed simple Michaelis-Menten kinetics and was strongly temperature dependent, indicative of a carrier mechanism. The metal ion specificity of this electrodiffusive pathway (inhibition potency order: Co > Mn = Ni > La > Ca > Gd > Ba), predicts a specific role in Mg2+ transport. Competitive inhibition by Co(III) hexammine [Co(NH3)(6)(3+)] suggests that this transport system interacts with the solvated Mg ion. We propose that this novel transport system allows the uptake of Mg2+ across the apical brush border membrane, and is involved in transcellular Mg2+ transport. Consequently, the prevailing potential difference across the apical membrane represents a major driving force for intestinal Mg2+ absorption.  相似文献   

17.
Brush border myosin I from chicken intestinal microvilli is a membrane-associated, single-headed myosin composed of a 119-kDa heavy chain and several calmodulin light chains. We first describe in detail a new procedure for the rapid purification of brush border myosin I in greater than 99% purity with a yield of 40%, significantly higher than for previous methods. The subunit stoichiometry was determined to be 4 calmodulin light chains/myosin I heavy chain by amino acid compositional analysis of the separated subunits. We have studied the effects of Ca2+ and temperature on dissociation of calmodulin from myosin I and on myosin I Mg2(+)-ATPase and contractile activities. At 30 degrees C the actin-activable ATPase activity is stimulated 2-fold at 10-700 microM Ca2+. Dissociation of 1 calmodulin occurs at 25-50 microM Ca2+, but this has no effect on actin activation. The contractile activity of myosin I, expressed as superprecipitation, is greatly enhanced by Ca2+ under conditions in which 1 calmodulin is dissociated. This calmodulin is thus not essential for actin activation or superprecipitation. Myosin I was found to be highly temperature-sensitive, with an increase to 37 degrees C resulting in dissociation of 1 calmodulin at below 10(-7) M Ca2+ and an additional 1.5 calmodulins at 1-10 microM Ca2+. A complete loss of actin activation accompanies the Ca2(+)-induced calmodulin dissociation at 37 degrees C. Our conclusion is that physiological levels of Ca2+ can either stimulate or inhibit the mechanoenzyme activities of brush border myosin I in vitro, with the mode of regulation determined by the number of associated calmodulin light chains.  相似文献   

18.
We have reinvestigated the effects of Ca++ and ATP on brush borders isolated from intestinal epithelial cells. At 37 degrees C, Ca++ (1 microM) and ATP cause a dramatic contraction of brush border terminal webs, not a retraction of microvilli as previously reported (M. S. Mooseker, 1976, J. Cell Biol. 71:417-433). Terminal web contraction, which occurs over the course of 1-5 min at 37 degrees C, actively constricts brush borders at the level of their zonula adherens. Contraction requires ATP, is stimulated by Ca++ (1 microM), and occurs in both membrane-intact and demembranated brush borders. Ca++ - dependent-solation of microvillus cores requires a concentration of Ca++ slightly greater (10 microM) than that required for contraction. Under conditions in which brush borders contract, many proteins in the isolated brush borders become phosphorylated. However, the phosphorylation of only one of the brush border proteins, the 20,000 dalton (20-kdalton) light chain of brush border myosin (BBMLC20), is stimulated by Ca++. At 37 degrees C, BBMLC20 phosphorylation correlates directly with brush border contraction. Furthermore, both BBMLC20 phosphorylation and brush border contraction are inhibited by trifluoperazine, an anti-psychotic phenothiazine that inhibits calmodulin activity. These results indicate that Ca++ regulates brush border contractility in vitro by stimulating cytoskeleton-associated, Ca++- and calmodulin-dependent brush border myosin light chain kinase.  相似文献   

19.
The energetics of the Na+-dependent transport of D-glucose into osmotically active membrane vesicles, derived from the brush borders of the rabbit renal proximal tubule, was studied by determining how alterations in the electrochemical potential of the membrane induced by anions, ionophores, and a proton conductor affect the uptake of the sugar. The imposition of a large NaCl gradient (medium is greater than vesicle) resulted in the transient uptake of D-glucose into brush border membranes against its concentration gradient. In the presence of Na+ salts of isethionate or sulfate, both relatively impermeable anions, there was no accumulation of D-glucose above the equilibrium value. With Na+ salts of two highly permeable lipophilic anions, NO3- and SCN-, the transient overshoot was enhanced relative to that with Cl-. With Na+ salts whose mode of membrane translocation is electroneutral, i.e. acetate, bicarbonate, and phosphate, no overshoot was found. These findings suggest that only anions which penetrate the brush border membrane and generate an electrochemical potential, negative on the inside, permit the uphill Na+-dependent transport of D-glucose.  相似文献   

20.
Isolation and reconstitution of the intestinal Na+/glucose cotransporter   总被引:1,自引:0,他引:1  
The intestinal Na+/glucose cotransporter was isolated from brush border membrane vesicles using a three-step procedure and Na(+)-dependent phlorizin binding as the measure of cotransporter enrichment. The initial step was to treat the Ca2(+)-precipitated brush border membrane vesicles with 0.02% sodium dodecyl sulfate (SDS) followed by sucrose gradient centrifugation which resulted in a 5-fold enrichment of the Na+/glucose cotransporter. The second step was chromatofocusing chromatography over the pH range from pH 7.4 to pH 4.0. This step resulted in an additional 20-fold purification as compared with the SDS-brush border membrane vesicle protein which served as the starting material. The final step was affinity chromatography on con A-Sepharose which resulted in a 5-fold enrichment of the chromatofocused protein. The glycoprotein fraction from the concanavalin A column reconstituted into phosphatidyl choline: cholesterol liposomes demonstrated Na(+)-dependent, phlorizin-sensitive, and osmotic strength-sensitive glucose uptake. This fraction consisted of a single 75-kDa polypeptide on SDS-polyacrylamide gel electrophoresis upon staining with silver. On the basis of these criteria it appears that a protocol for the isolation of the Na+/glucose cotransporter has been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号