首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lyophilized photosystem I particles from spinach were treatedwith diethyl ether that contained various organic solvents withdifferent dielectric constants. More pigments were extractedas the dielectric constant of the solvent added to ether increased.The reaction-center chlorophylldimer, P700, was more resistantto extraction than the rest of the chlorophyll. Particles thatcontained only 6 chlorophylls in addition to P700 and the primaryelectron acceptor (A0), in a single reaction-center unit, wereprepared by extraction with a mixture of ether and acetaldehyde.A distinct shoulder at 695 nm due to P700 or at 686 nm due toP700+ was observed in the absorption spectra of the reducedor oxidized particles, respectively, even at room temperature.No secondary acceptor phylloquinone remained in the particles.Stable charge separation was restored upon the addition of 2-amino-anthraquinone,even though the particles had the lowest molar ratio of chlorophyllto P700 of any reported particles. (Received February 20, 1995; Accepted May 8, 1995)  相似文献   

2.
Chlorophyll (Chl) synthesis in Arabidopsis is controlled by two light-dependent NADPH-protochlorophyllide (PChlide) oxidoreductases (PORs), one (POR A) that is active transiently in etiolated seedlings at the beginning of illumination and another (POR B) that also operates in green plants. The function of these two enzymes during the light-induced greening of dark-grown seedlings has been studied in the wild type and a deetiolated (det340) mutant of Arabidopsis. One of the consequences of the det mutation is that POR A is constitutively down-regulated, and therefore, synthesis of the POR A enzyme is shut off. When grown in the dark, the det340 mutant lacks POR A and the photoactive PChlide-F655 species but maintains the second PChlide reductase, POR B. Previously, photoactive PChlide-F655 has often been considered to be the only PChlide form that leads to Chl formation. Despite its deficiency in POR A and photoactive PChlide-F655, the det340 mutant is able to green when placed in the light. Chl accumulation, however, proceeds abnormally. At the beginning of illumination, seedlings of det340 mutants are extremely susceptible to photooxidative damage and accumulate Chl only at extremely low light intensities. They form core complexes of photosystems I and II but are almost completely devoid of light-harvesting structures. The results of this study demonstrate that in addition to the route of Chl synthesis that has been studied extensively in illuminated dark-grown wild-type plants, a second branch of Chl synthesis exists that is driven by POR B and does not require POR A.  相似文献   

3.
The P700 chlorophyll α-protein was purified by preparative sodium dodecyl sulfate (SDS) gel electrophoresis from SDS-solubilized barley (Hordeum vulgare L., cv Himalaya) chloroplast membranes. After elution from the gel in the presence of 0.05 to 0.1% Triton X-100, the recovered protein had a chlorophyll/P700 ratio of 50 to 60/1 and contained no chlorophyll b or cytochromes. Analysis of the polypeptide composition of the chlorophyll-protein revealed a 58 to 62 kilodalton (kD) polypeptide component but no lower molecular weight polypeptides. The 58 to 62 kD component was further resolved into two distinct polypeptide bands which were subsequently mapped by partial cyanogen bromide digestion and Staphylococcus aureus proteolysis. Based on results from the mapping experiments and other data, we suggest that the two components are conformational variants of a single polypeptide. Measurement of the chlorophyll to protein ratio by quantitative amino acid analysis and consideration of the yield of P700 in the protein isolate suggest that, contrary to previous models (Bengis and Nelson, 1975, 1977), P700in vivo is associated with a minimum of four subunits of approximately 60 kD.

Antibodies raised against the photochemically active chlorophyll-protein complex from barley reacted specifically with the 58 to 62 kD apoprotein. The same preparative electrophoresis procedure was used to isolate photochemically active P700 chlorophyll a-protein from soybean (Glycine max L.), tobacco (Nicotiana tobacum L.), petunia (Petunia × hybrida), tomato (Lycopersicum esculentum), and Chlamydomonas reinhardti. The isolated complex from all species exhibited identical polypeptide compositions and chlorophyll/P700 ratios. Antibodies to the barley protein cross reacted with all species tested demonstrating the highly conserved structure of the apoprotein.

  相似文献   

4.
Dark-grown YG-6 mutant cells of Chlorella regularis accumulateat least two forms of phototransformable protochlorophyllide(Pchlide) with in vivo absorption maxima at 634 nm (Pchlide634) and 650 nm (Pchlide 650). Difference spectrophotometricanalyses and the action spectra showed that Pchlide 634 is firsttransformed into the 648 nm form and then phototransformed intochlorophyllide (Chlide) 672 nm. Pchlide 650 is phototransformedinto Chlide 685 which then shifts towards short wavelength-formingChlide 667 in the subsequent dark stage (Shibata shift). Pchlide650 is regenerated at the expense of photoinactive Pchlide 632.In washed cells after the phototransformation, the Shibata shiftwas accelerated. Freezing/thawing treatment in the dark causedconversion of phototransformable Pchlide 650 into photoinactivePchlide 633, but phototransformation activity of Pchlide 634still partly remained. These results suggest that in the final step of light-dependentchlorophyll formation in the YG-6 mutant of C. regularis, twosequentially and functionally separate routes are present: (1) Pchlide 634 Pchlide 648 Chlide 672 Chlorophyll a. (2) Pchlide 650 Chlide 685 Chlide 667 Chlorophyll a. (Received June 4, 1983; Accepted November 11, 1983)  相似文献   

5.
Photosynthetic activity and organization of chlorophyll(Chl)-protein complexes in a temperature sensitive mutant of Chlorella pyrenoidosa have been investigated. The mutant is practically indistinguishable from wild type cells when grown at 25 C. However, mutant cells grown at 33 C do not synthesize Chl and lose their ability to evolve O2. O2 evolution and Chl synthesis are restored upon incubation of the 33 C grown cells at 25 C in absence of cell division (repair).  相似文献   

6.
7.
In crude extracts of Chlorella kessleri Fott and Novákóva cells grown autotrophically in white light the activity of phosphofructokinase (PFK, EC 2.7.1.11) is 62.9 ± 1.5 nmol (mg protein)−1 min−1 under optimized test conditions. It is greatly increased in red [88.3 ± 1.8 nmol (mg protein)−1 min−1], but somewhat decreased [57.0 ± 0.5 nmol (mg protein)−1 min−1] in blue light of equal productivity. Mixtures of blue and red light yield the low activity as long as blue light represents at least 35% of the total quantum fluence rate. The rough wavelength dependence of the counteracting effect of short wavelength light on the increasing effect of red light exhibits a broad peak at 460 nm, reminiscent of action spectra of the blue/UV photoreceptors(s). Upon transfer of red light-grown cells to blue light, the decrease develops slowly within 72 h; it cannot be prevented by 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU). Since there is less carbohydrate in blue than in red light-exposed cells, correlations between biosynthesis of PFK and level of carbohydrate are discussed, based on the assumption that red light decreases and/or blue light increases the transport of metabolites across the chloroplast envelope.  相似文献   

8.
In crude extracts of the unicellular green alga Chlorella kessleri Fott et Novákóva grown in red light the activity of the glycolytic enzyme phosphofructokinase (PFK, EC 2.7.1.11) is about 40% higher compared to white light conditions giving the same dry matter production. Application of cycloheximide and density labelling with D2O indicate that this increase depends on the de novo synthesis of the enzyme: Twelve h of illumination at a fluence rate of 7 × 1018 quanta m−2 s−1 (11.6 μmol m−2 s−1) suffice to saturate the effect. In autotrophically grown algae maximal increase in enzyme saturate the effect. In autotrophically grown algae maximal increase in enzyme activity is reached in light of 680 nm, while in 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)-poisoned, glucose-fed cells, light of wavelengths around 727 nm is most effective. Involvement of a phytochrome-like photoreceptor is discussed.  相似文献   

9.
J Breton  E Nabedryk  W Leibl 《Biochemistry》1999,38(36):11585-11592
The effect of global (15)N or (2)H labeling on the light-induced P700(+)/P700 FTIR difference spectra has been investigated in photosystem I samples from Synechocystis at 90 K. The small isotope-induced frequency shifts of the carbonyl modes observed in the P700(+)/P700 spectra are compared to those of isolated chlorophyll a. This comparison shows that bands at 1749 and 1733 cm(-)(1) and at 1697 and 1637 cm(-)(1), which upshift upon formation of P700(+), are candidates for the 10a-ester and 9-keto C=O groups of P700, respectively. A broad and relatively weak band peaking at 3300 cm(-)(1), which does not shift upon global labeling or (1)H-(2)H exchange, is ascribed to an electronic transition of P700(+), indicating that at least two chlorophyll a molecules (denoted P(1) and P(2)) participate in P700(+). Comparisons of the (3)P700/P700 FTIR difference spectrum at 90 K with spectra of triplet formation in isolated chlorophyll a or in RCs from photosystem II or purple bacteria identify the bands at 1733 and 1637 cm(-)(1), which downshift upon formation of (3)P700, as the 10a-ester and 9-keto C=O modes, respectively, of the half of P700 that bears the triplet (P(1)). Thus, while the P(2) carbonyls are free from interaction, both the 10a-ester and the 9-keto C=O of P(1) are hydrogen bonded and the latter group is drastically perturbed compared to chlorophyll a in solution. The Mg atoms of P(1) and P(2) appear to be five-coordinated. No localization of the triplet on the P(2) half of P700 is observed in the temperature range of 90-200 K. Upon P700 photooxidation, the 9-keto C=O bands of P(1) and P(2) upshift by almost the same amount, giving rise to the 1656(+)/1637(-) and 1717(+)/1697(-) cm(-)(1) differential signals, respectively. The relative amplitudes of these differential signals, as well as of those of the 10a-ester C=O modes, appear to be slightly dependent on sample orientation and temperature and on the organism used to generate the P700(+)/P700 spectrum. If it is assumed that the charge density on ring V of chlorophyll a, as measured by the perturbation of the 10a-ester or 9-keto C=O IR vibrations, mainly reflects the spin density on the two halves of the oxidized P700 special pair, a charge distribution ranging from 1:1 to 2:1 (in favor of P(2)) is deduced from the measurements presented here. The extreme downshift of the 9-keto C=O group of P(1), indicative of an unusually strong hydrogen bond, is discussed in relation with the models previously proposed for the PSI special pair.  相似文献   

10.
The biosynthesis of heme, a plant tetrapyrrole, was studied in the leaves of a chlorophyll-deficient plastome mutant of the sunflower (Helianthus annuus L, line 2-24, albina form). In the light, the content of 5-aminolevulinic acid (ALA) in white mutant leaves was, on the average, ten times less than in that of the wild-type form (line 3629). Chlorophyll content in mutant leaves comprised only 0.3% of that of control plants. The activities of Fe-chelatase and ALA dehydratase in the heme synthesis were either comparable to or even higher than those in the wild-type leaves. A normal respiration rate in white mutant leaves, the equal content of phytochrome apoproteins in plants of both types, and the lack of noticeable morphogenetic differences realized through the phytochrome system can indicate that mutant and wild-type leaves are similar in their levels of phytochrome and the cytochromes of mitochondrial respiration. Nevertheless, in the mutant, the content of heme noncovalently bound by apoproteins amounted to only one third of its content in the wild-type plants. It seems that a dramatic decrease in the capability of white leaves for chlorophyll biosynthesis and for the formation of the photosynthetic apparatus is responsible for a low demand for chloroplast cytochromes, which is the major cause of a reduced heme content in the mutant.  相似文献   

11.
Gravitropism in dark-grown hypocotyls of the wild type was compared with a starch-deficient Nicotiana sylvestris mutant (NS 458) to test the effects of starch deficiency on gravity sensing. In a time course of curvature measured using infrared video, the response of the mutant was greatly reduced compared to the wild type; 72 hours after reorientation, curvature was about 10° for NS 458 and about 70° for wild type. In dishes maintained in a vertical orientation, wild-type hypocotyls were predominantly vertical, whereas NS 458 hypocotyls were severely disoriented with about 5 times more orientational variability than wild type. Since the growth rates were equal for both genotypes and phototropic curvature was only slightly inhibited in NS 458, the mutation probably affects gravity perception rather than differential growth. Our data suggest that starch deficiency reduces gravitropic sensitivity more in dark-grown hypocotyls than in dark- or light-grown roots in this mutant and support the hypothesis that amyloplasts function as statoliths in shoots as well as roots.  相似文献   

12.
The ch4 mutant of sweetclover (Melilotus alba) has previously been demonstrated to be partially deficient in chlorophyll and to have a higher ratio of chlorophyll a to b than normal plants. We were able to substantiate these findings when plants were grown at 23°C and lower (permissive temperatures). However, when grown at 26°C (nonpermissive temperature) the plants produced small yellow leaves which exhibited one-twentieth the chlorophyll content of normal plants. Affected leaves did not increase their chlorophyll content when plants were incubated at permissive temperatures, but leaves which developed at the lower temperature contained increased amounts of chlorophyll. Similarly, only new leaves, not previously grown leaves, exhibited the yellow phenotype when the mutant plant was shifted from the permissive temperature to the nonpermissive temperature. Ribulose 1,5-bisphosphate carboxylase activity was decreased by half, relative to normal plants, in the mutant plants grown at the nonpermissive temperature, indicating that general protein synthesis was not greatly impaired and that the effect of the mutation was perhaps specific for chlorophyll content. HPLC analysis indicated that carotenoid content was not diminished to the same extent as chlorophyll and we have determined that the thylakoid protein kinase is not altered, as is the case for other chlorophyll b-deficient mutants. Experiments suggest that changes in photoperiod may be able to modulate the effect of temperature.  相似文献   

13.
A. Wild  K. -H. Fuldner 《Planta》1977,136(3):281-282
The ratio of Chlorophyll: Cytochrome f and of Chlorophyll: P700 (reaction center pigment in photosystem I) is essentially lower in chlorophyll-deficient mutants than in the normal green strain. On a dry weight basis, the mutants have the same or a higher content of redox enzymes than the normal form. The size of the photosynthetic unit of the mutants is 4 to 7 times smaller than that of the normal strains, due mainly to a deficiency of the light-harvesting chlorophyll-protein complex.Abbreviations Chl chlorophyll - Cyt f Cytochrome f - P700 reaction center pigment in photosystem I - PS photosystem - LH light-harvesting  相似文献   

14.
The fatty acid distributions at the sn-1 and sn-2 positions in major chloroplast lipids of Chlorella kessleri 11h, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), were determined to show the coexistence of both C16 and C18 acids at the sn-2 position, i.e. of prokaryotic and eukaryotic types in these galactolipids. For investigation of the biosynthetic pathway for glycerolipids in C. kessleri 11h, cells were fed with [14C]acetate for 30 min, and then the distribution of the radioactivity among glycerolipids and their constituent fatty acids during the subsequent chase period was determined. MGDG and DGDG were labeled predominantly as the sn-1-C18-sn-2-C16 (C18/C16) species as early as by the start of the chase, which suggested the synthesis of these lipids within chloroplasts via a prokaryotic pathway. On the other hand, the sn-1-C18-sn-2-C18 (C18/C18) species of these galactolipids gradually gained radioactivity at later times, concomitant with a decrease in the radioactivity of the C18/C18 species of phosphatidylcholine (PC). The change at later times can be explained by the conversion of the C18/C18 species of PC into galactolipids through a eukaryotic pathway. The results showed that C. kessleri 11h, distinct from most of other green algal species that were postulated mainly to use a prokaryotic pathway for the synthesis of chloroplast lipids, is similar to a group of higher plants designated as 16:3 plants in terms of the cooperation of prokaryotic and eukaryotic pathways to synthesize chloroplast lipids. We propose that the physiological function of the eukaryotic pathway in C. kessleri 11h is to supply chloroplast membranes with 18:3/18:3-MGDG for their functioning, and that the acquisition of a eukaryotic pathway by green algae was favorable for evolution into land plants.  相似文献   

15.
Light inhibited the growth and glucose consumption of colorlessmutant cells of Chlorella vulgaris (# 125). Sugar consumptionwas also inhibited in a medium containing a hexose such as D-fructose,D-galactose and D-mannose. Blue light strongly inhibited growth and glucose consumptionbut red light only slightly affected them. Respiration was notinhibited by blue light. The inhibitions of growth and glucoseconsumption were saturated at light intensities as low as 800mW.m–2 and continued in the dark for at least one dayafter brief illumination with white light. The half-maximumeffect was observed with 15 min of illumination in both casesand the action spectra for light-induced inhibitions of growthand glucose consumption were similar, both showing peaks at370, 457 and 640 nm. The role of light in the inhibitions of growth and glucose consumptionis discussed. (Received June 18, 1984; Accepted October 29, 1984)  相似文献   

16.
The fatty acid distributions at the sn-1 and sn-2 positions in major chloroplast lipids of Chlorella kessleri 11h, monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG), were determined to show the coexistence of both C16 and C18 acids at the sn-2 position, i.e. of prokaryotic and eukaryotic types in these galactolipids. For investigation of the biosynthetic pathway for glycerolipids in C. kessleri 11h, cells were fed with [14C]acetate for 30 min, and then the distribution of the radioactivity among glycerolipids and their constituent fatty acids during the subsequent chase period was determined. MGDG and DGDG were labeled predominantly as the sn-1-C18-sn-2-C16 (C18/C16) species as early as by the start of the chase, which suggested the synthesis of these lipids within chloroplasts via a prokaryotic pathway. On the other hand, the sn-1-C18-sn-2-C18 (C18/C18) species of these galactolipids gradually gained radioactivity at later times, concomitant with a decrease in the radioactivity of the C18/C18 species of phosphatidylcholine (PC). The change at later times can be explained by the conversion of the C18/C18 species of PC into galactolipids through a eukaryotic pathway. The results showed that C. kessleri 11h, distinct from most of other green algal species that were postulated mainly to use a prokaryotic pathway for the synthesis of chloroplast lipids, is similar to a group of higher plants designated as 16:3 plants in terms of the cooperation of prokaryotic and eukaryotic pathways to synthesize chloroplast lipids. We propose that the physiological function of the eukaryotic pathway in C. kessleri 11h is to supply chloroplast membranes with 18:3/18:3-MGDG for their functioning, and that the acquisition of a eukaryotic pathway by green algae was favorable for evolution into land plants.  相似文献   

17.
The time-course of induction of CO(2) and HCO(3)- transport has been investigated during the acclimation of high CO(2)-grown Chlorella kessleri cells to dissolved inorganic carbon (DIC)-limited conditions. The rate of photosynthesis of the cells in excess of the uncatalysed supply rate of CO(2) from HCO(3)- was taken as an indicator of HCO(3)- transport, while a stimulation of photosynthesis on the addition of bovine carbonic anhydrase was used as an indicator of CO(2) transport. The maximum rate of photosynthesis (Pmax) was similar for high CO(2)-grown and low CO(2)-grown cells, but the apparent whole cell affinity for DIC and CO(2) of high CO(2)-grown cells was found to be about 30-fold greater than in air-grown cells, which indicates a lower affinity for DIC and CO(2). It was found that HCO(3)- and CO(2) transport were induced in 5.5 h in cells acclimating to air in the light and in the presence and absence of 21% O(2), which indicates that a change in the CO(2)/O(2) ratio in the acclimating medium does not trigger induction of DIC transport. No active DIC transport was detected in high CO(2)-grown cells maintained on high CO(2) for 5.5 h in the presence of 5 mM aminooxyacetate, an aminotransferase inhibitor. These results indicate no involvement of photorespiration in triggering induction. Active DIC transport induction was inhibited in cells treated with 5 microgram ml(-1) cycloheximide, but was unaffected by chloramphenicol treatment, indicating that the induction process requires de novo cytoplasmic protein synthesis. The total DIC concentration eliciting the induction and repression of CO(2) and HCO(3)- transport was higher at pH 7.5 than at pH 6.6. The concentrations of external CO(2) required for the induction and repression of DIC transport were 0 and 120 microM, respectively, and was independent of the pH of the acclimation medium. Prolonged exposure to a critical external CO(2) concentration elicits the induction of DIC transport in C. kessleri.  相似文献   

18.
Dark-grown cells of the y-1 mutant of Chlamydomonas reinhardi contain a partially differentiated plastid lacking the photosynthetic lamellar system. When exposed to the light, a rapid synthesis of photosynthetic membranes occurs accompanied by synthesis of chlorophyll, lipids, and protein and extensive degradation of the starch reserve. The process is continuously dependent on illumination and is completed within 6–8 hr in the absence of cell division. Photosynthetic activity (O2 evolution, Hill reaction, NADP photo-reduction, and cytochrome f photooxidation) parallels the synthesis of pigment and membrane formation. During the greening process, only slight changes occur in the levels of soluble enzymes associated with the photosynthetic process (RuDP-carboxylase, NADP-linked G-3-P dehydrogenase, alkaline FDPase (pH 8)) as compared with the dark control. Also cytochrome f concentration remains almost constant during the greening process. The kinetics of the synthesis of chlorophyll, formation of photosynthetic membranes, and the restoration of photosynthetic activity suggest that the membranes are assembled from their constituents in a single-step process.  相似文献   

19.
A chlorophyll-less mutant, YG-6, was produced by UV treatmentof the wild strain of Chlorella regularis (S-50). Cells grownfor 3 days in darkness showed a red absorption maximum at 634nm and a shoulder near 650 nm, indicative of the accumulationof at least two spectral forms of protochlorophyll(ide). Protochlorophyllide(Pchlide), and one species only of Pchlide ester, protochlorophyllesterified with geranylgeraniol (Pchl GG) were separated, thelatter with absorption maxima in diethyl ether at 438, 574 and624 nm. Spectroscopically, Pchl GG was identical with divinyl-protochlorophyll.The content of Pchlide was 10 to 13 times that of Pchl GG. Bothpaper and high-performance liquid chromatography showed thephototransformation of Pchlide, but no Pchl GG was present.This suggests that Pchl GG is not a direct precursor of chlorophylla esterified with geranylgeraniol. (Received June 4, 1983; Accepted November 11, 1983)  相似文献   

20.
G Hastings  V M Ramesh  R Wang  V Sivakumar  A Webber 《Biochemistry》2001,40(43):12943-12949
Light-induced Fourier transform infrared (FTIR) difference spectroscopy has been used to study the photo-oxidation of the primary electron donor (P700) in PS I particles from Chlamydomonas reinhardtii and Synechocystis sp. PCC 6803. To aid in the interpretation of the spectra, PS I particles from a site-directed mutant of C. reinhardtii, in which the axial histidine ligand (HisA676) was changed to serine, were also studied. A high-frequency (3300-2600 cm(-1)) electronic transition is observed for all PS I particles, demonstrating that P700 is dimeric. The electronic band is, however, species-dependent, indicating some differences in the electronic structure of P700 and/or P700(+) in C. reinhardtii and Synechocystis sp. 6803. For PS I particles from C. reinhardtii, substitution of HisA676 with serine has little effect on the ester carbonyl modes of the chlorophylls of P700. However, the keto carbonyl modes are considerably altered. Comparison of (P700(+) - P700) FTIR difference spectra obtained using PS I particles from the wild type (WT) and the HS(A676) mutant of C. reinhardtii indicates that the mutation primarily exerts its influence on the P700 ground state. The 13(1) keto carbonyls of the chlorophylls of P700 of the wild type absorb at similar frequencies, which has previously made these transitions difficult to resolve. However, for the HS(A676) mutant, the 13(1) keto carbonyl of chlorophyll a or chlorophyll a' of P700 on PsaB or PsaA absorbs at 1703.4 or 1694.2 cm(-1), respectively, allowing their unambiguous resolution. Upon P700(+) formation, in both PS I particles from C. reinhardtii, the higher-frequency carbonyl band upshifts by approximately 14 cm(-1) while the lower frequency carbonyl downshifts by approximately 10 cm(-1). The similarity in the spectra for WT PS I particles from C. reinhardtii and Synechocystis sp. 6803 indicates that a similar interpretation is probably valid for PS I particles from both species. The mutant results allow for an interpretation of the behavior of the 13(1) keto carbonyls of P700 that is different from previous work [Breton, J., Nabedryk, E., and Leibl, W. (1999) Biochemistry 38, 11585-11592], in which it was suggested that 13(1) keto carbonyls of P700 absorb at 1697 and 1639 cm(-1), and upshift by 21 cm(-1) upon cation formation. The interpretation of the spectra reported here is more in line with recent results from ENDOR spectroscopy and high-resolution crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号