首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A xanthosine-inducible enzyme, inosine-guanosine phosphorylase, has been partially purified from a strain of Escherichia coli K-12 lacking the deo-encoded purine nucleoside phosphorylase. Inosine-guanosine phosphorylase had a particle weight of 180 kilodaltons and was rapidly inactivated by p-chloromercuriphenylsulfonic acid (p-CMB). The enzyme was not protected from inactivation by inosine (Ino), 2'-deoxyinosine (dIno), hypoxanthine (Hyp), Pi, or alpha-D-ribose-1-phosphate (Rib-1-P). Incubating the inactive enzyme with dithiothreitol restored the catalytic activity. Reaction with p-CMB did not affect the particle weight. Inosine-guanosine phosphorylase was more sensitive to thermal inactivation than purine nucleoside phosphorylase. The half-life determined at 45 degrees C between pH 5 and 8 was 5 to 9 min. Phosphate (20 mM) stabilized the enzyme to thermal inactivation, while Ino (1 mM), dIno (1 mM), xanthosine (Xao) (1 mM), Rib-1-P (2 mM), or Hyp (0.05 mM) had no effect. However, Hyp at 1 mM did stabilize the enzyme. In addition, the combination of Pi (20 mM) and Hyp (0.05 mM) stabilized this enzyme to a greater extent than did Pi alone. Apparent activation energies of 11.5 kcal/mol and 7.9 kcal/mol were determined in the phosphorolytic and synthetic direction, respectively. The pH dependence of Ino cleavage or synthesis did not vary between 6 and 8. The substrate specificity, listed in decreasing order of efficiency (V/Km), was: 2'-deoxyguanosine, dIno, guanosine, Xao, Ino, 5'-dIno, and 2',3'-dideoxyinosine. Inosine-guanosine phosphorylase differed from the deo operon-encoded purine nucleoside phosphorylase in that neither adenosine, 2'-deoxyadenosine, nor hypoxanthine arabinoside were substrates or potent inhibitors. Moreover, the E. coli inosine-guanosine phosphorylase was antigenically distinct from the purine nucleoside phosphorylase since it did not react with any of 14 monoclonal antisera or a polyvalent antiserum raised against deo-encoded purine nucleoside phosphorylase.  相似文献   

2.
Some properties of hexameric purine nucleoside phosphorylase II (EC 2.4.2.1) from Escherichia coli K-12 were studied. The enzyme obeys the Michaelis-Menten kinetics with respect to purine substrates (Km for inosine, deoxyinosine and hypoxanthine are equal to 492, 106 and 26.6 microM, respectively) and exhibits negative kinetic cooperativity towards phosphate and ribose-1-phosphate. The Hill coefficient is equal to approximately 0.5 for both substrates. Hexameric purine nucleoside phosphorylase II is not a metal-dependent enzyme; its activity is inhibited by Cu2+, Zn2+, Ni2+ and SO4(2-). The enzyme is the most stable at pH 6.0; it contains essential thiol groups. All substrates partly protect the enzyme against inactivation by 5.5'-dithiobis(2-nitrobenzoic acid) and heat-inactivation and, with the exception of phosphate-against inactivation by p-chloromercuribenzoate. Hypoxanthine, especially in combination with phosphate, afford the best protection against inactivation.  相似文献   

3.
1. The partial purification of purine nucleoside phosphorylase from rabbit erythrocytes is described. 2. Analytical and preparative isoelectric focusing gave a pI value for the enzyme of 4.65. 3. Gel-chromatography and sucrose-density-gradient-centrifugation techniques gave estimates of the molecular weight in the range 75000-83000. 4. Lineweaver-Burk plots of kinetic data were non-linear at high inosine concentrations. Extrapolation of the linear part of such plots yielded a Km value for inosine of about 70 micrometer for the rabbit erythrocyte and liver enzymes. 5. A Hill interaction coefficient of 0.75 was obtained, suggesting negative co-operativity with respect to the binding of inosine. 6. Treatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoic acid) caused partial inactivation, and subsequent Lineweaver-Burk plots with inosine as substrate displayed complete linearity, with an increase in Km value for inosine to 200 micrometer. 7. Starch-gel electrophoresis did not reveal the presence of secondary isoenzymes; all tissue extracts examined gave electrophoretic patterns similar to those obtained with the partially purified enzyme from erythrocytes. 8. Results of hybridization studies with nucleoside phosphorylase from human foetal liver suggest that the rabbit enzyme is also a trimer.  相似文献   

4.
The intraerythrocytic human malaria parasite, Plasmodium falciparum, requires a source of hypoxanthine for nucleic acid synthesis and energy metabolism. Adenosine has been implicated as a major source for intraerythrocytic hypoxanthine production via deamination and phosphorolysis, utilizing adenosine deaminase and purine nucleoside phosphorylase, respectively. To study the expression and characteristics of human malaria purine nucleoside phosphorylase, P. falciparum was successfully cultured in purine nucleoside phosphorylase-deficient human erythrocytes to an 8% parasitemia level. Purine nucleoside phosphorylase activity was undetectable in the uninfected enzyme-deficient host red cells but after parasite infection rose to 1.5% of normal erythrocyte levels. The parasite purine nucleoside phosphorylase was not cross-reactive with antibody against human enzyme, exhibited a calculated native molecular weight of 147,000, and showed a single major electrophoretic form of pI 5.4 and substrate specificity for inosine, guanosine and deoxyguanosine but not xanthosine or adenosine. The Km values for substrates, inosine and guanosine, were 4-fold lower than that for the human erythrocyte enzyme. In these studies we have identified two novel potent inhibitors of both human erythrocyte and parasite purine nucleoside phosphorylase, 8-amino-5'-deoxy-5'-chloroguanosine and 8-amino-9-benzylguanine. These enzyme inhibitors may have some antimalarial potential by limiting hypoxanthine production in the parasite-infected erythrocyte.  相似文献   

5.
S J Salamone  F Jordan 《Biochemistry》1982,21(25):6383-6388
The synthesis of two potential arginine-directed purine-based analogues, 6-chloro-9-(3,4-dioxopentyl)purine (6) and 9-(3,4-dioxopentyl)hypoxanthine (7), is reported. Compound 7 was extensively tested as a potential affinity label of purine nucleoside phosphorylase (EC 2.4.2.1) from human erythrocytes. Evidence that 7 reacted with the catalytic center of purine nucleoside phosphorylase includes the following: (1) time-dependent inactivation of the enzyme by 7 was observed; (2) a plot of the pseudo-first-order rate constant for inactivation of the enzyme vs. concentration of 7 was hyperbolic, characteristic of saturation phenomenon; (3) substrates (Pi, arsenate, inosine) and a competitive inhibitor (formycin B) protected the enzyme from inactivation by 7. Compound 7 was 25 times more effective in inhibiting purine nucleoside phosphorylase than butanedione. Evidence that 7 modified arginine(s) includes the following: (1) when the inactivation was performed in borate, both the rate and the extent of inactivation were enhanced compared to those of the controls run in tris(hydroxymethyl)aminomethane hydrochloride (Tris-HCl) buffer; (2) dialysis of inactivator reversed the inactivation in Tris-HCl but not in borate buffer. All the above evidence combined with the previous demonstration [Jordan, F., & Wu, A. (1978) Arch. Biochem. Biophys. 190, 699-704] that butanedione modified only arginines in purine nucleoside phosphorylases and the results presented here demonstrating the similarities in the behavior of butanedione and 7 imply that compound 7 can be called an arginine-directed affinity label for purine nucleoside phosphorylase.  相似文献   

6.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is allosterically regulated. With the substrate inosine the enzyme displayed complex kinetics: positive cooperativity vs inosine when this substrate was close to physiological concentrations, negative cooperativity at inosine concentrations greater than 60 microM, and substrate inhibition at inosine greater than 1 mM. No cooperativity was observed with the alternative substrate, guanosine. The activity of purine nucleoside phosphorylase toward the substrate inosine was sensitive to the presence of reducing thiols; oxidation caused a loss of cooperativity toward inosine, as well as a 10-fold decreased affinity for inosine. The enzyme also displayed negative cooperativity toward phosphate at physiological concentrations of Pi, but oxidation had no effect on either the affinity or cooperativity toward phosphate. The importance of reduced cysteines on the enzyme is thus specific for binding of the nucleoside substrate. The enzyme was modestly inhibited by the pyrimidine nucleotides CTP (Ki = 118 microM) and UTP (Ki = 164 microM), but showed greater sensitivity to 5-phosphoribosyl-1-pyrophosphate (Ki = 5.2 microM).  相似文献   

7.
1. Concave-downward double-reciprocal plots were obtained for rabbit erythrocyte purine nucleoside phosphorylase when the concentration of Pi was varied over a wide range at a fixed saturating concentration of either inosine or deoxyinosine. Similar behaviour was also displayed by the calf spleen enzyme. 2. The degree of curvature of double-reciprocal plots was greatly modified by the presence of SO42-, introduced into the assay mixture with the linking enzyme xanthine oxidase; competitive inhibition by SO42- was observed over a narrow range of high Pi concentrations. 3. Partial inactivation with 5,5'-dithiobis-(2-nitrobenzoic acid) resulted in a marked alteration in the kinetic properties of the enzyme when Pi was the variable substrate. 4. Initial-velocity data are expressed in the form of Hill plots, and the significance of such plots is discussed.  相似文献   

8.
1. Purine nucleoside phosphorylase (purine nucleoside:orthophosphate ribosyltransferase, E.C. 2.4.2.1) from liver of cattle, Bos taurus, was purified to homogeneity. Some properties of the enzymes from three different bovine tissues were compared and discussed. 2. The enzyme has a molecular weight of 83,000, a sedimentation coefficient of 5.3 S, a Stokes' radius of 3.71 nm, a frictional ratio of 1.30 and a subunit molecular weight of 30,000. 3. Optimal pH for xanthosine degradation is around 5.5, whereas a broad pH activity profile for inosine degradation was observed between 5.0 and 7.5. Lineweaver-Burk plots curved downward at high concentrations of substrates, inosine, phosphate and arsenate.  相似文献   

9.
1. Double reciprocal plots (1/v vs 1/S) for nucleoside substrates of chicken liver purine nucleoside phosphorylase were non linear at high inosine or deoxyinosine concentrations (greater than 0.1 mM). The appearance of downward curvatures may be correlated with the oxidation of sulfhydryl groups of the enzyme. 2. 5,5'-Dithiobis-(2-nitrobenzoic acid) reacts with four sulfhydryl groups in the native enzyme, but upon denaturation with sodium dodecylsulfate six sulfhydryl groups react with this reagent. 3. Inosine, ribose-1-phosphate, hypoxanthine and orthophosphate partially protect sulfhydryl groups from the reaction with Ellman's reagent. 4. Inhibition of purine nucleoside phosphorylase by p-chloromercuribenzoate and 5,5'-dithiobis-(2-nitrobenzoic acid) follows a second order reaction kinetics.  相似文献   

10.
We report here the characterization of the first mammalian-like purine nucleoside phosphorylase from the hyperthermophilic archaeon Pyrococcus furiosus (PfPNP). The gene PF0853 encoding PfPNP was cloned and expressed in Escherichia coli and the recombinant protein was purified to homogeneity. PfPNP is a homohexamer of 180 kDa which shows a much higher similarity with 5'-deoxy-5'-methylthioadenosine phosphorylase (MTAP) than with purine nucleoside phosphorylase (PNP) family members. Like human PNP, PfPNP shows an absolute specificity for inosine and guanosine. PfPNP shares 50% identity with MTAP from P. furiosus (PfMTAP). The alignment of the protein sequences of PfPNP and PfMTAP indicates that only four residue changes are able to switch the specificity of PfPNP from a 6-oxo to a 6-amino purine nucleoside phosphorylase still maintaining the same overall active site organization. PfPNP is highly thermophilic with an optimum temperature of 120 degrees C and is characterized by extreme thermodynamic stability (T(m), 110 degrees C that increases to 120 degrees C in the presence of 100 mm phosphate), kinetic stability (100% residual activity after 4 h incubation at 100 degrees C), and remarkable SDS-resistance. Limited proteolysis indicated that the only proteolytic cleavage site is localized in the C-terminal region and that the C-terminal peptide is not necessary for the integrity of the active site. By integrating biochemical methodologies with mass spectrometry we assigned three pairs of intrasubunit disulfide bridges that play a role in the stability of the enzyme against thermal inactivation. The characterization of the thermal properties of the C254S/C256S mutant suggests that the CXC motif in the C-terminal region may also account for the extreme enzyme thermostability.  相似文献   

11.
L J Gudas  B Ullman  A Cohen  D W Martin 《Cell》1978,14(3):531-538
The absence of either of the enzymes adenosine deaminase (ADA) or purine nucleoside phosphorylase is associated with an immunodeficiency disease. Because all four nucleoside substrates of the enzyme purine nucleoside phosphorylase accumulate in the urine of patients who lack this enzyme (Cohen et al., 1976), we examined the toxicity of each of the four substrates using a mouse T cell lymphoma (S49) in continuous culture. Of the four substrates (inosine, deoxyinosine, guanosine and deoxyguanosine), only deoxyguanosine is cytotoxic at concentrations lower than 100 μM; furthermore, only deoxyguanosine is directly phosphorylated in S49 cells. Mutant S49 cells lacking deoxycytidine kinase (EC 2.7.1.74) are resistant to the toxic effects of deoxyguanosine, and these same mutants do not phosphorylate deoxyguanosine. Thus the cytotoxicity of exogenous deoxyguanosine correlates with the intracellular concentration of accumulated deoxyGTP.The addition of deoxyguanosine results in the depletion of deoxyCTP in S49 cells, indicating that deoxyGTP is an inhibitor of ribonucleotide reductase. Furthermore, the addition of deoxycytidine prevents the toxic effects of deoxyguanosine. Thus a therapy for purine nucleoside phosphorylase-deficient patients might include deoxycytidine to alleviate the proposed deoxyCTP starvation in those tissues capable of phosphorylating deoxyguanosine.  相似文献   

12.
Treatment of purine nucleoside phosphorylase (EC 2.4.2.1), from either calf spleen or human erythrocytes, with 2,3-butanedione in borate buffer or with phenylglyoxal in Tris buffer markedly decreased the enzyme activity. At pH 8.0 in 60 min, 95% of the catalytic activity was destroyed upon treatment with 33 mM phenylglyoxal and 62% of the activity was lost with 33 mm 2,3-butanedione. Inorganic phosphate, ribose-1-phosphate, arsenate, and inosine when added prior to chemical modification all afforded protection from inactivation. No apparent decrease in enzyme catalytic activity was observed upon treatment with maleic anhydride, a lysine-specific reagent. Inactivation of electrophoretically homogeneous calf-spleen purine nucleoside phosphorylase by butanedione was accompanied by loss of arginine residues and of no other amino acid residues. A statistical analysis of the inactivation data vis-à-vis the fraction of arginines modified suggested that one essential arginine residue was being modified.  相似文献   

13.
Purine nucleoside phosphorylase (EC 2.4.2.1) from bovine spleen is a trimeric enzyme that readily dissociates to the monomer. Dilution of enzyme from 20 to 0.02 microgram of protein/ml is accompanied by a greater than 50-fold increase in the specific activity (vtrimer = 0.23 nmol/min/microgram; vmonomer = 12.5 nmol/min/micrograms). Gel permeation chromatography in the presence of the substrate phosphate shows the enzyme to be predominantly trimeric at 50 mM Pi and predominantly monomeric at 100 mM Pi, when experiments are done at 24 degrees C. No significant dissociation was observed at 4 degrees C with Pi or at either temperature with the substrate inosine. As measured by dissociation, the L0.5 for Pi is 88 mM and thus significantly higher than the Km of 3.1 mM for Pi. Enzyme activity as a function of phosphate concentration showed negative cooperativity, but the conformational response measured by the change in native Mr during dissociation showed positive cooperatively toward Pi. These data support a model for two separate phosphate binding sites on the enzyme. The activity and stability of purine nucleoside phosphorylase are quite sensitive to the concentration of the enzyme as well as appropriate substrates. Although the monomer is interpreted as being a fully active form of the enzyme, the data in general are most consistent with the enzyme functioning in vivo as a regulated trimer.  相似文献   

14.
We have studied the turnover and synthesis of purine nucleoside phosphorylase by using a polyclonal rabbit antiserum to this protein. The turnover of purine nucleoside phosphorylase was studied in the B lymphoblast cell, WI-L2, by specific immunoprecipitation of [3H]leucine-labeled proteins. The half-lives for total protein and purine nucleoside phosphorylase were 14.5 and 14.1 hr, respectively. For cells cultured in the presence of inosine the half-life of purine nucleoside phosphorylase was reduced to 11.2 hr. The synthesis of purine nucleoside phosphorylase was analyzed during phytohemagglutinin-stimulated T cell transformation by pulse labeling cells with [35S]methionine. Purine nucleoside phosphorylase synthesis increased greater than 10-fold during the first 12 hr of transformation and continued to a maximum of 30-fold. The relative rate of purine nucleoside phosphorylase labeled to total proteins was 0.04% in unstimulated T cells and increased to 0.18% 12 hr after stimulation. These studies identify some preferential synthesis of purine nucleoside phosphorylase during the early stages of T cell transformation.  相似文献   

15.
Purine-requiring mutants of Salmonella typhimurium LT2 containing additional mutations in either adenosine deaminase or purine nucleoside phosphorylase have been constructed. From studies of the ability of these mutants to utilize different purine compounds as the sole source of purines, the following conclusions may be drawn. (i) S. typhimurium does not contain physiologically significant amounts of adenine deaminase and adenosine kinase activities. (ii) The presence of inosine and guanosine kinase activities in vivo was established, although the former activity appears to be of minor significance for inosine metabolism. (iii) The utilization of exogenous purine deoxyribonucleosides is entirely dependent on a functional purine nucleoside phosphorylase. (iv) The pathway by which exogenous adenine is converted to guanine nucleotides in the presence of histidine requires a functional purine nucleoside phosphorylase. Evidence is presented that this pathway involves the conversion of adenine to adenosine, followed by deamination to inosine and subsequent phosphorolysis to hypoxanthine. Hypoxanthine is then converted to inosine monophosphate by inosine monophosphate pyrophosphorylase. The rate-limiting step in this pathway is the synthesis of adenosine from adenine due to lack of endogenous ribose-l-phosphate.  相似文献   

16.
1. Purine nucleoside phosphorylase (purine nucleoside:orthophosphate ribosyl transferase, EC 2.4.2.1) was purified to electrophoretic homogeneity from the liver of Camelus dromedarius. 2. The enzyme appears to be a dimer with a 44,000 subunit mol. wt and displays non-linear kinetics with concave downward curvature in double reciprocal plots with respect to both inosine and orthophosphate as variable substrates. 3. The effect of thiol compounds on the enzyme activity and of pH on kinetic parameters is reported.  相似文献   

17.
M Surette  T Gill    S MacLean 《Applied microbiology》1990,56(5):1435-1439
Purine nucleoside phosphorylase was isolated and purified from cell extracts of Proteus vulgaris recovered from spoiling cod fish (Gadus morhua). The molecular weight and isoelectric point of the enzyme were 120,000 +/- 2,000 and pH 6.8. The Michaelis constant for inosine as substrate was 3.9 x 10(-5). Guanosine also served as a substrate (Km = 2.9 x 10(-5). However, the enzyme was incapable of phosphorylizing adenosine. Adenosine proved to be useful as a competitive inhibitor and was used as a ligand for affinity chromatography of purine nucleoside phosphorylase following initial purification steps of gel filtration and ion-exchange chromatography.  相似文献   

18.
Summary The presence of a second purine nucleoside phosphorylase in wild-type strains of E. coli K-12 after growth on xanthosine has been demonstrated. Like other purine nucleoside phosphorylases it is able to carry out both phosphorylosis and synthesis of purine deoxy- and ribonucleosides whilst pyrimidine nucleosides cannot act as substrates. In contrast to the well characterised purine nucleoside phosphorylase of E. coli K-12 (encoded by the deoD gene) this new enzyme could act on xanthosine and is hence called xanthosine phosphorylase. Studies of its substrate specificity showed that xanthosine phosphorylase, like the mammalian purine nucleoside phosphorylases, has no activity towards adenine and the corresponding nucleosides. Determinations of K m and gel filtration behaviour was carried out on crude dialysed extracts. The presence of xanthosine phosphorylase enables E. coli to grow on xanthosine as carbon source. Xanthosine was the only compound found which induced xanthosine phosphorylase. No other known nucleoside catabolising enzyme was induced by xanthosine. The implications of non-linear induction kinetics of xanthosine phosphorylase is discussed.  相似文献   

19.
Purine nucleoside metabolism in the archaeon Pyrococcus furiosus is catalyzed by purine nucleoside phosphorylase (PfPNP) and 5'-deoxy-5'-methylthioadenosine phosphorylase (PfMTAP). These enzymes, characterized by 50% amino acid sequence identity, show non-common features of thermophilicity and thermostability and are stabilized by intramolecular disulfide bonds. PfPNP is highly specific for 6-oxopurine nucleosides while PfMTAP is characterized by a broad substrate specificity with 6-aminopurine nucleosides as preferred substrates. Amino acid sequence comparison clearly shows that the hypothetical active sites of PfPNP and PfMTAP are almost identical and that, in analogy with human 5'-deoxy-5'-methylthioadenosine phosphorylase and human purine nucleoside phosphorylase, residue changes at level of the same crucial positions could be responsible for the switch of substrate specificity. To validate this hypothesis we changed the putative active site of PfPNP by site-directed mutagenesis. Substrate specificity and catalytic efficiency of PfPNP mutants were then analyzed by kinetic studies and compared with the wild-type enzyme. We carried out the molecular modeling of PfPNP and PfMTAP to obtain a picture of the overall enzyme structure and to identify structural features as well as interactions playing critical roles in thermostability. Finally, we utilized the structural models of mutant enzyme-substrate complex to rationalize the functional effects of the mutations.  相似文献   

20.
Crithidia fasciculata cells grown on complex medium with added [8-14C, 5'-3H]inosine or [8-14C,5'-3H]adenosine metabolize greater than 50% of the salvaged nucleosides through a pathway involving N-glycoside bond cleavage. Cell extracts contain a substantial nucleoside hydrolase activity but an insignificant purine nucleoside phosphorylase. The nucleoside hydrolase has been purified 1000-fold to greater than 99% homogeneity from kilogram quantities of C. fasciculata. The enzyme is a tetramer of Mr 34,000 subunits to give an apparent holoenzyme Mr of 143,000 by gel filtration. All of the commonly occurring nucleosides are substrates. The Km values vary from 0.38 to 4.7 mM with purine nucleosides binding more tightly than the pyrimidines. Values of Vmax/Km vary from 3.4 x 10(3) M-1 s-1 to 1.7 x 10(5) M-1 s-1 with the pyrimidine nucleosides giving the larger values. The turnover rate for inosine is 32 s-1 at 30 degrees C. The kinetic mechanism with inosine as substrate is rapid equilibrium with random product release. The hydrolytic reaction can be reversed to give an experimental Keq of 106 M with H2O taken as unity. The product dissociation constants for ribose and hypoxanthine are 0.7 and 6.2 mM, respectively. Deoxynucleosides or 5'-substituted nucleosides are poor substrates or do not react, and are poor inhibitors of the enzyme. The enzyme discriminates against methanol attack from solvent during steady-state catalysis, indicating the participation of an enzyme-directed water nucleophile. The pH profile for inosine hydrolysis gives two apparent pKa values of 6.1 with decreasing Vmax/Km values below the pKa and a plateau at higher pH values. These effects are due to the pH sensitivity of the Vmax values, since Km is independent of pH. The pH profile implicates two negatively charged groups which stabilize a transition state with oxycarbonium character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号