首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resolution of social conflict in colonies may accord with the interests of the most numerous party. In social insect colonies with single once-mated queens, workers are more closely related to the workers' sons than they are to the queens' sons. Therefore, they should prefer workers to produce males, against the queen's interests. Workers are capable of producing males as they arise from unfertilized eggs. We found Polistes gallicus to have colonies of single, once-mated queens, as determined by microsatellite genotyping of the workers, so worker interests predict worker male production. In colonies lacking queens, workers produced the males, but not in colonies with original queens. Thus worker interests were expressed only when the queen was gone. The high fraction of missing queens and early end to the colony cycle relative to climate so early in the season is surprising and may indicate a forceful elimination of the queen.  相似文献   

2.
Kin selection theory has received some of its strongest support from analyses of within-colony conflicts between workers and queens in social insects. One of these conflicts involves the timing of queen production. In neotropical wasps, new queens are only produced by colonies with just one queen while males are produced by colonies with more queens, a pattern favoured by worker interests. We now show that new colonies, or swarms, have few queens and variable within-colony relatednesses which means that their production is not tied to new queen production. The queens in these swarms are seldom the mothers of the workers in the swarm. Therefore, either colonies producing swarms have very many queens, or queens joining daughter swarms are reproductive losers on the original colonies. As new colony production is not linked to queen production, it can occur at the ecologically optimum time, i.e. the rainy season. This disassociation between queen production and new colony production allows worker interests in sex ratios to prevail without hampering new colony production at the most favourable season, an uncoupling that may contribute to the ecological success of the Epiponini.  相似文献   

3.
Social insect colonies provide model systems for the examination of conflicts among parties with different genetic interests. As such, they have provided the best tests of inclusive fitness theory. However, much remains unknown about in which party's favour such conflicts are resolved, partly as a result of the only recent advent of the molecular tools needed to examine the outcome of these conflicts. Two key conflicts in social insect colonies are over control of the reproductive sex ratio and the production of male offspring. Most studies have examined only one of these conflicts but in reality they occur in tandem and may influence each other. Using microsatellite analyses, the outcome of conflict over sex ratios and male production was examined in the bumble bee, Bombus hypnorum. The genotypes were determined for mother queens, their mates and males for each of 10 colonies. In contrast to other reports of mating frequency in this species, all of the queens were singly mated. The population sex ratio was consistent with queen control, suggesting that queens are winning this conflict. In contrast, workers produced over 20% of all males in queen-right colonies, suggesting that they are more effective in competing over male-production. Combining these results with previous work, it is suggested that worker reproduction is a labile trait that may well impose only small costs on queen fitness.  相似文献   

4.
In polygynous (multiple queens per nest) colonies of socialinsects, queens can increase their reproductive share by layingmore eggs or by increasing the proportion of eggs that developinto reproductive individuals instead of workers. We used polymorphicmicrosatellite loci to determine the genetically effective contributionof queens to the production of gynes (new queens), males, and2 different cohorts of workers in a polygynous population ofthe ant Formica exsecta. For this purpose, we developed a newmethod that can be used for diploid and haplodiploid organismsto quantify the degree of reproductive specialization amongbreeders in societies where there are too many breeders to ascertainparentage. Using this method, we found a high degree of reproductivespecialization among nest-mate queens in both female- and male-producingcolonies (sex ratio is bimodally distributed in the study population).For example, a high effective proportion of queens (25% and79%, respectively) were specialized in the production of malesin female- and male-producing colonies. Our analyses furtherrevealed that in female-producing colonies, significantly fewerqueens contributed to gyne production than to worker production.Finally, we found significant changes in the identity of queenscontributing to different cohorts of workers. Altogether, thesedata demonstrate that colonies of F. exsecta, and probably thoseof many other highly polygynous social insect species, are composedof reproductive individuals differing in their investment togynes, males, and workers. These findings demonstrate a newaspect of the highly dynamic social organization of complexanimal societies.  相似文献   

5.
We estimated queen mating frequency, genetic relatedness among workers, and worker reproduction in Vespa crabro flavofasciata using microsatellite DNA markers. Of 20 colonies examined, 15 contained queens inseminated by a single male, 3 colonies contained queens inseminated by two males, and 2 colonies contained queens inseminated by three males. The genetic relatedness among workers was estimated to be 0.73±0.003 (mean±SE). For this high relatedness, kin selection theory predicts a potential conflict between queens and workers over male production. To verify whether males are derived from queens or workers, 260 males from 13 colonies were genotyped at four microsatellite loci. We found that all of the males were derived from the queens. This finding was further supported by the fact that only 33 of 2,990 workers dissected had developed ovaries. These workers belonged to 2 of the 20 colonies. There was no relationship between queen mating frequency and worker reproduction, and no workers produced male offspring in any of the colonies. These results suggest that male production dominated by queens in V. crabro flavofasciata is possibly due to worker policing.  相似文献   

6.
In social insect colonies, male production may involve conflicts over the sex ratio, worker vs. queen reproduction, and each queen's contribution to the males when there are multiple queens. We examined male production in the swarm‐founding, multiple‐queened wasp, Polybioides tabidus, for which previous work suggested worker control of the sex ratios. We found that queens produced the males in accord with the collective worker preference. We also found that diploid males were produced, but only in association with haploid males. Simulations show they should have been produced in other colonies as well and their absence indicates that they were killed in some of these other colonies. The pattern of their removal indicates that P. tabidus cannot distinguish diploid from haploid males, and that haploid males would have been removed from these colonies too. This provides evidence that the workers are able to manipulate male production when collective preferences dictate.  相似文献   

7.
Understanding which parties regulate reproduction is fundamental to understanding conflict resolution in animal societies. In social insects, workers can influence male production and sex ratio. Surprisingly, few studies have investigated worker influence over which queen(s) reproduce(s) in multiple queen (MQ) colonies (skew), despite skew determining worker-brood relatedness and so worker fitness. We provide evidence for worker influence over skew in a functionally monogynous population of the ant Leptothorax acervorum. Observations of MQ colonies leading up to egg laying showed worker aggressive and non-aggressive behaviour towards queens and predicted which queen monopolized reproduction. In contrast, among-queen interactions were rare and did not predict queen reproduction. Furthermore, parentage analysis showed workers favoured their mother when present, ensuring closely related fullsibs (average r = 0.5) were reared instead of less related offspring of other resident queens (r ≤ 0.375). Discrimination among queens using relatedness-based cues, however, seems unlikely as workers also biased their behaviour in colonies without a mother queen. In other polygynous populations of this species, workers are not aggressive towards queens and MQs reproduce, showing the outcome of social conflicts varies within species. In conclusion, this study supports non-reproductive parties having the power and information to influence skew within cooperative breeding groups.  相似文献   

8.
Social insect queens reproduce while workers generally do not. Queens may also have other behavioural roles in the colony. In small, independent-founding colonies of social wasps, the dominant queen physically enforces her interests over those of the workers and serves as a pacemaker of the colony, stimulating workers to forage and engage in other tasks. By contrast, in large-colony, swarm-founding wasps, the collective interests of the workers are fulfilled in sex allocation and production of males, whether or not they coincide with the interests of the queens. The behavioural role of the queens in such species has not been extensively studied. We investigated the role of the queens both in regulating worker activity and in reducing the numbers of reproductively active queens in the swarm-founding epiponine wasp Parachartergus colobopterus. We found no evidence that queens regulate worker activity, as they were rarely involved in any interactions. Worker activity may be self-organized, without centralized active control by anyone. Furthermore, we found no evidence that the reduction in queen number characteristic of this tribe of wasps occurs in response to aggression among queens. The reduction in queen number may be a result of worker treatment of queens, although worker discrimination against some queens was not obvious in our data. i Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

9.
Polygyny and polyandry in small ant societies   总被引:1,自引:1,他引:0  
Social insects, ants in particular, show considerable variation in queen number and mating frequency resulting in a wide range of social structures. The dynamics of reproductive conflicts in insect societies are directly connected to the colony kin structure, thus, the study of relatedness patterns is essential in order to understand the evolutionary resolution of these conflicts. We studied colony kin structure and mating frequencies in two closely related Neotropical ant species Pachycondyla inversa and Pachycondyla villosa. These represent interesting model systems because queens found new colonies cooperatively but, unlike many other ant species, they may still co-exist when the colony becomes mature (primary polygyny). By using five specific and highly variable microsatellite markers, we show that in both species queens usually mate with two or more males and that cofounding queens are always unrelated. Polygynous and polyandrous colonies are characterized by a high genetic diversity, with a mean relatedness coefficient among worker nestmates of 0.27 (+/- 0.03 SE) for P. inversa and 0.31 (+/- 0.05 SE) for P. villosa. However, relatedness among workers of the same matriline is high (0.60 +/- 0.03 in P. inversa, 0.62 +/- 0.08 in P. villosa) since males that mated with the same queen are on average closely related. Hence, we have found a new taxon in social Hymenoptera with high queen-mating frequencies and with intriguing mating and dispersal patterns of the sexuals.  相似文献   

10.
Summary In the polyandrous honey bee, Apis mellifera, workers can potentially increase their inclusive fitness by rearing full-sister queens. If the mother queen dies suddenly, workers feed a few larvae in worker cells with royal jelly and rear them into queens (emergency queen rearing). Using DNA microsatellite markers we determined the patriline of emergency queens reared in two colonies headed by naturally-mated queens before being made queenless. We found that some patrilines were reared more than others in one colony, but not in the other. These differences between colonies suggest that selective rearing is not always present and this might explain the mixed results of previous nepotism studies in the honey bee.Received 10 February 2003; revised 7 March 2003; accepted 17 March 2003.  相似文献   

11.
Although famously cooperative, social insect colonies harbour considerable potential for genetic conflict among colonymates. This conflict may be expressed behaviourally as aggression by workers. We investigated aggression in 34 colonies of the wasp Parachartergus colobopterus, by evaluating the characteristics of both instigators and victims of aggressive interactions. We estimated genetic relatedness and queen number using DNA microsatellites and found that workers and emerging females should be most in conflict over the caste of the latter when there are many queens on the nest. We found that aggressive interactions are more likely to involve older workers attacking either males or younger workers, and that victim and aggressor females have more ovarian development than randomly sampled colonymates. Moreover, mated females with low levels of ovarian development relative to active queens were also more likely to be aggressors and victims than were randomly sampled females. Aggression among females supports the hypothesis that older workers use aggression towards younger females as a means of policing the development of emerging females into queens. Workers also may use aggression to suppress the reproduction of some mated females. Our findings thus support the hypothesis that genetic conflicts of interest motivate worker aggression in swarm-founding wasp colonies.  相似文献   

12.
Worker honeybees (Apis mellifera) usually only lay eggs when their colony is queenless. However, an extremely rare ''anarchistic'' phenotype occurs, in which workers develop functional ovaries and lay large numbers of haploid eggs which develop into adult drones despite the presence of the queen. Studies of such colonies can give important insights into the mechanisms by which worker sterility is maintained in normal colonies. Here we report on the results of a breeding programme which enhanced the frequency of the anarchistic phenotype. Colonies derived from queens inseminated only by worker-laid males showed up to 9% of workers with highly developed ovaries. In these colonies a large proportion of males arose from worker-laid eggs. Colonies headed by queens inseminated with 50% worker-laid drones and 50% queen-laid drones showed variable phenotypes. In most such colonies there was no worker reproduction. In some, many workers had highly developed ovaries, but no worker-laid eggs were reared. In one colony, many worker-laid eggs were reared to maturity. The results suggest that the anarchy phenotype results from a complex interaction of queen genotype, the worker genotype of subfamilies that successfully reproduce and of those that do not, and the external environment.  相似文献   

13.
A female specific protein is found in queens, workers, and gvnandromorphsof several species of social Hymenoptera. Possibly it is presentalso in experimentally produced diploid males, but it couldnot be found in normal haploid drones. A high tiler of the femalespecific protein (vitellogenin) is found in the hemolymph ofhoneybee queens during periods of oviposition and even duringperiods when no eggs are laid. A high titer is also observedin egg-laying workers of the honeybee and the stingless bees.Rates of synthesis of vitellogenin are negatively correlatedwith the concentration in the hemolymph. In nursing workersrates of vitellogenin synthesis are twice as high as in egg-layingworkers. In non-laying workers vitellogenin normally only occurs in thehemolymph of nursing workers; this period of nursing is moreextended in A. florea than in A. mellifica, a fact which maysignal a more primitive level of female caste differentiationin A. florea. Aspects of genetic, endocrine, and social regulationof vitellogenin synthesis are discussed.  相似文献   

14.
The success of an ant colony depends on the simultaneous presence of reproducing queens and non-reproducing workers in a ratio that will maximize colony growth and reproduction. Despite its presumably crucial role, queen–worker caste ratios (the ratio of adult queens to workers) and the factors affecting this variable remain scarcely studied. Maintaining polygynous pharaoh ant (Monomorium pharaonis) colonies in the laboratory has provided us with the opportunity to experimentally manipulate colony size, one of the key factors that can be expected to affect colony level queen–worker caste ratios and body size of eclosing workers, gynes and males. We found that smaller colonies produced more new queens relative to workers, and that these queens and workers both tended to be larger. However, colony size had no effect on the size of males or on the sex ratio of the individuals reared. Furthermore, for the first time in a social insect, we confirmed the general life history prediction by Smith and Fretwell (Am Nat 108:499–506, 1974) that offspring number varies more than offspring size. Our findings document a high level of plasticity in energy allocation toward female castes and suggest that polygynous species with budding colonies may adaptively adjust caste ratios to ensure rapid growth.  相似文献   

15.
In honeybee colonies, reproduction is monopolized by the queen while her daughter workers are facultatively sterile. Caste determination is a consequence of environmental conditions during development, during which female larvae may become either queens or workers depending on their larval diet. This bipotency introduces significant variation in the reproductive potential of queen bees, with queens raised from young worker larvae exhibiting high reproductive potential and queens raised from older worker larvae exhibiting lower reproductive potential. We verify that low-quality queens are indeed produced from older worker larvae, as measured morphometrically (e.g., body size) and by stored sperm counts. We also show, for the first time, that low-quality queens mate with significantly fewer males, which significantly influences the resultant intracolony genetic diversity of the worker force of their future colonies. These results demonstrate a reproductive continuum of honeybee queens and provide insights into the reproductive constraints of social insects.  相似文献   

16.
Mutualistic associations among nonkin can form when animalsin groups have a greater chance of overcoming challenges presentedby the environment than do solitary animals. Colony foundingby small groups of unrelated queens, a habit documented in severalspecies of ants, is often interpreted as a mutualistic interactionselected by intense competition among incipient colonies. However,many new colonies in these species are founded in areas wheretheir chief enemies are mature ant colonies, rather than othernewly founded colonies. In this study, we tested whether groupnest-founding in the fire ant Solenopsis invicta improved theability of queens to survive attacks by mature colonies. Inthe laboratory, queens in groups of three were more likely thansolitary queens to survive attacks by workers of the nativefire ant Solenopsis geminata. When newly mated queens were establishedexperimentally in the field, workers from mature S. invictacolonies caused the majority of queen deaths. Queens in groupsof two, but not in groups of four, had higher survival ratesthan did solitary queens during the period between colony establishmentand the appearance of the first workers. The advantage of cooperativedefense approximately counterbalanced the disadvantages causedby competition within foundress associations of two to threequeens. Previous studies have shown that colonies founded bymultiple queens produce larger worker populations than coloniesfounded by solitary queens; however, experimentally increasingworker number in incipient colonies had no effect on colonysurvival in the field.  相似文献   

17.
In colonies of social Hymenoptera (ants, bees and wasps), workers are often not very closely related to each other, because queens mate with several different males (polyandry) or because several functional queens are present (polygyny). Both characteristics increase genetic variation among the queens'' reproductive and worker offspring, but the benefits of this increased variation remain obscure. Here we report an experiment where genetically homogeneous and genetically heterogeneous colonies of the bumble bee, Bombus terrestris, have been exposed to parasitism under field conditions. Colonies of high or low genetic variation were achieved by adding and removing brood from donor colonies. The results showed a consistent effect in that genetically variable colonies experienced reduced parasite loads, i.e. lower prevalence, intensity and parasite species richness, for a range of protozoa, nematodes, mites or parasitoids affecting the workers. We therefore propose that polyandry and/or polygyny of social insects may be beneficial under parasitism.  相似文献   

18.
In social insects, colonies may contain multiple reproductively active queens. This leads to potential conflicts over the apportionment of brood maternity, especially with respect to the production of reproductive offspring. We investigated reproductive partitioning in offspring females (gynes) and workers in the ant Formica fusca, and combined this information with data on the genetic returns gained by workers. Our results provide the first evidence that differential reproductive partitioning among breeders can enhance the inclusive fitness returns for sterile individuals that tend non-descendant offspring. Two aspects of reproductive partitioning contribute to this outcome. First, significantly fewer mother queens contribute to gyne (new reproductive females) than to worker brood, such that relatedness increases from worker to gyne brood. Second, and more importantly, adult workers were significantly more related to the reproductive brood raised by the colony, than to the contemporary worker brood. Thus, the observed breeder shift leads to genetic benefits for the adult workers that tend the brood. Our results also have repercussions for genetic population analyses. Given the observed pattern of reproductive partitioning, estimates of effective population size based on worker and gyne samples are not interchangeable.  相似文献   

19.
1. In many ant species, caste differentiation stems from trophic differences at the larval stage. Adult workers that feed larvae have great control over the allocation of colony resources to growth (production of workers) versus reproduction (production of queens). However, larval caste fate may also be constrained very early on through direct genetic effects or non‐genetic maternal effects. 2. Here, we combined isotopic and genetic analyses to study the developmental origin of queens and workers in a desert‐dwelling ant, Cataglyphis tartessica (Amor & Ortega, 2014). Queens do not found new colonies alone but rather disperse with workers. As the latter are always wingless, selection pressures on specific queen traits such as flight ability have become relaxed. Though the phylogenetically related species, C. emmae (Forel, 1909) only produces winged queens much larger than workers, C. tartessica produces two types of small queens relative to workers: brachypterous (short‐winged) queens and permanently apterous ergatoid (wingless and worker‐like) queens. 3. Upon emergence, workers and ergatoids have similar δ15N isotopic values, which were lower than those of brachypters, suggesting the latter are fed more protein as larvae. Microsatellite analyses indicated that: (i) colonies are mostly monogynous and monandrous; (ii) both ergatoids and brachypters are equally related to workers; and (iii) in the few polyandrous colonies, patrilines were evenly represented across workers, brachypters and ergatoids. 4. Overall, there was no evidence of genetic caste determination. We suggest that, in contrast to brachypters, ergatoids are selfish individuals that escape the nutritional castration carried out by workers and develop into queens in spite of the colony's collective interests.  相似文献   

20.
The presence of the honey bee queen reduces worker ovary activation. When the queen is healthy and fecund, this is interpreted as an adaptive response as workers can gain fitness from helping the queen raise additional offspring, their sisters. However, when the queen is absent, workers activate their ovaries and lay unfertilized eggs that become males. Queen pheromones are recognised as a factor affecting worker ovary activation. Recent work has shown that queen mandibular pheromone composition changes with queen mating condition and workers show different behavioural responses to pheromone extracts from these queens. Here, we tested whether workers reared in colonies with queens of different mating condition varied in level of ovary activation. We also examined the changes in the chemical composition of the queen mandibular glands to determine if the pheromone blend varied among the queens. We found that the workers activated their ovaries when queens were unmated and had lower ovary activation when raised with mated queens, suggesting that workers detect and respond adaptively to queens of differing mating status. Moreover, variation in queen mandibular gland’s chemical composition correlated with the levels of worker ovary activation. Although correlative, this evidence suggests that queen pheromone may act as a signal of queen mating condition for workers, in response to which they alter their level of ovary activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号