首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

2.
A recent molecular analysis strongly supported sister group relationship between flamingos (Phoenicopteridae) and grebes (Podicipedidae), a hypothesis which has not been suggested before. Flamingos are long-legged filter-feeders whereas grebes are morphologically quite divergent foot-propelled diving birds, and sister group relationship between these two taxa would thus provide an interesting example of evolution of different feeding strategies in birds. To test monophyly of a clade including grebes and flamingos, I performed a cladistic analysis of 70 morphological characters which were scored for 17 taxa. Parsimony analysis of these data supported monophyly of the taxon (Podicipedidae + Phoenicopteridae) and the clade received high bootstrap support. Previously overlooked morphological, oological and parasitological evidence is recorded which supports this hypothesis, and which makes the taxon (Podicipedidae + Phoenicopteridae) one of the best supported higher-level clades within modern birds. The phylogenetic significance of some fossil flamingo-like birds is discussed. The Middle Eocene taxon Juncitarsus is most likely the sister taxon of the clade (Podicipedidae + (Palaelodidae + Phoenicopteridae)) although resolution of its exact systematic position awaits revision of the fossil material. Contrary to previous assumptions, it is more parsimonious to assume that flamingos evolved from a highly aquatic ancestor than from a shorebird-like ancestor.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 140 , 157–169.  相似文献   

3.
Abstract A consensus cladogram is presented for ninety-seven of the ninety-nine (sub)species of the cicada subtribe Cosmopsaltriina on the basis of a cladistic analysis of forty-nine characters. The consensus cladogram confirms the monophyly of the eight genera constituting the subtribe, and the monophyly of the subtribe as a whole. Cosmopsaltriina occur in Sulawesi, the Moluccas, New Guinea, Cape York, the Solomon Islands, Vanuatu, Fiji, Tonga and Samoa. The subtribe demonstrates a high rate of endemism on genus, species group and species level. The taxon-area and consensus-area cladograms resulting from Brooks parsimony analysis are discussed in relation to the palaeogeography of the area.  相似文献   

4.
Carl E. Lewis 《Brittonia》2002,54(2):78-91
Subtribe Oncospermatinae (Arecaceae: Arecoideae: Areceae) is a diverse group of spiny Old World palms. The subtribe includesOncosperma, a widespread Asian genus of five species, along with seven monotypic genera, all endemic to the Seychelles and Mascarene Islands of the western Indian Ocean. A phylogenetic analysis was conducted in order to test the monophyly of subtribe Oncospermatinae with respect to other Old World genera of tribe Areceae. A matrix of 38 morphological characters was scored for 29 taxa, including 11 species of the Oncospermatinae. A single most parsimonious tree was found, resolving the subtribe as a polyphyletic group of two distinct clades. One clade containingAcanthophoenix, Deckenia, Oncosperma, andTectiphiala was placed as sister to a large group that includes members of subtribes Archontophoenicinae, Arecinae, Iguanurinae, and Ptychospermatinae. The other clade of Oncospermatinae, including the Seychelles endemic generaNephrosperma, Phoenicophorium, Roscheria, andVerschaffeltia, was resolved as sister to the Madagascar endemic subtribe Masoalinae, and may have arisen in the western Indian Ocean region.  相似文献   

5.
The aleocharine subtribe Homalotina Heer represents one of the most diverse lineages of Staphylinidae. Despite its wide distribution and diversity, the phylogenetic relationships of the subtribe remain poorly understood. Here, we present the first cladistic analysis of the Homalotina based on morphological data. The subtribe is hypothesized to be a monophyletic group consisting of seven genera (Anomognathus Solier, Cephaloxynum Bernhauer, Holisomimus Cameron, Homalota Mannerheim, Neomalota Cameron, Stenomastax Cameron, and Thecturota Casey). The dataset for phylogenetic analysis comprised 83 characters representing 245 character states derived from adult morphology. These data were analysed using equal weighting and implied weighting schemes (k = 1–6) and results support the monophyly of the subtribe based on two synapomorphic characters (complete postoccipital sutures on head, posterolateral margin of metacoxae with macrosetae) and three homoplastic characters (medial setae on prementum not extended to apex of ligula, medial setae on labium contiguous, posterolateral angle of elytron slightly sinuate). Generic relationships differ in each analysis within the Homalotina (EW, IW with k = 1, 2–4, 5–6) although there are some identical topologies among the IW trees. Clades A, B, C, D, H, J and G were resolved as monophyletic in all weighting regimes. The monophyly of the genera is relatively well supported except for the genera Homalota and Stenomastax. Homalota species were recovered in four independent clades (clade C, D, I, K) and the Stenomastax species were recovered in two independent lineages. Candidates for the possible new genera are discussed. We herein transfer Homalota flavomaculata Bernhauer to the genus Stenomastax, resulting in the new combination [Stenomastax flavomaculata (Bernhauer)]. Our preliminary character correlation tests using phylogenetic pairwise comparisons did not support the hypothesis of association between flattened body form, and subcortical habitat and anterior shift of antennal insertion in Homalotini.  相似文献   

6.
A general procedure is described for examining when results of molecular phylogenetic analyses warrant formal revision of taxonomies constructed using morphological characters. We illustrate this procedure with tests of monophyly for four subfamilies in the lizard family Iguanidae using 1561 aligned base positions (838 phylogenetically informative) of mitochondrial DNA sequences, representing coding regions for eight tRNAs, ND2, and portions of ND1 and COI. Ten new sequences ranging in length from 1732 to 1751 bases are compared with 12 previously reported sequences and 67 morphological characters (54 phylogenetically informative) from the literature. New morphological character states are provided for Sator. Phylogenies derived from the molecular and combined data are in agreement but both conflict with phylogenetic inferences from the morphological data alone. Strong support is found for the monophyly of the subfamilies Crotaphytinae and Phrynosomatinae. Monophyly of the Iguaninae is weakly supported in each analysis. All analyses suggest that the Tropidurinae is not monophyletic but the hypothesis of monophyly cannot be rejected. A phylogenetic taxonomy is proposed in which the Tropidurinae* is maintained as a metataxon (denoted with an asterisk), for which monophyly has not been demonstrated. Within the Phrynosomatinae, the close relationship of Sator and Sceloporus is questioned and an alternative hypothesis in which Sator is the sister taxon to a clade comprising Petrosaurus, Sceloporus, and Urosaurus is presented. Statistical tests of monophyly provide a powerful way to evaluate support for taxonomic groupings. Use of the metataxon prevents premature taxonomic rearrangements where support is lacking.  相似文献   

7.
Complete coding regions of the 18S rRNA gene of an enteropneust hemichordate and an echinoid and ophiuroid echinoderm were obtained and aligned with 18S rRNA gene sequences of all major chordate clades and four outgroups. Gene sequences were analyzed to test morphological character phylogenies and to assess the strength of the signal. Maximum- parsimony analysis of the sequences fails to support a monophyletic Chordata; the urochordates form the sister taxon to the hemichordates, and together this clade plus the echinoderms forms the sister taxon to the cephalochordates plus craniates. Decay, bootstrap, and tree-length distribution analyses suggest that the signal for inference of dueterostome phylogeny is weak in this molecule. Parsimony analysis of morphological plus molecular characters supports both monophyly of echinoderms plus enteropneust hemichordates and a sister group relationship of this clade to chordates. Evolutionary parsimony does not support chordate monophyly. Neighbor-joining, Fitch-Margoliash, and maximum-likelihood analyses support a chordate lineage that is the sister group to an echinoderm-plus-hemichordate lineage. The results illustrate both the limitations of the 18S rRNA molecule alone for high- level phylogeny inference and the importance of considering both molecular and morphological data in phylogeny reconstruction.   相似文献   

8.
A new subtribe Febraina subtr.n. is established with Febra Clark designated as the type genus. Cladistic analysis based on morphological characters is carried out to reveal the composition of a new subtribe and to test its monophyly. Subtribe includes the following genera: Chilocoristes Weise; Halticorcus Lea; Setsaltica Samuelson; Maaltica Samuelson; Axillofebra Samuelson; Profebra Samuelson. Bionomical features of the genera of the subtribe are summarised. The syndrome of hemisphery is recorded for the genera of the subtribe, and morphological transformation resulting in hemisphery is described and discussed. Correspondence between direction of morphological transformation, phylogenetic arrangement of genera, and distributional pattern is recorded and discussed.  相似文献   

9.
Phylogenetic analysis of chloroplast DNA restriction site data for 76 of the 302 genera of Heliantheae sensu lato using 16 restriction endonucleases reveals that subtribe Ecliptinae is polyphyletic and that its genera are distributed in four different lineages. The ecliptinous genera Squamopappus, Podachaenium, Verbesina, and Tetrachyron (of the Neurolaeninae), along with other members of subtribe Neurolaeninae are the basalmost clades of the paleaceous Heliantheae. The mostly temperate species of subtribe Ecliptinae (exemplified by Balsamorhiza, Borrichia, Chrysogonum, Engelmannia, Silphium, Vigethia, and Wyethia) are strongly nested in a clade with the Mesoamerican monotypic genus Rojasianthe as basal. The genera characterized by marcescent ray corollas traditionally classified in subtribe Zinniinae constitute a strongly supported group sister to Acmella, Spilanthes, and Salmea. The largest clade of ecliptinous genera is the most recently derived group within Heliantheae sampled. This large group of mostly Neotropical lowland genera (variously characterized by their winged cypselae, foliaceous phyllaries, and opposite phyllotaxy and exemplified by Perymenium, Wedelia, and Zexmenia) has been and continues to be the most challenging group from a taxonomic standpoint. The study provides new insights as to their relationships that will have a positive impact in future monographic studies of the group. The genera of the Espeletiinae form a monophyletic clade and are sister to members of the Milleriinae and Melampodiinae. This result is consistent with their traditional taxonomic placement with genera such as Smallanthus with which they share a tendency for functionally staminate disc flowers. The phylogenetically enigmatic genus Montanoa is sister to Melampodium. Members of subtribe Galinsoginae are clustered in two main lineages that correspond to the traditional division of the subtribe based on pappus characteristics. There is no support for the monophyly of subtribe Galinsoginae, and the same results indicate some of its genera are paraphyletic.  相似文献   

10.
We review the various proposals of evolutionary and classification schemes for Satyrinae and particularly Euptychiina butterflies, assessing progress and prospects of research for the group. Among the highlights is the proposal to include Morphini, Brassolini and Amathusiini as part of Satyrinae. Although it is clear that this hypothesis requires further investigation, phylogenetic studies recently conducted recover this clade as part of Satyrinae with high support. The phylogenetic analyses for Euptychiina carried out to date recover the monophyly of the group and have identified a variety of genera as non-monophyletic. Further work is necessary to resolve the position of the subtribe and the evolutionary relationships of several genera.  相似文献   

11.
Abstract. Bivalve classification has suffered in the past from the crossed-purpose discussions among paleontologists and neontologists, and many have based their proposals on single character systems. More recently, molecular biologists have investigated bivalve relationships by using only gene sequence data, ignoring paleontological and neontological data. In the present study we have compiled morphological and anatomical data with mostly new molecular evidence to provide a more stable and robust phylogenetic estimate for bivalve molluscs. The data here compiled consist of a morphological data set of 183 characters, and a molecular data set from 3 loci: 2 nuclear ribosomal genes (18S rRNA and 28S rRNA), and 1 mitochondrial coding gene (cytochrome c oxidase subunit I), totaling ∼3 Kb of sequence data for 76 molluscs (62 bivalves and 14 outgroup taxa). The data have been analyzed separately and in combination by using the direct optimization method of Wheeler (1996), and they have been evaluated under 12 analytical schemes. The combined analysis supports the monophyly of bivalves, paraphyly of protobranchiate bivalves, and monophyly of Autolamellibranchiata, Pteriomorphia, Heteroconchia, Palaeoheterodonta, and Heterodonta s.l., which includes the monophyletic taxon Anomalodesmata. These analyses strongly support the conclusion that Anomalodesmata should not receive a class status, and that the heterodont orders Myoida and Veneroida are not monophyletic. Among the most stable results of the analysis are the monophyly of Palaeoheterodonta, grouping the extant trigoniids with the freshwater unionids, and the sister-group relationship of the heterodont families Astartidae and Carditidae, which together constitute the sister taxon to the remaining heterodont bivalves. Internal relationships of the main bivalve groups are discussed on the basis of node support and clade stability.  相似文献   

12.
Rock daisies (Perityleae; Compositae) are a diverse clade of seven genera and ca. 84 minimum‐rank taxa that mostly occur as narrow endemics on sheer rock cliffs throughout the southwest United States and northern Mexico. Taxonomy of Perityleae has traditionally been based on morphology and cytogenetics. To test taxonomic hypotheses and utility of characters emphasized in past treatments, we present the first densely sampled molecular phylogenies of Perityleae and reconstruct trait and chromosome evolution. We inferred phylogenetic trees from whole chloroplast genomes, nuclear ribosomal cistrons, and hundreds of low‐copy nuclear genes using genome skimming and target capture. Discordance between sources of molecular data suggests an underappreciated history of hybridization in Perityleae. Phylogenies support the monophyly of subtribe Peritylinae, a distinctive group possessing a four‐lobed disc corolla; however, all of the phylogenetic trees generated in this study reject the monophyly of the most species‐rich genus, Perityle, as well as its sections: Perityle sect. Perityle, Perityle sect. Laphamia, and Perityle sect. Pappothrix. Using reversible jump MCMC, our results suggest that morphological characters traditionally used to classify members of Perityleae have evolved multiple times within the group. A base chromosome number x = 9 gave rise to higher base numbers in subtribe Peritylinae (x = 12, 13, 16, 17, 18, and 19) through polyploidization, followed by ascending or descending dysploidy. Most taxa constitute a monophyletic lineage with a base chromosome number of x = 17, with multiple neo‐polyploidization events. These results demonstrate the advantages and obstacles of next‐generation sequencing approaches in synantherology while laying the foundation for taxonomic revision and comparative study of the evolutionary ecology of Perityleae.  相似文献   

13.
基于28S rRNA D2序列的内茧蜂亚科的分子系统发育   总被引:4,自引:0,他引:4  
首次利用同源28S rRNA D2基因序列对内茧蜂亚科Rogadinae (昆虫纲Insecta:膜翅目Hymenoptera:茧蜂科Braconidae)进行了分子系统学研究。本研究从95%~100%乙醇浸渍保存的标本中提取基因组DNA并扩增了10种内群种类和5种外群种类的28S rDNA D2片段并测序(GenBank序列号AY167645-AY167659),利用BLAST搜索相关的同源序列, 采用了GenBank中13个种类的28S rRNA D2同源序列,然后据此进行分子分析。利用3个外群(共8个种类)和3种建树方法 (距离邻近法distance based neighbor joining, NJ; 最大俭约法maximum parsimony, MP; 和最大似然法maximum likelihood, ML)分析了内茧蜂亚科内的分子系统发育关系。结果表明,由分子数据产生的不同的分子系统树均显示内茧蜂亚科是一个单系群。内茧蜂亚科内依据形态和生物学特征的分群(族和亚族)及其系统发育关系得到部分支持。NJ、MP和ML分析结果均表明内茧蜂族Rogadini不是一个单系,而是一个并系,其余3族则得到不同程度的支持。内茧蜂族可分成2个分支:“脊茧蜂属Aleiodes+弓脉茧蜂属Arcaleiodes”和“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”,二者不是姐妹群。脊茧蜂属Aleiodes和弓脉茧蜂属Arcaleiodes始终是姐妹群。脊茧蜂属Aleiodes是一个单系,并可分成2个姐妹分支,这与依据形态和生物学特征的亚属分群相一致。弓脉茧蜂属Arcaleiodes Chen et He,1991是一个独立的属。分支“沟内茧蜂属Canalirogas+锥齿茧蜂属Conspinaria+刺茧蜂属Spinaria+内茧蜂属Rogas”的单系性仅得到部分分子数据的支持;因形态特异(腹部成甲壳状)而列为亚族级的刺茧蜂属Spinaria,分子分析没有证实这一点。横纹茧蜂族Clinocentrini是个单系,并在内茧蜂亚科的系统发育中处于基部(原始)的位置。我们研究结果还表明,阔跗茧蜂属Yelicones和潜蛾茧蜂属Stiropius相对应的阔跗茧蜂族Yeliconini和潜蛾茧蜂族Stiropiini为2个独立的分支, 与形态和生物学的结果一致,但它们在内茧蜂亚科的系统发育的位置不明,有待今后进一步研究。  相似文献   

14.
The first comprehensive phylogenetic study of the wasp tribe Cryptini (Hymenoptera, Ichneumonidae, Cryptinae) is presented, based on 109 morphological characters and molecular data from seven loci. The dataset includes 370 species, 308 of which are from Cryptini, covering 182 of its 250 genera. Results from parsimony and likelihood analyses are generally congruent. The topology has several implications for ichneumonid higher‐level classification. Previous definitions of the Ichneumoniformes clade are supported, though newly including the Microleptinae. The cryptine subtribe Ateleutina is consistently recovered outside of the Cryptini clade and should be treated as a separate subfamily, Ateleutinae stat.n. The tribe Phygadeuontini is shown to be polyphyletic: while most of the sampled taxa were recovered in a single clade, many of its members are more closely related to the Ichneumoninae, Ateleutinae or Cryptini. Pending a more detailed study, the group should be treated as a separate subfamily, Phygadeuontinae stat. rev . The former Hemigastrini are recovered as largely monophyletic but with important exceptions. Hemigaster Brullé is recovered as part of the Phygadeuontini and is transferred to that group. Echthrus Gravenhorst is consistently recovered as part of Cryptini, rendering Aptesini as the correct name for the tribe. The subfamily Cryptinae should be restricted to the tribes Aptesini and Cryptini. Within Cryptini, the results show little support for the current subtribal classification, with most subtribes recovered as polyphyletic. A number of relatively stable clades are identified and discussed, but the relationships among them are weakly supported. Most of these clades are morphologically heterogeneous and building a subtribal classification based on them would be ineffectual; they are therefore treated under the informal designation of genus groups. The results highlight the ubiquity of morphological homoplasy in Cryptini, and provide a framework from which to address further systematic and evolutionary questions on this hyperdiverse group of parasitic wasps.  相似文献   

15.
The Labeonini (sensu Rainboth, 1991) is a tribe of the subfamily Cyprininae, the largest subfamily of Cypriniformes. With around 400 species in 34 genera, this tribe is widely distributed in the freshwaters of tropical Africa and Asia. Most species are adapted to fast-flowing streams and rivers, and exhibit unique morphological modifications associated with their lips and other structures around the mouth. The monophyly of this tribe has been tested and generally accepted in previous morphological and molecular studies. The major objectives of this study were to reconstruct the phylogenetic relationships within the tribe Labeonini, test its monophyly and explore the taxonomic subdivisions, intrarelationships and biogeography of the group. The value of the morphological characters associated with the lips and other associated structures in the taxonomic classification of labeonins was also discussed. Nucleotide sequences (3867 bp) of four unlinked nuclear loci were obtained from 51 species in 18 Labeonini genera from throughout the range of the tribe. Maximum parsimony, partitioned maximum likelihood and partitioned Bayesian analyses were used for phylogenetic inference from combined and separate gene data sets. Based on our results, the monophyly of Labeonini was well supported. Two major clades could be recovered within the tribe. Three subclades could further be recognized from the first clade. These clades/subclades are not consistent with groupings of any of previous workers using either morphological or molecular characters for phylogenetic inference. Only five currently recognized genera in this analysis are monophyletic. The similarity between some lips and associated structures (e.g. suctorial discs) of labeonins may due to convergence or parallelism instead of common ancestry. Labeonins of Southeast Asia, India and China are closely related to each other; the multiple clades of African taxa do not form a single monophyletic group, indicating multiple, independent dispersal events of labeonins into Africa from Asia.  相似文献   

16.
Knowledge of the phylogenetic position of the order Cetacea (whales, dolphins, and porpoises) within Mammalia is of central importance to evolutionary biologists studying the transformations of biological form and function that accompanied the shift from fully terrestrial to fully aquatic life in this clade. Phylogenies based on molecular data and those based on morphological data both place cetaceans among ungulates but are incongruent in other respects. Morphologists argue that cetaceans are most closely related to mesonychians, an extinct group of terrestrial ungulates. They have disagreed, however, as to whether Perissodactyla (odd-toed ungulates) or Artiodactyla (even-toed ungulates) is the extant clade most closely related to Cetacea, and have long maintained that each of these orders is monophyletic. The great majority of molecule-based phylogenies show, by contrast, not only that artiodactyls are the closest extant relatives of Cetacea, but also that Artiodactyla is paraphyletic unless cetaceans are nested within it, often as the sister group of hippopotamids. We tested morphological evidence for several hypotheses concerning the sister taxon relationships of Cetacea in a maximum parsimony analysis of 123 morphological characters from 10 extant and 30 extinct taxa. We advocate treating certain multistate characters as ordered because such a procedure incorporates information about hierarchical morphological transformation. In all most-parsimonious trees, whether multistate characters are ordered or unordered, Artiodactyla is the extant sister taxon of Cetacea. With certain multistate characters ordered, the extinct clade Mesonychia (Mesonychidae + Hapalodectidae) is the sister taxon of Cetacea, and Artiodactyla is monophyletic. When all fossils are removed from the analysis, Artiodactyla is paraphyletic with Cetacea nested inside, indicating that inclusion of mesonychians and other extinct stem taxa in a phylogenetic analysis of the ungulate clade is integral to the recovery of artiodactyl monophyly. Phylogenies derived from molecular data alone may risk recovering inconsistent branches because of an inability to sample extinct clades, which by a conservative estimate, amount to 89% of the ingroup. Addition of data from recently described astragali attributed to cetaceans does not overturn artiodactyl monophyly.  相似文献   

17.
To evaluate the monophyly of subtribe Pleurothallidinae (Epidendreae: Orchidaceae) and the component genera and to reveal evolutionary relationships and trends, we sequenced the nuclear ribosomal DNA internal transcribed spacers (ITS1 and ITS2) and 5.8S gene for 185 taxa. In addition, to improve the overall assessments along the spine of the topology, we added plastid sequences from matK, the trnL intron, and the trnL-F intergenic spacer for a representative subset of those taxa in the ITS study. All results were highly congruent, and so we then combined the sequence data from all three data sets in a separate analysis of 58 representative taxa. There is strong support in most analyses for the monophyly of Pleurothallidinae and in some for inclusion of Dilomilis and Neocognauxia of Laeliinae. Although most genera in the nine clades identified in the analyses are monophyletic, all data sets are highly congruent in revealing the polyphyly of Pleurothallis and its constitutent subgenera as presently understood. The high degree of homoplasy in morphological characters, especially floral characters, limits their usefulness in phylogenetic reconstruction of the subtribe.  相似文献   

18.
Abstract.  With more than 6600 species worldwide, Reduviidae (Insecta: Heteroptera), or assassin bugs, form the second largest and one of the most diverse groups of true bugs. The poor condition of the higher-level classification of Reduviidae is reflected by the facts that different authors recognize between 21 and 32 subfamily-level names and that Reduviidae were never subjected to a rigorous cladistic analysis using an exemplar approach. In the present study, a cladistic analysis of higher-level taxa of Reduviidae based on 162 morphological characters and 75 ingroup and outgroup species is presented. Twenty-one subfamily-level taxa of Reduviidae were examined, accounting for 28 tribes. In addition to characters previously used for diagnosis in Reduviidae, information on recently published character complexes is used in the present analysis, supplemented with new character information gathered specifically for this project. Reduviidae are supported as a monophyletic group with Pachynomidae as their sister taxon. The major results of this study are the support of a sistergroup relationship of Hammacerinae with the remaining Reduviidae, the monophyly of the Phymatine Complex, the relatively basal position of Harpactorinae within Reduviidae as well as a novel hypothesis on the relationships within this group, and the sistergroup relationship of Ectrichodiinae + Tribelocephalinae and their placement in a clade that also contains Emesinae, Saicinae, and Visayanocorinae. The analysis further supports a clade formed by paraphyletic Salyavatinae + Sphaeridopinae, renders Vesciinae non-monophyletic, and demonstrates the polyphyly of Reduviinae. Pseudocetherinae are shown to group with some Reduviinae. Triatominae are supported as a monophyletic group and are nested among additional Reduviinae and Stenopodainae.  相似文献   

19.
A higher level phylogeny for the passion-vine butterflies (Nymphalidae, Heliconiinae) was generated by cladistic analysis of 146 morphological characters from all life stages. The 24 species studied were selected representatives of the ten currently accepted genera of the sub-tribe Heliconiiti. Analyses of only characters from larvae and pupae did not produce well resolved trees. However, some characters of the immature stages provided critical support for the monophyly of two clades. Analysis of only adult characters yielded a tree that closely resembled that obtained from all data combined. The phylogeny here derived from the combined analysis of early stage and adult characters differed in topology from all previously proposed hypotheses, and supported the monophyly of all currently recognized genera. Characters supporting each clade are described and illustrated, and various hypotheses of phylogenetic relatedness of passion-vine butterfly taxa are discussed.  相似文献   

20.
运用广义形态学性状对虎尾草亚科(Chloridoideae)进行系统发育分析。内类群包括虎尾草亚科52属的69种植物,代表虎尾草亚科的主要类群;芦竹亚科(Arundinoideae)扁芒草族(Danthonieae)的Centropodia和Danthonia被选作外类群。分支分析表明,虎尾草亚科是一个单系类群。其严格一致树包括A、B、C、D、E5个分支。两个大族画眉草族(Eragrostideae)和虎尾草族(Chlorideae)代表虎尾草亚科内部类群分化的两个方向,分开处理较合理。细穗草族(Leptureae)放到虎尾草族中较合理。冠芒草族(Pappophoreae)是虎尾草亚科的基部类群,与画眉草族近缘。我们的研究支持虎尾草亚科从旧世界向新世界扩散的地理分布假说,并提供了虎尾草亚科属上类群的系统发育关系的框架。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号