首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus is a "giant," multisubunit protein with an apparent molecular weight of 3.37 X 10(6), and consists of two types of subunits: a "monomeric" chain (chain I) and a disulfide-bonded "trimer" of chains IIA, IIB, and IIC. We reported the amino acid sequences of chains I, IIB, and IIC previously (Suzuki, T., Yasunaga, H., Furukohri, T., Nakamura, K., and Gotoh, T. (1985) J. Biol. Chem. 260, 11481-11487). The sequence of chain IIA has now been determined. Chain IIA consists of 146 amino acid residues with a heme group and has a molecular weight of 17,236. All of the constituent chains of Tylorrhynchus hemoglobin appear to be homologous with those of vertebrate hemoglobins and contain heme. Distal (E7) His, distal (E11) Val, and proximal (F8) His are all conserved in the four chains. Phylogenetically, chain IIA appears more closely related to the monomeric chain I than to either of the other "trimeric" chains IIB and IIC. This is the first giant extracellular hemoglobin to be sequenced completely.  相似文献   

2.
The giant extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus consists of two types of subunits: a "monomeric" chain (chain I) and a disulfide-bonded trimer of chains IIA, IIB, and IIC. The complete amino acid sequence of chain IIB was determined. This chain has 148 amino acid residues and a molecular weight of 17,236 including a heme group. Of the residues in chain IIB, 74 (50%) and 34 (30%) were found to be identical with those in the corresponding positions in Tylorrhynchus chains IIC and I, respectively (Suzuki, T., Furukohri, T., and Gotoh, T. (1985) J. Biol. Chem. 260, 3145-3154). Marked differences were found between the chains of Tylorrhynchus and Lumbricus in the COOH-terminal regions. Significant differences were predicted between the monomeric chain I and the "trimeric" chains (IIB and IIC) in the hydropathy profiles and alpha-helical contents.  相似文献   

3.
Novel S-S loops in the giant hemoglobin of Tylorrhynchus heterochaetus   总被引:2,自引:0,他引:2  
The extracellular hemoglobin of the polychaete Tylorrhynchus heterochaetus is a "giant" multisubunit protein consisting of two types of subunits: a "monomeric" chain (chain I) and a disulfide bonded "trimer" of chains IIA, IIB, and IIC. We have reported the complete amino acid sequences of all four chains (Suzuki, T., and Gotoh, T. (1986) J. Biol. Chem. 261, 9257-9267). The sites of disulfide bonds in the trimer have now been determined. In the trimer, there are two interchain disulfide bonds between chains IIA and IIC, and IIB and IIC, respectively. In addition, each of the four chains, I, IIA, IIB, IIC, has an intrachain disulfide bond. Thus, according to our "192-chain" model (Suzuki, T., and Gotoh, T. (1986) J. Mol. Biol. 190, 119-123), there are 288 disulfide bonds in Tylorrhynchus hemoglobin. Digital image processing of scanning transmission electron micrographs of negatively stained Tylorrhynchus hemoglobin indicated dimensions of 28 x 18 nm.  相似文献   

4.
The giant extracellular hemoglobin (3,800 kDa) of the oligochaete Lumbricus terrestris consists of four subunits: a monomer (chain I), two subunits each of about 35 kDa (chains V and VI), and a disulfide-bonded trimer (50 kDa) of chains II, III, and IV. The complete amino acid sequence of chain I was determined: it consists of 142 amino acid residues and has a molecular weight of 16,750 including a heme group. Fifty-nine residues (42%) were found to be identical with those in the corresponding positions in Lumbricus chain II (Garlick, R. L., and Riggs, A. F. (1982) J. Biol. Chem. 257, 9005-9015); 45 (32%), 56 (40%), 44 (31%), and 45 (32%) residues were found to be in identical positions in the sequences of chains I, IIA, IIB, and IIC, respectively, of Tylorrhynchus heterochaetus hemoglobin (Suzuki, T., and Gotoh, T. (1986) J. Biol. Chem. 261, 9257-9267). When the sequences of all six annelid chains are compared, 18 invariant residues are found in the first 104 residues of the molecule; very little homology exists among the annelid chains in the carboxyl-terminal 38-residue region. Nine of the 18 invariant residues are also found in the human beta-globin chain.  相似文献   

5.
Two types of linker subunits (linkers 1 and 2) of the extracellular hemoglobin of Tylorrhynchus heterochaetus have been isolated as disulfide-linked homodimers by C18 reverse-phase chromatography. These subunits constituted 6 and 13%, respectively, of total protein area on the chromatogram. The complete amino acid sequences of linkers 1 and 2 were determined by automated Edman sequencing of the peptides derived by digestions with lysyl endopeptidase, trypsin, chymotrypsin, Staphylococcus aureus V8 protease, pepsin, and endoproteinase Asp-N. The linker 1 consisted of 253 amino acid residues (the calculated molecular mass, 28,200 Da), while the linker 2 consisted of 236 residues (26,316 Da). The two chains showed 27% sequence identity. The amino acid sequences of Tylorrhynchus linkers 1 and 2 also showed 23-27% homology with the recently determined sequence of a linker chain of Lamellibrachia hemoglobin (Suzuki, T., Takagi, T., and Ohta, S. (1990) J. Biol. Chem. 265, 1551-1555). In the three linker chains, half-cystine residues were highly conserved; 8 out of 13 residues are identical, suggesting that such residues would contribute to the formation of intrachain disulfide bonds essential for the protein folding of the linker polypeptides. Based on the exact molecular masses of the linker and the heme-containing subunits, the molar ratios estimated for the subunits and the minimum molecular weights per 1 mol of heme, a model is proposed for the subunit structure of the Tylorrhynchus hemoglobin, consisting of 216 polypeptide chains, 192 heme-containing chains, and 24 linker chains.  相似文献   

6.
The subunit assembly of the giant haemoglobin of the polychaete Tylorrhynchus heterochaetus is presented. Tylorrhynchus haemoglobin consists of two types of subunits: a "monomeric" chain I and a disulphide-bonded "trimer" of chains IIA, IIB and IIC. The molar ratio of the four constituent chains was determined by statistical comparison of the accurate amino acid composition calculated from the sequence of each chain and the observed composition measured by amino acid analysis of the whole molecule. On the basis of the molar ratio and the molecular weight of each chain, deduced from the amino acid sequence, a symmetrical model for the molecular assembly of the haemoglobin was constructed. The proposed model consists of four species of chains of 192 polypeptides and has a molecular weight of 3,275,808. The minimum structural entity is a "tetramer" consisting of the "monomeric" chain and the disulphide-bonded "trimer". Each chain contains one haem.  相似文献   

7.
The extracellular hemoglobin of Lumbricus terrestris comprises four major heme-containing chains, a, b, c, and d in equal proportions. We have determined the amino acid sequences of chains a, b, and c which form a disulfide-linked trimer. Chains a, b, and c have 151, 145, and 153 residues and calculated molecular weights of 17,525, 16,254, and 17,289, respectively. The sequence of chain b, reported previously (Garlick, R. L., and Riggs, A. F. (1982) J. Biol. Chem. 287, 9005-9015) has been completely redetermined and found to contain 12 fewer residues than originally reported. Chains a and c both contain unusual, highly polar NH2-terminal extensions of 7 residues before the A helix. These segments must be close together because they are joined by a disulfide bond. We suggest that this structure, with seven negatively charged groups, may be part of a functionally important Ca2+-binding site in the trimer. Comparison of the sequences of chains a, b, and c with those of chain d (Shishikura, F., Snow, J. W., Gotoh, T., Vinogradov, S. N., and Walz, D. A. (1987) J. Biol. Chem. 262, 3123-3131) and the four chains of the hemoglobin of Tylorrhynchus heterochaetus (Suzuki, T., and Gotoh, T. (1986) J. Biol. Chem. 261, 9257-9267) shows that the number and positions of the cysteinyl residues are all conserved. This suggests that the extracellular hemoglobins from both the Oligochaeta and Polychaeta have the same number and configuration of disulfide bonds within the molecule. Phylogenetic analysis suggests that gene duplication first generated an intracellular hemoglobin branch and an extracellular hemoglobin branch. DNA coding for a signal peptide would have been acquired by the extracellular globin gene after this event. At least two further gene duplications are required to account for the present four polypeptide chains.  相似文献   

8.
The giant extracellular hemoglobin of the earthworm Pheretima sieboldi is mainly composed of two heme-containing subunits: a monomer; chain I and a disulfide-bonded trimer of chains II, III and IV. Both subunits can be separated easily by gel filtration under alkaline conditions. The amino acid sequence of chain I has been determined. It is composed of 141 residues, has two half-cystine residues forming a intrachain disulfide bridge, and has a molecular mass of 16911 Da including a heme group. Heterogeneity was found at position 37 (His or Ser). The amino acid sequence of Pheretima chain I showed 30-50% identity with those of eight heme-containing chains of Lumbricus and Tylorrhynchus hemoglobins. The sequences of nine chains of annelid giant hemoglobins were compared separately in the functionally essential central exonic region and structurally essential side exonic regions, and a phylogenetic tree was constructed. The amino acid substitution rate for the central exon was found to be about 1.5 times slower than that for the side exons.  相似文献   

9.
Rabbit predominantly fast-twitch-fibre and predominantly slow-twitch-fibre skeletal muscles of the hind limbs, the psoas, the diaphragm and the masseter muscles were fibre-typed by one-dimensional polyacrylamide-gel electrophoresis of the myofibrillar proteins of chemically skinned single fibres. Investigation of the distribution of fast-twitch-fibre and slow-twitch-fibre isoforms of myosin light chains and the type of myosin heavy chains, based on peptide ''maps'' published in Cleveland. Fischer, Kirschner & Laemmli [(1977) J. Biol. Chem. 252, 1102-1106], allowed a classification of muscle fibres into four classes, corresponding to histochemical types I, IIA, IIB and IIC. Type I fibres with a pure slow-twitch-type of myosin were found to be characterized by a unique set of isoforms of troponins I, C and T, in agreement with the immunological data of Dhoot & Perry [(1979) Nature (London) 278, 714-718], by predominance of the beta-tropomyosin subunit and by the presence of a small amount of an additional tropomyosin subunit, apparently dissimilar from fast-twitch-fibre alpha-tropomyosin subunit. The myofibrillar composition of type IIB fast-twitch white fibres was the mirror image of that found for slow-twitch fibres in that the fast-twitch-fibre isoforms only of the troponin subunits were present and the alpha-tropomyosin subunit predominated. Type IIA fast-twitch red fibres showed a troponin subunit composition identical with that of type IIB fast-twitch white fibres. On the other hand, a unique type of myosin heavy chains was found to be associated with type IIA fibres. Furthermore, the myosin light-chain composition of these fibres was invariably characterized by a small amount of LC3F light chain and by a pattern that was either a pure fast-twitch-fibre light-chain pattern or a hybrid LC1F/LC2F/LC3F/LC1Sb light-chain pattern. By these criteria type IIA fibres could be distinguished from type IIC intermediate fibres, which showed coexistence of fast-twitch-fibre and slow-twitch-fibre forms of myosin light chains and of troponin subunits.  相似文献   

10.
Primary structure of a linker subunit of the tube worm 3000-kDa hemoglobin   总被引:1,自引:0,他引:1  
The deep-sea tube worm Lamellibrachia contains two giant extracellular hemoglobins, a 3000-kDa hemoglobin and a 440-kDa hemoglobin. The former consists of four heme-containing chains (AI-AIV) and two linker chains (AV and AVI) for the assembly of the heme-containing chains. The 440-kDa hemoglobin consists of only four heme-containing chains (Suzuki, T., Takagi, T., and Ohta, S. (1988) Biochem. J. 255, 541-545). The complete amino acid sequence of a linker subunit (chain AV) has been determined by automated Edman sequencing of the peptides derived by digestions with lysyl endopeptidase and endoproteinase Asp-N. The chain is composed of 224 amino acid residues, and the molecular mass for the protein moiety was calculated to be 24,894 Da. An Asn-X-Thr sequence which is possible as a glycosylation site was suggested at positions 108-110. A computer-assisted homology search showed that the sequence shows no notable homology with any other globins and proteins. However a careful alignment of the linker sequence with a heme-containing chain sequence suggested that there is a slight, but significant homology between the two sequences. The alignment also suggested that the linker resulted from gene duplication of a heme-containing chain with a three exon-two intron structure, and that the first exon of domain 1 and the last exon of domain 2 had been lost during evolution. In our alignment, domain 1 has the heme-binding proximal histidine, but domain 2 does not. This is the first linker subunit to be sequenced completely.  相似文献   

11.
1. Combined histochemical and biochemical single-fibre analyses [Staron & Pette (1987) Biochem. J. 243, 687-693], were used to investigate the rabbit tibialis-anterior fibre population. 2. This muscle is composed of four histochemically defined fibre types (I, IIC, IIA and IIB). 3. Type I fibres contain slow myosin light chains LC1s and LC2 and the slow myosin heavy chain HCI, and types IIA and IIB contain the fast myosin light chains LC1f, LC2f and LC3f and the fast heavy chains HCIIa and HCIIb respectively. 4. A small fraction of fibres (IIAB), histochemically intermediate between types IIA and IIB, contain the fast light myosin chains but display a coexistence of HCIIa and HCIIb. 5. Similarly to the soleus muscle, C fibres in the tibialis anterior muscle contain both fast and slow myosin light chains and heavy chains. The IIC fibres show a predominance of the fast forms and the IC fibres (histochemically intermediate between types I and IIC) a predominance of the slow forms. 6. A total of 60 theoretical isomyosins can be derived from these findings on the distribution of fast and slow myosin light and heavy chains in the fibres of rabbit tibialis anterior muscle.  相似文献   

12.
The fibre type composition of the striated muscle layer of the oesophagus of the cow, sheep, donkey, dog and cat was examined with standard histochemical methods and immunohistochemical staining using type-specific antimyosin sera. The heavy chain and light chain composition of oesophageal myosin was also examined using electrophoretic peptide mapping and 2-dimensional gel electrophoresis respectively. In the ruminants and donkey the oesophagus was composed of fibre types I, IIA and IIC with immunohistochemical characteristics identical to those of the same fibre types found in control skeletal muscle. In the ruminants there was a gradient in the proportion of type I fibres from 1% (at the cervical end) to about 30% (at the caudal end). In the carnivores the oesophageal muscle was composed of a very small percentage of type I and IIC fibres, but the predominant type was very different histochemically and immunohistochemically from all the fibre types (I, IIA, IIB, IIC) present in the control muscles. This oesophageal fibre type ( IIoes ) had an acid- and alkaline-stable m-ATPase activity, a moderate histochemical Ca-Mg actomyosin ATPase activity, and reacted weakly with anti-IIA and anti-IIB myosin sera. Although the light chains of the IIoes myosin were the same as the light chains of a mixture of IIA and IIB myosins, their respective heavy chains gave different peptide maps. Greater differences were obtained between the heavy chains of IIoes and other striated muscle myosins. These observations lead us to conclude that this predominant fibre type of the carnivore oesophageal striated muscle is of the 'fast' type, and contains a distinct isoform of myosin similar but not identical to the other fast type myosins.  相似文献   

13.
Listeria monocytogenes is an important foodborne pathogen that comprises four genetic lineages: I, II, III, and IV. Of these, lineage II is frequently recovered from foods and environments and responsible for the increasing incidence of human listeriosis. In this study, the phylogenetic structure of lineage II was determined through sequencing analysis of the ascB-dapE internalin cluster. Fifteen sequence types proposed by multilocus sequence typing based on nine housekeeping genes were grouped into three distinct sublineages, IIA, IIB, and IIC. Organization of the ascBdapE internalin cluster could serve as a molecular marker for these sublineages, with inlGHE, inlGC2DE, and inlC2DE for IIA, IIB, and IIC, respectively. These sublineages displayed specific genetic and phenotypic characteristics. IIA and IIC showed a higher frequency of recombination (rho/theta). However, recombination events had greater effect (r/m) on IIB, leading to its high nucleotide diversity. Moreover, IIA and IIB harbored a wider range of internalin and stress-response genes, and possessed higher nisin tolerance, whereas IIC contained the largest portion of low-virulent strains owing to premature stop codons in inlA. The results of this study indicate that IIA, IIB, and IIC might occupy different ecological niches, and IIB might have a better adaptation to a broad range of environmental niches.  相似文献   

14.
A muscle biopsy from the vastus lateralis muscle of a strength-trained woman was found to contain an unusual fiber type composition and was analyzed by histochemical, biochemical, and ultrastructural techniques. Special attention was given to the C-fibers, which comprised over 15% of the total fiber number in the biopsy. The mATPase activity of the C-fibers remained stable to varying degrees over the pH range normally used for routine mATPase histochemistry. Although a continuum existed, the C-fibers were histochemically subdivided into three main fiber types: IC, IIC, and IIAC. The IC fibers were histochemically more similar to the Type I, the IIAC were more similar to the Type IIA, and the IIC were darkly stained throughout the pH range. Biochemical analysis revealed that all C-fibers coexpressed myosin heavy chains (MHC) I and IIa in variable ratios. The histochemical staining intensity correlated with the myosin heavy chain composition such that the Type IC fibers contained a greater ratio of MHCI/MHCIIa, the IIAC contained a greater ratio of MHCIIa/MHCI, and the Type IIC contained equal amounts of these two heavy chains. Ultrastructural data of the C-fiber population revealed an oxidative capacity between fiber Types I and IIA and suggested a range of mitochondrial volume percent from highest to lowest such that I greater than IC greater than IIC greater than IIA-C greater than IIA. Under physiological conditions, it appears that the IC fibers represent Type I fibers that additionally express some fast characteristics, whereas the Type IIAC are Type IIA fibers that additionally express some slow characteristics. Fibers expressing a 50:50 mixture of MHCI and MHCIIa (IIC fibers) were rarely found. It is not known whether C-fibers represent a distinct population between the fast- and slow-twitch fibers that is specifically adapted to a particular usage or whether they are transforming fibers in the process of going from fast to slow or slow to fast.  相似文献   

15.
Summary The fibre type composition of the striated muscle layer of the oesophagus of the cow, sheep, donkey, dog and cat was examined with standard histochemical methods and immunohistochemical staining using type-specific antimyosin sera. The heavy chain and light chain composition of oesophageal myosin was also examined using electrophoretic peptide mapping and 2-dimensional gel electrophoresis respectively. In the ruminants and donkey the oesophagus was composed of fibre types I, IIA and IIC with immunohistochemical characteristics identical to those of the same fibre types found in control skeletal muscle. In the ruminants there was a gradient in the proportion of type I fibres from 1% (at the cervical end) to about 30% (at the caudal end).In the carnivores the oesophageal muscle was composed of a very small percentage of type I and IIC fibres, but the predominant type was very different hisotchemically and immunohistochemically from all the fibre types (I, IIA, IIB, IIC) present in the control muscles. This oesophageal fibre type (IIoes) had an acid- and alkaline-stable m-ATP-ase activity, a moderate histochemical Ca-Mg actomyosin ATPase activity, and reacted weakly with anti-IIA and antiIIB myosin sera. Although the light chains of the IIoes myosin were the same as the light chains of a mixture of IIA and IIB myosins, their respective heavy chains gave different peptide maps. Greater differences were obtained between the heavy chains of IIoes and other striated muscle myosins.These observations lead us to conclude that this predominant fibre type of the carnivore oesophageal striated muscle is of the fast type, and contains a distinct isoform of myosin similr but not identical to the other fast type myosins.  相似文献   

16.
Repeated dissociation of the approximately 3600-kDa hexagonal bilayer extracellular hemoglobin of Lumbricus terrestris in 4 M urea followed by gel filtration at neutral pH produces a subunit that retains the oxygen affinity of the native molecule (approximately 12 torr), but only two-thirds of the cooperativity (nmax = 2.1 +/- 0.2 versus 3.3 +/- 0.3). The mass of this subunit was estimated to be 202 +/- 15 kDa by gel filtration and 202 +/- 26 kDa from mass measurements of unstained freeze-dried specimens by scanning transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this subunit showed that it consists predominantly of the heme-containing subunits M (chain I, 17 kDa) and T (disulfide-bonded chains II-IV, 50 kDa). Mixing of subunits M and T isolated concurrently with the 200-kDa subunit resulted in partial association into particles that had a mass of 191 +/- 13 kDa determined by gel filtration and 200 +/- 38 kDa determined by scanning transmission electron microscopy and whose oxygen affinity and cooperativity were the same as those of the 200-kDa subunit. The results imply that the 200-kDa subunit is a dodecamer of globin chains, consisting of three copies each of subunits M and T (3 x chains (I + II + III + IV], in good agreement with the mass of 209 kDa calculated from the amino acid sequences of the four chains, and represents the largest functional subunit of Lumbricus hemoglobin. Twelve copies of this subunit would account for two-thirds of the total mass of the molecule, as suggested earlier (Vinogradov, S. N., Lugo, S. L., Mainwaring, M. G., Kapp, O. H., and Crewe, A. V. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 8034-8038). The retention of only partial cooperativity by the 200-kDa subunit implies that full cooperativity is dependent on the presence of a complete hexagonal bilayer structure, wherein 12 200-kDa subunits are linked together by approximately 30-kDa heme-deficient chains.  相似文献   

17.
Nonmuscle myosin IIs (NM IIs) are a group of molecular motors involved in a wide variety of cellular processes including cytokinesis, migration, and control of cell morphology. There are three paralogs of the NM II heavy chain in humans (IIA, IIB, and IIC), each encoded by a separate gene. These paralogs are expressed at different levels according to cell type and have different roles and intracellular distributions in vivo. Most previous studies on NM II used tissue-purified protein or expressed fragments of the molecule, which presents potential drawbacks for characterizing individual paralogs of the intact protein in vitro. To circumvent current limitations and approach their native properties, we have successfully expressed and purified the three full-length human NM II proteins with their light chains, using the baculovirus/Sf9 system. The enzymatic and structural properties of the three paralogs were characterized. Although each NM II is capable of forming bipolar filaments, those formed by IIC tend to contain fewer constituent molecules than those of IIA and IIB. All paralogs adopt the compact conformation in the presence of ATP. Phosphorylation of the regulatory light chain leads to assembly into filaments, which bind to actin in the presence of ATP. The nature of interactions with actin filaments is shown with different paralogs exhibiting different actin binding behaviors under equivalent conditions. The data show that although NM IIA and IIB form filaments with similar properties, NM IIC forms filaments that are less well suited to roles such as tension maintenance within the cell.  相似文献   

18.
Fiber type composition of the vastus lateralis muscle of young men and women.   总被引:11,自引:0,他引:11  
This study presents data collected over the past 10 years on the muscle fiber type composition of the vastus lateralis muscle of young men and women. Biopsies were taken from the vastus lateralis muscle of 55 women (21.2+/-2.2 yr) and 95 men (21.5+/-2.4 yr) who had volunteered to participate in various research projects. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were classified using mATPase histochemistry, and cross-sectional area was measured for the major fiber types (I, IIA, and IIB). Myosin heavy chain (MHC) content was determined electrophoretically on all of the samples from the men and on 26 samples from the women. With the exception of fiber Type IC, no significant differences were found between men and women for muscle fiber type distribution. The vastus lateralis muscle of both the men and women contained approximately 41% I, 1% IC, 1% IIC, 31% IIA, 6% IIAB, and 20% IIB. However, the cross-sectional area of all three major fiber types was larger for the men compared to the women. In addition, the Type IIA fibers were the largest for the men, whereas the Type I fibers tended to be the largest for the women. Therefore, gender differences were found with regard to the area occupied by each specific fiber type: IIA>I>IIB for the men and I>IIA>IIB for the women. These data establish normative values for the mATPase-based fiber type distribution and sizes in untrained young men and women.  相似文献   

19.
The extracellular hemoglobin of Lumbricus terrestris (3900 kDa) consists of at least six different polypeptide chains: I through IV (16-19 kDa), V (31 kDa) and IV (37 kDa) (Vinogradov, S.N., Shlom, J.M., Hall, B.C., Kapp, O.H. and Mizukami, H. (1977) Biochim. Biophys. Acta 492, 136-155). SDS-polyacrylamide gel electrophoresis of the unreduced hemoglobin shows that chains II, III and IV form a disulfide-bonded 50 kDa subunit. This subunit was isolated by gel filtration of the hemoglobin on Sephacryl S-200 (a) at neutral pH in 0.1% SDS and (b) in 0.1 M sodium acetate buffer (pH 4.0); in the latter case it retains heme. The 50 kDa subunit obtained by method (b) was reduced and subjected to chromatofocusing on PBE 94 column: the elution pattern obtained with Polybuffer 74 (pH 4.5) and monitored at 280 nm, consisted of three peaks A, B and C; peaks A and B but not C, had absorbance at 410 nm. SDS-polyacrylamide gel electrophoresis showed that peaks A, B and C corresponded to chains II, IV and III, respectively. Amino acid analyses and N-terminal sequence determinations identified chain II as the whose primary structure had been determined (Garlick, R. and Riggs, A. (1982) J. Biol. Chem. 257, 9005-9015). Carbohydrate analysis of the native hemoglobin shows it to contain 2.0 +/- 0.5% carbohydrate consisting of mannose and N-acetylglucosamine in a mole ratio of about 9:1. The carbohydrate content of the 50 kDa subunit is 1.8 +/- 0.5%; it consists of mannose and N-acetylglucosamine in the same ratio and it appears to be associated with chain IV. Rabbit polyclonal antisera to 50 kDa subunit, prepared by method (a), and to the native hemoglobin were shown to cross-react with the hemoglobin and the 50 kDa subunit, respectively, by immunodiffusion. One of eight mouse monoclonal antibodies directed against the native hemoglobin reacted strongly with the 50 kDa subunit prepared by methods (a) and (b) in an enzyme-linked immunosorbent assay (ELISA). Another monoclonal antibody reacted strongly with the 50 kDa subunit obtained by method (b). Neither of the two hybridomas exhibited a strong reaction with any of the three constituent chains of the 50 kDa subunit. These results suggest that the unusual disulfide-bonded 50 kDa subunit, consisting of three myoglobin-like polypeptide chains of which only two have heme, is an integral part of the native Lumbricus hemoglobin molecule.  相似文献   

20.
Murine monoclonal antibodies to the extracellular hemoglobin of Lumbricus terrestris were prepared by a modification of the method of Kohler and Milstein. 224 hybridomas were found to produce antibodies which bound to the hemoglobin; they were tested for binding to the four subunits of the hemoglobin: M (chain I, 16 kDa), D1 (chain V, 31 kDa), D2 (chain VI, 37 kDa) and T (50 kDa), a disulfide-bonded trimer of chains II, III and IV, each of about 17 kDa. 150 hybridomas bound to all four subunits and 40 hybridomas bound to various combinations of subunits. The remaining 34 hybridomas combined only with the hemoglobin. The twelve hybridomas obtained after subculturing and cloning were tested for their binding to the two fractions II and III, consisting of subunits D1 + D2 + T and M, respectively, obtained by dissociation at pH 9.5 and at pH 4.0 and to the reassociated whole molecules, obtained subsequent to return to neutral pH. Eight hybridomas which combined only with the hemoglobin also combined with all the reassociated molecules but not with any of the fractions: these monoclonal antibodies probably recognize conformation-dependent antigenic sites that are present only in the hexagonal bilayer structure characteristic of the native and reassociated hemoglobin molecules. Of the remaining four hybridomas, two bound to subunit T and two combined with subunits T and D2; they also combined with the reassociated molecules and with the fractions II. In addition, the hybridomas did not bind to the hemoglobins of Tubifex, Limnodrilus, Arenicola, Tylorrhynchus and Macrobdella or to the chlorocruorins of Myxicola and Eudistylia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号