首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Considering the nanofabrication errors, the real fabricated metallic nanowires may have irregular cross-sectional shapes. In this work, the metallic nanowires array with arbitrary cross-sectional shapes for negative refraction in visible regime was studied theoretically. To fully understand the evolution process of the negative refraction of the metallic wires with irregular cross-sectional shapes, the effective refractive index, effective mass, and effective radius of the wires were put forth and studied. The nanowire array with arbitrary cross-sectional shapes with different geometrical parameters was investigated in detail by means of computational numerical calculation on the basis of finite difference and time?Cdomain algorithm. The influence of geometrical parameters of the nanowires on negative refraction was systematically analyzed. The calculated results indicate that the irregular shape can play a positive role for the negative refraction-based imaging application.  相似文献   

2.
We report the dynamic control characteristics of electromagnetic wave propagation in a nonlinear metamaterial by an applied electric field, which is constructed by an array of metallic nanowires embedded into a nonlinear dielectric. Numerical results show that the composite structure can appear three kinds of interesting interconversion characteristics among positive refraction, negative refraction, and cut-off states by adjusting the intensity of the applied electric field. Consequently, we can switch all-optically light states between the total reflection state (OFF state) and the total transmission state (ON state), as well as control light propagation route dynamically. Moreover, we also elaborate on the dependency of the refraction angles of energy flow and wave vector, and Brewster angle on the applied electric field and the orientation angle φ. These properties open up an avenue for potential applications of nonlinear metamaterials in nanophotonic devices such as all-optical switches, routers, and wave cut-off devices.  相似文献   

3.
In this paper, we designed a hexagonal lattice photonic crystal (PC) which presents negative refraction behavior in the broadband visible region. By varying the PC parameters, a graded index PC was obtained for the purpose of focusing a plane wave with large transmission. Finite-difference and time-domain algorithm-based numerical calculation was adopted to demonstrate the negative refraction and analyze the focusing effect. Calculation results demonstrate that the designed PCs have good focusing property together with large transmission. The proposed structures provide an approach for designing the negative refraction-based imaging systems.  相似文献   

4.
We present an electrode, based on structurally controlled nanowires, as a first step towards developing a useful nanostructured device for neurophysiological measurements in vivo. The sensing part of the electrode is made of a metal film deposited on top of an array of epitaxially grown gallium phosphide nanowires. We achieved the first functional testing of the nanowire-based electrode by performing acute in vivo recordings in the rat cerebral cortex and withstanding multiple brain implantations. Due to the controllable geometry of the nanowires, this type of electrode can be used as a model system for further analysis of the functional properties of nanostructured neuronal interfaces in vivo.  相似文献   

5.
The 3D finite difference time domain technique was carried out to study the optical transmission properties of nano-hole arrays in the gold thin film supported by materials with different index of refraction in the visible and infrared regions. A series of perforated nano-hole structures on the gold film at different hole radius, hole depth of 100 nm, and structural periodicity of 400 nm were studied. It was found that transmission properties (i.e., intensity, FWHM, and resonance position) were strongly affected by hole radius and surrounding medium index of refraction. The maximum optical transmittance was observed as 31.9 % in a nano-hole array of hole radius of 125 nm and refractive index of 1.3. The maximum sensitivity of 300 nm/RIU was obtained at index of refraction of 1.7, whereas the minimum one was calculated as 110 nm/RIU in a nano-hole array of hole radius of 50 nm. It was also found that on increasing the hole radius from 50 to 125 nm, the spectral sensitivity was decreased, whereas the index sensitivity was increased on increasing the refractive index.  相似文献   

6.
We investigate magnetic coupling effect on nonlinear electromagnetic properties in a three-dimensional negative index metamaterial constituted by arrays of conducting wires and split-ring resonators embedded into a Kerr nonlinear dielectric. Numerical results show that the switches of nonlinear electromagnetic properties between right-handed and left-handed properties depend closely on magnetic coupling strength, which can be divided into several different coupling regions according to the angular frequency of incident light and the nonlinear types (focused or defocused) of the dielectric. These properties may be instructive for designing optimizely composite metamaterials with negative refraction and provide various routes to manipulating light.  相似文献   

7.
Vertical nanowire arrays are increasingly investigated for their applications in steering cell behavior. The geometry of the array is an important parameter, which influences the morphology and adhesion of cells. Here, we investigate the effects of array geometry on the morphology of MCF7 cancer cells and MCF10A normal-like epithelial cells. Different gallium phosphide nanowire array-geometries were produced by varying the nanowire density and diameter. Our results show that the cell size is smaller on nanowires compared to flat gallium phosphide. The cell area decreases with increasing the nanowire density on the substrate. We observed an effect of the nanowire diameter on MCF10A cells, with a decreased cell area on 40 nm diameter nanowires, compared to 60 and 80 nm diameter nanowires in high-density arrays. The focal adhesion morphology depends on the extent to which cells are contacting the substrate. For low nanowire densities and diameters, cells are lying on the substrate and we observed large focal adhesions at the cell edges. In contrast, for high nanowire densities and diameters, cells are lying on top of the nanowires and we observed point-like focal adhesions distributed over the whole cell. Our results constitute a step towards the ability to fine-tune cell behavior on nanowire arrays.  相似文献   

8.
Lugo JE  Doti R  Faubert J 《PloS one》2011,6(4):e17188

Background

Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity developed here. We also analytically derived the negative refraction correctness condition that gives the angular region where negative refraction occurs.

Methodology/Principal Findings

By using standard photonic techniques we experimentally determined the relationship between incidence and negative refraction angles and found the negative refraction range by applying the correctness condition. In order to compare both theories with experimental results an output refraction correction was utilized. The correction uses Snell''s law and an effective refractive index based on two effective dielectric constants. We found good agreement between experiment and both theories in the negative refraction zone.

Conclusions/Significance

Since both theories and the experimental observations agreed well in the negative refraction region, we can use both negative refraction theories plus the output correction to predict negative refraction angles. This can be very useful from a practical point of view for space filtering applications such as a photonic demultiplexer or for sensing applications.  相似文献   

9.
There is a large variety of nanomaterials each with unique electronic, optical and sensing properties. However, there is currently no paradigm for integration of different nanomaterials on a single chip in a low-cost high-throughput manner. We present a high throughput integration approach based on spatially controlled dielectrophoresis executed sequentially for each nanomaterial type to realize a scalable array of individually addressable assemblies of graphene, carbon nanotubes, metal oxide nanowires and conductive polymers on a single chip. This is a first time where such a diversity of nanomaterials has been assembled on the same layer in a single chip. The resolution of assembly can range from mesoscale to microscale and is limited only by the size and spacing of the underlying electrodes on chip used for assembly. While many applications are possible, the utility of such an array is demonstrated with an example application of a chemical sensor array for detection of volatile organic compounds below parts-per-million sensitivity.  相似文献   

10.
Here a seedless and template-free technique is demonstrated to scalably grow bismuth nanowires, through thermal evaporation in high vacuum at RT. Conventionally reserved for the fabrication of metal thin films, thermal evaporation deposits bismuth into an array of vertical single crystalline nanowires over a flat thin film of vanadium held at RT, which is freshly deposited by magnetron sputtering or thermal evaporation. By controlling the temperature of the growth substrate the length and width of the nanowires can be tuned over a wide range. Responsible for this novel technique is a previously unknown nanowire growth mechanism that roots in the mild porosity of the vanadium thin film. Infiltrated into the vanadium pores, the bismuth domains (~ 1 nm) carry excessive surface energy that suppresses their melting point and continuously expels them out of the vanadium matrix to form nanowires. This discovery demonstrates the feasibility of scalable vapor phase synthesis of high purity nanomaterials without using any catalysts.  相似文献   

11.
In this paper, the coupling interaction is investigated between a metallic nanowire array and a metal film under the Kretschmann condition. The plasmonic multilayer is composed of a metallic nanowire array embedded in a polymer layer positioned above a metal film, exploiting the classical surface plasmon resonance (SPR) configuration. We analyze the influence of various structural parameters of the metallic nanowire array on the SPR spectrum of thin metal film. The results show that the coupling interactions of nanowires with the metal film can greatly affect SPR resonance wavelength and increase SPR sensitivity. The coupling strength of metallic nanowire array and metal film also impacts resonance wavelength, which can be used to adjust SPR range but have little effect on its sensitivity. The results are confirmed using a dipole coupling resonance model of metallic nanowire. We demonstrated that this nanostructured hybrid structure can be used for high sensitivity SPR monitoring in a large spectral range, which is important for advanced SPR measurement including fiber-optic SPR sensing technology.  相似文献   

12.
We investigate metal–dielectric multilayered structures with an effectively zero permittivity. Nonlocality induced by the surface plasmons in such structures can produce intriguing dispersions characterized by two crossing branches of parabolas. We obtain the critical conditions to set the two branches of parabolas apart, and reverse the direction of group velocity such that the system becomes capable of negative refraction as well as subwavelength imaging. Such phenomena theoretically exist in the quasistatic limit.  相似文献   

13.
Peptide array, which is known as an emerging technology, has been developed for identification of protein kinase activity. For this purpose, the ability of quantitative analysis is very important because the absolute change in protein kinase activity is critical for the determination of cellular function. Here we report an original type of peptide array for quantitative evaluation of protein kinase activity by fluorescence imaging. We used the peptide array for the quantitative evaluation of the nonreceptor tyrosine kinase c-Src activity as a model for detecting protein kinase activities. By using positive and negative control peptides, we obtained the actual ratio of tyrosine phosphorylation of substrate peptide not only by purified c-Src but also by c-Src in cell lysate. In addition, the experimental approach provided simple immobilization of peptide. Our sensitive, specific, and high-throughput peptide array can be used for quantitative evaluation of kinase activity and potentially can be applied to drug discovery and screening.  相似文献   

14.
Previously, a large scale assembly of nanowires in a parallel array configuration has been demonstrated, and one type of nanowire could interconnect two electrodes in the high-wire density. However, to assemble nanowires into practical logic-gate configurations in integrated circuits, we need more than the parallel assembly of nanowires. For example, when the assembling nanowires are monopolar semiconductors, logic gates such as AND, OR and NOR are to be assembled necessarily from two types of semiconducting nanowires, n-type and p-type, and some of these nanowires must cross perpendicularly to form a crossbar geometry for the logical operation. In this paper, the crossbar assembly of antibody-functionalized peptide nanotubes was demonstrated by a new biomimetic bottom-up technique. Molecular recognition between antigens and antibodies enabled two types of the antibody-functionalized bionanotubes to place them onto targeted locations on substrates, where their complementary antigens were patterned. When two rectangular pads of antigens, human IgG and mouse IgG, were patterned perpendicularly on an Au substrate by nanolithography and then the antihuman IgG nanotubes and the antimouse IgG nanotubes were incubated on this substrate in solution, these bionanotubes were attached onto corresponding locations to form the crossbar configuration.  相似文献   

15.
We propose a broadband mid-infrared super-resolution imaging system comprising a metallic nanorod-bridged dimer array. The imaging array enables super-resolution imaging of shaped dipole sources in the near field. A charge transfer plasmon (CTP) appears in a metallic nanorod-bridged dimer. By varying the radius of the junction, the plasmon resonance wavelength of CTP mode can be tuned into the mid-infrared region. Here, we investigate the broadband super-resolution imaging of the incoherent and coherent dipole sources at mid-infrared wavelengths. With the array pitch varying, we calculate the cross-sectional field intensity distributions at the source plane and the image plane by using the finite element method. The simulation results indicate that the broadband incoherent and coherent super-resolution imaging can be realized at mid-infrared wavelengths with the imaging array. The image quality is sensitively dependent on the source coherent, the array pitch, and the distance from the image plane to the array. In the same structural parameters, the image quality of coherent source of in-phase is lower than that of incoherent source. Increasing the array pitch improves the image quality but it also increases the size of the array. By reasonably choosing the array pitch of the array, the spatial resolution of ~λ/109 and ~λ/73 is obtained corresponding to the incoherent imaging case and coherent imaging case at the mid-infrared wavelength of 4390 nm. Moreover, the larger image-array distance results in the lower image quality.  相似文献   

16.
The double refraction of the chitinous hair of the crayfish is positive with respect to the axis of the hair, and is largely caused by the arrangement of submicroscopic, elongated chitin particles parallel to this axis (form birefringence). Using a series of relatively unreactive liquids and fluid mixtures which permeate the chitin framework, the type of curve relating double refraction and refractive index of the imbibed fluid is found to depend greatly on the chemical nature of the fluid. Either a positive or a negative residual birefringence may be found, depending on the choice of imbibing liquid. Separation of form and crystalline elements in double refraction by means of Ambronn''s imbibition technique is therefore unsafe in a system like chitin, where some type of oriented association of the imbibed molecules with the chitin framework is prevalent.  相似文献   

17.
Diffuse optical tomography is emerging as a viable new biomedical imaging modality. Using visible and near-infrared light this technique can probe the absorption and scattering properties of biological tissues. The main applications are currently in brain, breast, limb and joint imaging; however, optical tomographic imaging of small animals is attracting increasing attention. This interest is fuelled by recent advances in the transgenic manipulation of small animals that has led to many models of human disease. In addition, an ever increasing number of optically reactive biochemical markers has become available, which allow diseases to be detected at the molecular level long before macroscopic symptoms appear. The past three years have seen an array of novel technological developments that have led to the first optical tomographic studies of small animals in the areas of cerebral ischemia and cancer.  相似文献   

18.
Pt-Pb nanowire array was directly synthesized by electrochemical deposition of Pt-Pb alloy into the pores of microporous polycarbonate template and subsequent chemical etching of the template. The morphology and the composition of the Pt-Pb nanowires were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the Pt-Pb nanowire array electrode (Pt-PbNAE). Direct glucose oxidation on Pt-PbNAE was investigated in detail by discussing the effect of the structure and materials of the electrode on electrocatalytic oxidation of glucose. As a result, we found that the Pt-PbNAE with a three-dimensional structure exhibited high electrocatalytic activity to glucose oxidation in neutral condition and could be used for the development of nonenzymatic glucose sensor. To effectively avoid the interference coming from ascorbic acid, a negative potential of -0.20V was chosen for glucose detection, and the sensitivity of the sensor to glucose oxidation was 11.25 microAmM(-1)cm(-2) with a linearity up to 11 mM, and a detection limit of 8 microM (signal-to-noise ratio of 3).  相似文献   

19.
In this review article, we provide an overview of recent research activities in the study of plasmonic optical properties of metal nanostructures with emphasis on understanding the relation between surface plasmon absorption and structure. Both experimental results and theoretical calculations have indicated that the plasmonic absorption strongly depends on the detailed structure of the nanomaterials. Examples discussed include spherical nanoparticles, nanorods, nanowires, hollow nanospheres, aggregates, and nanocages. Plasmon–phonon coupling measured from dynamic studies as a function of particle size, shape, and aggregation state is also reviewed. The fascinating optical properties of metal nanostructures find important applications in a number of technological areas including surface plasmon resonance, surface-enhanced Raman scattering, and photothermal imaging and therapy. Their novel optical properties and emerging applications are illustrated using specific examples from recent literature. The case of hollow nanosphere structures is highlighted to illustrate their unique features and advantages for some of these applications.  相似文献   

20.
The aerial visual field of aquatic animals living near the water surface is distorted by refraction. The imaging of aerial objects by one or two submerged eyes is studied. The aerial binocular image field is determined for pairs of submerged eyes in horizonal and vertical planes. These two image spaces have significantly different structures. Aquatic animals have to correct for refraction, adapting themselves to the former aerial image field in order to recognize aerial predators or to capture such prey. The other aerial image space is only of theoretical interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号