首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscarinic stimulation of pancreatic B-cells markedly amplifies insulin secretion through complex mechanisms which involve changes in membrane potential and ionic fluxes. In this study, normal mouse islets were used to evaluate the role of Cl- ions in these effects of acetylcholine (ACh). Whatever the concentration of glucose, the rate of 36Cl- efflux from islet cells was unaffected by ACh. Replacement of Cl- by impermeant isethionate in a medium containing 15 mM glucose did not affect, or only slightly decreased, the ability of ACh to depolarize the B-cell membrane and increase electrical activity, to accelerate 45Ca2+ and 86Rb+ efflux from islet cells, and to amplify insulin release. In the absence of extracellular Ca2+, a high concentration of ACh (100 microM) mobilized intracellular Ca2+ and caused a transient release of insulin and a sustained acceleration of 86Rb+ efflux. None of these effects was affected by Cl- omission or by addition of furosemide, a blocker of the Na+, K+, 2Cl- cotransport. Isethionate substitution for Cl- in a medium containing a nonstimulatory concentration of glucose (3 mM) barely reduced the depolarization of B-cells by ACh, but inhibited the concomitant increase in 86Rb+ efflux. We have no explanation for the latter effect that was not mimicked by furosemide. In conclusion, ACh stimulation of pancreatic B-cells, unlike that of exocrine acinar cells, is largely independent of Cl- and is insensitive to furosemide. The acceleration of ionic fluxes produced by ACh does not involve the Na+, K+, 2Cl- cotransport system.  相似文献   

2.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Volume-induced increase of anion permeability in human lymphocytes   总被引:14,自引:7,他引:7       下载免费PDF全文
Peripheral blood mononuclear cells (PBM) readjust their volumes after swelling in hypotonic media. This regulatory volume decrease (RVD) is associated with a loss of cellular K+ and is thought to be promoted by an increased permeability to this ion. In contrast, no change in volume was observed when K+ permeability of PBM in isotonic media was increased to comparable or higher levels using valinomycin. Moreover, valinomycin-induced 86Rb+ loss in K+-free medium was considerably slower than in K+-rich medium. These results suggest that anion conductance limits net salt loss in isotonic media. Direct measurements of relative conductance confirmed that in volume-static cells, anion conductance is lower than that of K+. In volume-regulating cells depolarization occurred presumably as a result of increased anion conductance. Accordingly, the efflux of 36Cl from PBM was markedly increased by hypotonic stress. Since both membrane potential and intracellular 36Cl concentration are reduced in hypotonically swollen cells, the increased efflux is probably due to a change in Cl- permeability. Anions and cations seem to move independently through the volume-induced pathways: the initial rate of 86Rb uptake in swollen cells was not affected by replacement of external Cl- by SO=4; conversely, 36Cl fluxes were unaffected by substitution of K+ by Na+. The data indicate that anion conductance is rate-determining in salt and water loss from PBM. An increase in anion conductance is suggested to be the critical step of RVD of human PBM.  相似文献   

4.
The interaction between Ba2+, furosemide and D-glucose on 86Rb+ fluxes in ob/ob mouse islets was investigated. Ba2+ (2 mM) significantly reduced the ouabain-resistant 86Rb+ influx, without affecting the ouabain-sensitive influx. D-Glucose (20 mM) reduced the 86Rb+ influx in the absence of Ba2+ (2 mM) but not in the presence of the cation. Furosemide, an inhibitor of Na+, K+, Cl- co-transport, reduced the 86Rb+ influx and the effect was partly additive to the effect of 2 mM Ba2+. When the islets were preincubated with Ba2+ (2 mM) the specific effect of 1 mM furosemide on the 86Rb+ influx was reduced, whereas, in acute experiments, Ba2+ (2 mM) did not affect the specific effect of furosemide on 86Rb+ influx. 86Rb+ efflux from preloaded islets was significantly reduced by 2 mM Ba2+ and during the first 5 min of ion efflux the effect of the combination of 2 mM Ba2+ and 1 mM furosemide was stronger than the effect of Ba2+ alone. The data show that Ba2+ reduces 86Rb+ fluxes in the beta-cells and suggest that this is mainly mediated by inhibition of K+ channels in the beta-cell plasma membrane. Long-term exposure to Ba2+ may also reduce the activity of the Na+, K+, Cl- co-transport system. The effect of Ba2+ on K+ channels may help to explain the stimulatory effect on insulin release in the absence of nutrient secretagogues.  相似文献   

5.
1. The responses of primary monolayer astrocyte cultures prepared from neonatal rat brains to hyper- and hypotonic media and to the addition of L-glutamic acid were examined as part of a systematic approach to use these cultures to obtain information on the mechanisms of the volume changes seen in astroglial cells in situ. 2. Addition of 200 mM mannitol to the medium to make it hypertonic caused cell shrinkage as measured with [14C]3-O-methyl-D-glucose, and also activated K+ and Cl- uptake measured with 86Rb+ and 36Cl- respectively. The increased ion uptake was completely inhibited by 0.1 mM bumetanide, showing that the Na+ + K+ + 2 Cl- co-transport system was being activated by cell shrinkage. 3. Studies of 86Rb+ uptake as a function of external K+ and hypertonic media showed a complex pattern. Increased bumetanide-sensitive, hypertonic-stimulated uptake of 86Rb+ was seen up to 20 mM K+0, with maximum stimulation being first reached at around 2 to 5 mM K+. At concentrations greater than 20 mM K+0 there was a further increase in bumetanide-sensitive 86Rb+ uptake, but there was no stimulation of this uptake by hypertonicity. There were also increases in bumetanide-insensitive 86Rb+ fluxes at [K+]0 higher than 20 mM that may have been due to opening of voltage-dependent K+ channels; this increased 86Rb+ flux was decreased in hypertonic medium. 4. When primary astrocyte cultures were swollen in hypotonic medium there was a rapid increase in volume as measured with [14C] 3-O-methyl-D-glucose, which then decreased in the continued presence of hypotonic medium. Thus, these cells exhibit volume regulatory decrease or RVD, as described for other cells. The possible ionic bases of this phenomenon have not yet been fully examined but the initial RVD did not appear to stimulate a furosemide-sensitive cotransport system. 5. Glutamate has been implicated as a possible endogenous effector of volume change in astrocytes. In the presence of ouabain, L-glutamate led to swelling of cultured astrocytes and increased uptake of 22Na+ and 36Cl-. It is suggested that this is due to uptake of L-glutamate with cotransport of Na+ and Cl-. Increased uptake was also seen for 86Rb+ in the absence of ouabain, and this was not seen in the absence of Na+.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Three independent mutants of the Madin-Darby canine kidney cell line (MDCK) have been isolated which were capable of growth in media containing low concentrations of potassium. All three mutants were deficient to varying extents in furosemide- and bumetanide-sensitive 22Na+, 86+b+, and 36Cl- uptake. The two mutants most resistant to low K+ media had lost essentially all of the 22Na+, 86Rb+, and 36Cl- uptake activities of this system. The third mutant was partially resistant to low K+ media and had reduced levels of bumetanide-sensitive uptake for all three ions. Extrapolated initial uptake rates for 22Na+, 86Rb+, and 36Cl- revealed that the partial mutant exhibited approximately 50% of the parental uptake rates for all three ions. The stoichiometries of bumetanide-sensitive uptake in both the parental cell line and the partial mutant approximated 1 Rb+:1 Na+:2 Cl-. The results of this study provide genetic evidence for a single tightly-coupled NaCl/KCl symporter in MDCK cells. The correlation between the ability to grow in low K+ media and decreased activity of the bumetanide-sensitive co-transport system suggests that the bumetanide-sensitive transport system catalyzes net K+ efflux from cells in low K+ media. The results of 86Rb+ efflux studies conducted on ouabain-pretreated mutant and parental cells are consistent with this interpretation. Cell volume measurements made on cells at different densities in media containing normal K+ concentrations showed that none of the mutants differed significantly in volume from the parental strain at a similar cell density. Furthermore, all three mutants were able to readjust their volume after suspension in hypotonic media. These results suggest that in the MDCK cell line, the bumetanide-sensitive NaCl/KCl symport system does not function in the regulation of cell volume under the conditions employed.  相似文献   

7.
The exposure of human fibroblasts to hypotonic medium (200 mosmolal) evoked the activation of both 36Cl- influx and efflux, which were insensitive to inhibitors of the anion exchanger and of the anion/cation cotransport, and conversely were inhibited by the Cl(-)-channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). 36Cl- efflux was linked to a parallel efflux of 86Rb+; thus conductive K+ and Cl- pathways are activated during volume regulation in human fibroblasts. This conclusion is supported by evidence that, in hypotonic medium, 36Cl- influx and 86Rb+ efflux were both enhanced by depolarization of the plasma membrane. Depletion of the intracellular K+ content, obtained by preincubation with the ionophore gramicidin in Na(+)-free medium, had no effect on Cl- efflux in hypotonic medium. This result has been interpreted as evidence for independent activation of K+ and Cl- pathways. It is also concluded that the anion permeability is the rate-limiting factor in the response of human fibroblasts to hypotonic stress.  相似文献   

8.
In the rat parotid salivary gland, fluid secretion is regulated by alterations in fluxes of monovalent ions. , stimulation of muscarinic, α-adrenergic or substance P receptors provokes a biphasic increase in membrane permeability to K+ which can be conveniently assayed as efflux of 86Rb. The increased 86Rb flux is thought to arise in response to a receptor mediated elevation in [Ca2+]i which activates Ca2+-activated K+-channels. The biphasic nature of the response is presumably due to a biphasic mode of Ca2+ mobilization by secretagogues; a transient response reflects release of a finite pool of Ca from an intracellular store while a more sustained phase results from Ca entry through receptor operated Ca channels or gates. Calcium also mediates an increased Na+ entry which in turn activates the Na+, K+-pump. The mechanism involved in the regulation of monovalent ion channels by Ca2+ is not understood.  相似文献   

9.
The mode of influx of 86Rb+, a K+ congener, to exponentially proliferating L1210 murine leukemia cells, incubated in a Krebs-Ringer buffer, has been characterised. The influx was composed of a ouabain-sensitive fraction (approx. 40%), a loop diuretic-sensitive fraction (approx. 40%) and a fraction which was insensitive to both types of inhibitor (approx. 15%). The fraction of ouabain-insensitive 86Rb+ influx, which was fully inhibited by furosemide (1 mM) or bumetanide (100 microM), was completely inhibited when Cl- was completely substituted by nitrate or gluconate ions, but was slightly (29 +/- 12%) stimulated if the Cl- was substituted by Br-. The substitution of Na+ by Li+, choline or tetramethylammonium ions inhibited the loop diuretic-sensitive fraction of 86Rb+ uptake. These results suggested that a component of 86Rb+ influx to L1210 cells was mediated via a Na+/K+/Cl- cotransporter. 86Rb+ efflux from L1210 cells which had been equilibrated with 86Rb+ and incubated in the presence or absence of 1 mM ouabain, was insensitive to the loop diuretics. Additionally, efflux rates were found to be independent of the external concentration of K+, suggesting that efflux was not mediated by K+-K+ exchange. The initial rate of 86Rb+ influx to L1210 cells in the plateau phase of growth was reduced to 44% of that of exponentially dividing cells, the reduction being accounted for by significant decreases in both ouabain- and loop diuretic-sensitive influx; these cells were reduced in volume compared to cells in the exponential phase of cell growth. In cells which had been deprived of serum for 18 h, and which showed an increase of the proportion of cells in the G1 phase of the cell cycle, the addition of serum stimulated an immediate increase in the furosemide-sensitive component of 86Rb+ influx. Diuretic-sensitive 86Rb+ influx was not altered by the incubation of the cells with 100 microM dibutyryl cyclic AMP, but was inhibited by 10 microM of the cross-linking agent nitrogen mustard (bis(2-chloro-ethyl)methylamine, HN2).  相似文献   

10.
In order to investigate whether Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the beta-cells, we tested the interaction between the effects of Na+ deficiency, furosemide and D-glucose on 86Rb+ fluxes in beta-cell-rich mouse pancreatic islets. Removal of extracellular Na+ slightly reduced the ouabain-resistant 86Rb+ influx and the specific effect of 1 mM furosemide on this influx was significantly smaller in Na(+)-deficient medium. The capacity of 20 mM D-glucose to reduce the ouabain-resistant 86Rb+ influx was not changed by removal of extracellular Na+. The 86Rb+ efflux from preloaded islets was rapidly and reversibly reduced by Na+ deficiency. Furosemide (1 mM) reduced the 86Rb+ efflux and the effect of the combination of Na+ deficiency and 1 mM furosemide was not stronger than the effect of furosemide alone. 22Na+ efflux was reduced by both ouabain and furosemide and the effects appeared to be additive. The data suggest that Na+ participates in loop diuretic-sensitive Cl(-)-cation co-transport in the pancreatic beta-cells. This adds further support to the idea that beta-cells exhibit a Na+, K+, Cl- co-transport system. Since some of the furosemide effect on 86Rb+ efflux persisted in the Na(+)-deficient medium, it is likely that also loop diuretic-sensitive K+, Cl- co-transport exists in this cell type.  相似文献   

11.
The effects of graded doses (5 x 10(-8) to 10(-5)) acetylcholine on intracellular Ca2+ and on 86Rb and 36Cl efflux were compared in submandibular cell clusters of 1 and 7 day-old and adult rats. Initial Ca2+ peaks were similar at agonists concentrations lower than 10(-7) M but the release of Rb+ and Cl- were smaller in cells of young animals. At higher agonist concentrations, Ca2+ peaks were higher in immature cells; however, initial Cl- (but not Rb+) efflux was similar to that of mature cells. Plateau Ca2+ levels were independent of age and agonist concentrations but the content of Cl- and Rb+ varied greatly and differences between age groups were less evident. These data confirm a dissociation between intracellular Ca2+ levels and Ca(2+)-mediated ion transport in immature salivary cells.  相似文献   

12.
The effects of acute omission of extracellular Na+ on pancreatic B-cell function were studied in mouse islets, using choline and lithium salts as impermeant and permeant substitutes, respectively. In the absence of glucose, choline substitution for Na+ hyperpolarized the B-cell membrane, inhibited 86Rb+ and 45Ca2+ efflux, but did not affect insulin release. In contrast, Li+ substitution for Na+ depolarized the B-cell membrane and caused a Ca2+-independent, transient acceleration of 45Ca2+ efflux and insulin release. Na+ replacement by choline in the presence of 10 mM glucose and 2.5 mM Ca2+ again rapidly hyperpolarized the B-cell membrane. This hyperpolarization was then followed by a phase of depolarization with continuous spike activity, before long slow waves of the membrane potential resumed. Under these conditions, 86Rb+ efflux first decreased before accelerating, concomitantly with marked and parallel increases in 45Ca2+ efflux and insulin release. In the absence of Ca2+, 45Ca2+ and 86Rb+ efflux were inhibited and insulin release was unaffected by choline substitution for Na+. Na+ replacement by Li+ in the presence of 10 mM glucose rapidly depolarized the B-cell membrane, caused an intense continuous spike activity, and accelerated 45Ca2+ efflux, 86Rb+ efflux and insulin release. In the absence of extracellular Ca2+, Li+ still caused a rapid but transient increase in 45Ca2+ and 86Rb+ efflux and in insulin release. Although not indispensable for insulin release, Na+ plays an important regulatory role in stimulus-secretion coupling by modulating, among others, membrane potential and ionic fluxes in B-cells.  相似文献   

13.
A vesicular microsomal fraction isolated from hog fundic mucosa demonstrates the capacity to take up equal amounts of RB+ and Cl-. The amount of the Rb+ uptake is sensitive to the extravesicular osmolarity, and rate of uptake is sensitive to temperature. 86Rb+ efflux is dependent upon the cation composition of the diluting solution. ATP, but not beta-gamma methylene ATP, induces a reversible efflux of 86Rb+ from loaded vesicles, and this is dependent upon a functional K+-ATPase. The ATP induced efflux is not affected by CCCP (carbonyl cyanide m-chlorophenylhydrazone) or TCS (tetrachlorosalicylanilide) nor by lipid soluble ions or valinomycin. Nigericin inhibits the efflux by 40%. Uptake of the lipid soluble ion 14C-SCN- has been demonstrated and is enhanced by ATP only in the presence of valinomycin. The results are consistent with a neutral or isopotential exchange of H+ for Rb+ mediated by K+-ATPase.  相似文献   

14.
A BALB/c 3T3 preadipose cell line defective in Na+K+Cl- cotransport (3T3-E12a cells) has been used to study the relationship between phorbol ester-induced rapid changes in cation fluxes and changes in expression of a gene known to be modulated by this agent. In contrast to its effect on parental 3T3 cells, 12-O-tetradecanoylphorbol-13-acetate (TPA) did not inhibit either furosemide-sensitive 86Rb+ influx or the rate of 86Rb+ efflux from preloaded mutant cells. TPA-induced changes in intracellular K+ content were diminished in 3T3-E12a cells as compared with parental cells. Thus, mutation of the Na+K+Cl- cotransport system renders overall potassium transport in mutant cells largely insensitive to modulation by TPA. The morphological and functional responses of 3T3 and 3T3-E12a cells to TPA were also compared. In contrast to the extensive and long-lasting changes in morphology of 3T3 cells after 0.16 microM TPA addition, only slight and shorter-lived morphological effects of TPA were observed in 3T3-E12a cells. The transport properties of mutant cells were not totally unresponsive to TPA since hexose transport (2-deoxyglucose uptake) could be stimulated in both cell types. To establish a possible link between early changes in cation fluxes and activation of gene expression by TPA, the induction of the enzyme ornithine decarboxylase (ODC) was studied in detail. Addition of fresh medium containing serum or exposure to hypoosmotic conditions resulted in the induction of ODC in both 3T3 and 3T3-E12a cells. However, TPA failed to cause an increase in ODC activity in mutant cells, although a substantial induction of the enzyme was seen in parental cells. These results suggest that rapid changes in ion fluxes mediated by the Na+K+Cl- cotransport system are necessary for at least one of the phorbol ester-induced changes in gene expression in responsive cells.  相似文献   

15.
Human peripheral blood lymphocytes regulate their volumes in hypotonic solutions. In hypotonic media in which Na+ is the predominant cation, an initial swelling phase is followed by a regulatory volume decrease (RVD) associated with a net loss of cellular K+. In media in which K+ is the predominant cation, the rapid initial swelling is followed by a slower second swelling phase. 86Rb+ fluxes increased during RVD and returned to normal when the original volume was approximately regained. Effects similar to those induced by hypotonic stress could also be produced by raising the intracellular Ca++ level. In isotonic, Ca++- containing media cells were found to shrink upon addition of the Ca++ ionophore A23187 in K+-free media, but to swell in K+-rich media. Exposure to Ca++ plus A23187 also increased 86Rb+ fluxes. Quinine (75 microM), an inhibitor of the Ca++-activated K+ pathway in other systems blocked RVD, the associated K+ loss, and the increase in 86Rb+ efflux. Quinine also inhibited the volume changes and the increased 86Rb fluxes induced by Ca++ plus ionophore. The calmodulin inhibitors trifluoperazine, pimozide and chlorpromazine blocked RVD as well as Ca++ plus A23187-induced volume changes. Trifluoperazine also prevented the increase in 86Rb+ fluxes and K+ loss induced by hypotonicity. Chlorpromazine sulfoxide, a relatively ineffective calmodulin antagonist, was considerably less potent as an inhibitor of RVD than chlorpromazine. It is suggested than an elevation in cytoplasmic [Ca++], triggered by cell swelling, increases the plasma membrane permeability to K+, the ensuing increased efflux of K+, associated anions, and osmotically obliged water, leading to cell shrinking (RVD).  相似文献   

16.
Neurotoxins which modify the gating system of the Na+ channel in neuroblastoma cells and increase the initial rate of 22Na+ influx through this channel also give rise to the efflux of 86Rb+ and 42K+. These effluxes are inhibited by tetrodotoxin and are dependent on the presence in the extracellular medium of cations permeable to the Na+ channel. These stimulated effluxes are not due to membrane depolarization or increases in the intracellular content of Na+ and Ca2+ which occur subsequent to the action of neurotoxins. The relationships of 22Na+ influx and 42K+ (or 86Rb+) effluxes to both the concentration of neurotoxins and the concentration of external permeant cations strongly suggest that the open form of the Na+ channel stabilized by neurotoxins permits an efflux of K+ ions. Our results indicate that for the efflux of each K+ ion there is a corresponding influx of two Na+ ions into the Na+ channel.  相似文献   

17.
Extracellular ATP is known to increase the membrane permeability of a variety of cells. Addition of ATP to human leukemic lymphocytes loaded with the Ca2+ indicator, fura-2, induced a rise in cytosolic Ca2+ concentration which was attenuated or absent in NaCl media compared with KCl, choline Cl, or NMG Cl media. In contrast, anti-immunoglobulin antibody gave similar Ca2+ transients in NaCl and KCl media. A half-maximal inhibition of peak ATP-induced Ca2+ response was observed at 10-16 mM extracellular Na+. Basal 45Ca2+ influx into lymphocytes was stimulated 9.6-fold by ATP added to cells in KCl media, but the effect of ATP was greatly reduced for cells in NaCl media. Hexamethylene amiloride blocked 74% of the ATP-stimulated Ca45 uptake of cells in KCl media. Flow cytometry measurements of fluo-3-loaded cells confirmed that the ATP-induced rise in cytosolic Ca2+ was inhibited either by extracellular Na+ or by addition of hexamethylene amiloride. Extracellular ATP stimulated 86Rb efflux from lymphocytes 10-fold and this increment was inhibited by the amiloride analogs in a rank order of potency 5-(N-methyl-N-isobutyl)amiloride greater than 5-(N,N-hexamethylene)amiloride greater than 5-(N-ethyl-N-isopropyl)amiloride greater than amiloride. ATP-induced 86Rb efflux showed a sigmoid dependence on the concentration of ATP and Hill analysis gave K1/2 of 90 and 130 microM and n values of 2.5 and 2.5 for KCl and NaCl media, respectively. However, the maximal ATP-induced 86Rb efflux was 3-fold greater in KCl than in NaCl media. Raising extracellular Na+ from 10 to 100 mM increased ATP-induced Na+ influx from a mean of 2.0 to 3.7 nEq/10(7) cells/min, suggesting either saturability or self-inhibition by Na+ of its own influx. These data suggest that ATP opens a receptor-operated ion channel which allows increased Ca2+ and Na+ influx and Rb+ efflux and these fluxes are inhibited by extracellular Na+ ions as well as by the amiloride analogs.  相似文献   

18.
Cultured cerebellar granule neurons exposed to gradual reductions in osmolarity (-1.8 mOsm/min) maintained constant volume up to -50% external osmolarity (pi(o)), showing the occurrence of isovolumetric regulation (IVR). Amino acids, Cl-, and K+ contributed at different phases of IVR, with early efflux threshold for [3H]taurine, D-[3H]aspartate (as marker for glutamate) of pi(o) -2% and -19%, respectively, and more delayed thresholds of -30% for [3H]glycine and -25% and -29%, respectively, for Cl- (125I) and K+ (86Rb). Taurine seems preferentially involved in IVR, showing the lowest threshold, the highest efflux rate (five-fold over other amino acids) and the largest cell content decrease. Taurine and Cl- efflux were abolished by niflumic acid and 86Rb by 15 mM Ba2+. Niflumic acid essentially prevented IVR in all ranges of pi(o). Cl--free medium impaired IVR when pi(o) decreased to -24% and Ba2+ blocked it only at a late phase of -30% pi(o). These results indicate that in cerebellar granule neurons: (i) IVR is an active process of volume regulation accomplished by efflux of intracellular osmolytes; (ii) the volume regulation operating at small changes of pi(o) is fully accounted for by mechanisms sensitive to niflumic acid, with contributions of both Cl- and amino acids, particularly taurine; (iii) Cl- contribution to IVR is delayed with respect to other niflumic acid-sensitive osmolyte fluxes (osmolarity threshold of -25% pi(o)); and (iv), K+ fluxes do not contribute to IVR until a late phase (< -30% pi(o)).  相似文献   

19.
Cyclic AMP stimulation of Na-K pump activity in quiescent swiss 3T3 cells   总被引:3,自引:0,他引:3  
Recently, we have found that an increase in the intracellular level of cAMP acts as a mitogenic signal for Swiss 3T3 cells (Rozengurt et al., Proc. Natl. Acad, Sci. USA, 78:4392, 1981). The results presented in this paper demonstrate that addition of cAMP-elevating agents to confluent and quiescent cultures of Swiss 3T# causes a marked increase in the rate of 86Rb+ uptake but has no effect on the rate of cation efflux. The stimulation of ion uptake is mediated by the Na-K pump as shown by the ouabain sensitivity of the 86Rb+ fluxes. The increase in Na-K pump activity occurs whether cAMP is generated endogenously by stimulation of adenylate cyclase activity by cholera toxin, adenosine agonists, or PGE1 or added exogenously as 8BrcAMP. The stimulatory effect of these compounds on 86Rb+ uptake is potentiated by inhibitors of cyclic nucleotide phosphodiesterase activity. Cholera toxin stimulates the Na-K pump in a dose-dependent manner; half-maximal effect is achieved at 0.7 ng/ml. The stimulation of ouabain-sensitive 86Rb+ uptake by cAMP-elevating agents reaches a maximum after 2-3 h of incubation. This contrasts with the rapid (within minutes) stimulation of the Na-K pump caused by serum and other mitogenic agents. Further, cAMP-elevating agents fail to increase Na+ influx into 3T3 cells whereas serum causes a marked increase in Na+ influx, under identical experimental conditions. These findings suggest that the stimulation of Na-K pump activity caused by increased cAMP levels contrasts mechanistically with the rapid control of pump activity by serum which is primarily mediated by increased Na+ entry into the cells.  相似文献   

20.
Cell swelling and elevated intracellular Ca2+ increase K+ permeability in lymphocytes. Experiments were performed to test whether these effects can also be elicited in isolated plasma membrane vesicles. Rabbit thymocytes, used as a source of membrane vesicles, were found to regain their volume after swelling in hypotonic, low-K+ media. This regulatory volume decrease (RVD) was inhibited by quinine and trifluoperazine, but not affected by ouabain. Both efflux and uptake of K+ (86Rb) were stimulated by hypotonicity. Addition of A23187 plus Ca2+ also increased 86Rb fluxes. Ca2+- and volume-induced 86Rb fluxes were also studied in isolated membranes. A plasma membrane-rich vesicle fraction, enriched over 11-fold in 5'-nucleotidase, was isolated from thymocytes. The vesicles were about 35% inside-out and trapped 86Rb in an osmotically active compartment of approximately 1.3 microliter/mg protein. Equilibrium exchange fluxes of 86Rb in the vesicles were unaffected by Ca2+ with or without A23187. Calmodulin had no effect on 86Rb permeability but stimulated ATP-dependent Ca2+ accumulation. Hypotonic swelling increased both uptake and efflux of 86Rb from vesicles. However, this increase was not blocked by either quinine or trifluoperazine, was not specific for K+ (86Rb), and is probably unrelated to RVD. It is concluded that components essential for the volume- and Ca2+-induced changes in K+ permeability are lost or inactivated during membrane isolation. An intact cytoarchitecture may be required for RVD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号