首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrrolizidine alkaloids (PAs), mainly those with a 1,2-double bond in the necine base moiety (=1,2-dehydropyrrolizidines), constitute a class of well studied compounds with respect to their flux through different trophic levels. Plants belonging to various clades (e.g. Echiteae, Eupatorieae and Senecioneae, Boraginaceae, and Crotalarieae) biosynthesize PAs as N-oxides, generally in the roots, and transport them through the phloem to stems, leaves, and reproductive structures, where they act as potent deterrents against non-specialist herbivores. On the other hand, PA specialist herbivores (mainly arctiid moths, danaine and ithomiine butterflies, and some leaf beetles) have become able to overcome this chemical barrier, and to sequester these alkaloids from their larval host plants or from sources visited by adults, such as flowers and dead or withered plants. Specialists use PAs for their own benefit as chemical defence against a vast array of predators (e.g. ants, lacewings, spiders, lizards, birds, and mammals), but some predators are able to feed on PA-insects, by avoiding or physiologically overcoming PAs present in tissues of the ingested prey. Parasitoids may be affected by PAs, depending on their degree of specialization in relation to PA-insects. Arctiidae, Danainae and Ithomiinae also use PAs as precursors of sexual pheromones. The effects of PAs on trophic interactions have been intensely studied over the last four decades, but some open questions remain, and are discussed, such as the underlying mechanisms that lead to PA diversification, activity of different PA structures, synergism among PAs and other so-called defensive substances in PA-plants, and the ability to overcome this chemical barrier by predators and parasitoids.  相似文献   

2.
3.
Frölich C  Ober D  Hartmann T 《Phytochemistry》2007,68(7):1026-1037
Three species of the Boraginaceae were studied: greenhouse-grown plants of Heliotropium indicum and Agrobacterium rhizogenes transformed roots cultures (hairy roots) of Cynoglossum officinale and Symphytum officinale. The species-specific pyrrolizidine alkaloid (PA) profiles of the three systems were established by GC-MS. All PAs are genuinely present as N-oxides. In H. indicum the tissue-specific PA distribution revealed the presence of PAs in all tissues with the highest levels in the inflorescences which in a flowering plant may account for more than 70% of total plant alkaloid. The sites of PA biosynthesis vary among species. In H. indicum PAs are synthesized in the shoot but not roots whereas they are only made in shoots for C. officinale and in roots of S. officinale. Classical tracer studies with radioactively labelled precursor amines (e.g., putrescine, spermidine and homospermidine) and various necine bases (trachelanthamidine, supinidine, retronecine, heliotridine) and potential ester alkaloid intermediates (e.g., trachelanthamine, supinine) were performed to evaluate the biosynthetic sequences. It was relevant to perform these comparative studies since the key enzyme of the core pathway, homospermidine synthase, evolved independently in the Boraginaceae and, for instance, in the Asteraceae [Reimann, A., Nurhayati, N., Backenkohler, A., Ober, D., 2004. Repeated evolution of the pyrrolizidine alkaloid-mediated defense system in separate angiosperm lineages. Plant Cell 16, 2772-2784.]. These studies showed that the core pathway for the formation of trachelanthamidine from putrescine and spermidine via homospermidine is common to the pathway in Senecio ssp. (Asteraceae). In both pathways homospermidine is further processed by a beta-hydroxyethylhydrazine sensitive diamine oxidase. Further steps of PA biosynthesis starting with trachelanthamidine as common precursor occur in two successive stages. Firstly, the necine bases are structurally modified and either before or after this modification are converted into their O(9)-esters by esterification with one of the stereoisomers of 2,3-dihydroxy-2-isopropylbutyric acid, the unique necic acid of PAs of the lycopsamine type. Secondly, the necine O(9)-esters may be further diversified by O(7)- and/or O(3')-acylation.  相似文献   

4.
The constitutive pyrrolizidine alkaloid (PA) concentration of both shoots and roots differed significantly between 17 selfed families. The broad-sense heritability accounted for 33–43% of the variation in PA levels. Families also differed significantly in the amount and the direction of PA induction in both shoots and roots, 24 h after punching 15 holes in the leaves. We found a significantly negative relationship between the changes in PA content of the shoots and changes in PA content of the roots. The total PA content of the plants did not increase. We thus concluded that changes in PA distribution over the plant resulted from transport of PAs within the plant. The direction of transport differed between families: some transported PAs to the shoots, others to the roots. This makes it questionable whether PAs act as damage-induced defences. The effect of damage on the PA concentration is far less than the differences found between families in the constitutive PA concentration. This again strongly suggests that damage-induced defences inCynoglossum officinale do not play an important role. We argue that the general lack of attention that is given to genotype in induction experiments, has led to false conclusions.  相似文献   

5.
研究了不同浓度NaCl胁迫下,香根草(Vetiteria zizanioides)根、叶中的游离态、结合态、束缚态多胺(PAs)[包括腐胺(Put),尸胺(Cad),亚精胺(Sod)和精胺(Spm)]含量的变化。在中度盐胁迫(100,200mmol L^-1NaCl)9天时,香根草基本能够正常生长,但在重度盐胁迫(300mmol L^-1NaCl)下,其生长受到严重抑制。在上述3个不同浓度的NaCl胁迫下,香根草根、叶中游离态Put,Cad,spd,Stma和总的游离态PAs含量明显下降,在高盐浓度下下降幅更大;结合态Put,Cad,Sod,Spm和总的结合态PAs含量显著上升,但在重度盐胁迫下升幅较小或与对照相当;束缚态Put,Cad和总的束缚态PAs含量均减少,而束缚态Spd和Spm含量在叶中是下降的,在根中则增加,且在中度盐胁迫下更明显。对根和叶片而言,除游离态(Spd+Spm),Put比值在重度盐胁迫下较对照显著下降外,其它游离态、结合态、束缚态和总的(Spd+Spm)/Put比值在不同盐胁迫下均上升,在中度盐胁迫下更明显。这表明,维持多胺总量的稳态和较高的(Spd+Spm)/Put比值是香根草适应中度盐胁迫的一个重要机制。  相似文献   

6.
Proanthocyanidin (PA) and anthocyanin accumulation and location in developing leaves, flowers, and seeds of the legumes Medicago sativa, Lotus japonicus, Lotus uliginosus, Hedysarum sulfurescens, and Robinia pseudacacia were investigated by quantitative measurements and by histological analysis after staining with 1% vanillin/HCl, butanol/HCl, or 50% HCl. M. sativa leaves and flowers, L. japonicus leaves, and R. pseudacacia flowers do not contain PAs, but seeds of all investigated species contain PAs. Anthocyanins are absent in the seed coats of all five species and in leaves of L. japonicus. PA content generally increases as a function of development in leaves, but declines in flowers. With the exception of H. sulfurescens, flower PAs are synthesized in the parenchyma cells of the standard petal, while anthocyanins are located in the neighboring epidermal cells. Leucocyanidin reductase (LCR) catalyzes the conversion of 2,3-trans-3,4-cis-leucocyanidin to (+)-catechin and is the first enzyme in the PA-specific pathway. LCR activity was only detected in PA-containing tissues and generally declined during tissue development.  相似文献   

7.
以4个不同基因型的节瓜为材料,通过两个发育时期(10、19片叶展平)茎尖取样,研究了多胺(PA)含量和比值与植株花性别分化的关系。结果表明,节瓜茎尖4种多胺含量差异显著,两个取样时期都是亚精胺(Spd)〉腐胺(Put)〉尸胺(Cad)〉精胺(Spm)。10片叶展平时期多胺含量与节瓜花性别分化之间没有明确的相关性;19片叶展平时期,节瓜茎尖Put、Spd和多胺总量与植株雌花分化比例呈极显著的正相关,而Cad则与雌花分化比例呈极显著的负相关。在两个取样时期,复合指标Spd/PA都与植株雌花分化比例呈显著的正相关,而(Put+Cad)/(Spd+Spm)均与之呈显著的负相关,可以较好地预测节瓜的花性别分化状况。  相似文献   

8.
Pyrrolizidine alkaloids (PAs) often serve as chemical mediators of plant-herbivore-predator interactions. Butterflies (Danainae and Ithomiinae) and moths (Arctiidae) usually acquire PAs from plant sources (larval host plants, flowers or withered leaves visited by adults—pharmacophagy) and thereby become chemically protected against predators; they also use PAs as pheromone precursors. Study by GC-MS of PAs in three species of Ithomiinae butterflies, their larval host plants and adult alkaloid sources showed three different acquisition patterns: (1) larvae of the primitive Tithorea harmonia sequester PAs from their food plant Prestonia acutifolia (Apocynaceae: Echitoideae), and adults may also acquire these alkaloids from plant sources; (2) larvae of the more derived Aeria olena feed on Prestonia coalita , in whose leaves no PAs were detected, but freshly emerged adults sometimes contain PAs and males intensively seek and sequester these alkaloids in plant sources; and (3) larvae of the still more advanced Mechanitis polymnia feed on several PA-free Solanum species, and adult males sequester the alkaloids from various plant sources. Males and females of all three species contain mostly two PAs, the diastereoisomeric retronecine monoesters lycopsamine and intermedine, stored in the N-oxide form. Larval host plants and adult plant sources showed a large array of PA structures, the most abundant and frequent being lycopsamine and its diastereoisomers intermedine, echinatine, rinderine and indicine, and the deoxy-analogues supinine and amabiline. Bioassays with wild caught and freshly emerged adults suggest that protection against predation by the orb weaving spider Nephila clavipes may be dependent on PA concentration and maybe some spider idiosyncrasies, but freshly emerged Aeria olena without PAs are also liberated by Nephila , suggesting other protective compounds. The role of this spider as a selective pressure for PA acquisition by ithomiines is not clear.  相似文献   

9.
Hypericum polyanthemum Klotzsch ex Reichardt, an endemic species of Southern Brazil, was micropropagated on MS medium supplemented with 1.78 μM BAP. Shoot proliferation and rooting was achieved on hormone-free medium and plantlets survived acclimatization. The bioactive compounds: 6-isobutyryl-5,7-dimethoxy-2,2-dimethyl-benzopyran (HP1), 7-hydroxy-6-isobutyryl-5-methoxy-2,2-dimethyl-benzopyran (HP2) and 5-hydroxy-6-isobutyryl-7-methoxy-2,2-dimethyl-benzopyran (HP3) were quantified in the leaves, stems and roots of propagated and acclimatized plantlets and compared with the field-grown plants. The HPLC analysis revealed that the three benzopyrans are accumulated in the aerial parts and the concentration varied with the age of the plant whereas the roots were capable of accumulating only HP3. Greatest yield of HP1 (7.12 mg/g DW) was quantified in the leaves of the acclimatized plantlets, whereas the flowers of the plants from natural habitat displayed higher amounts of HP2 (11.04 mg/g DW) and HP3 (13.99 mg/g DW).  相似文献   

10.
Secondary metabolites such as pyrrolizidine alkaloids (PAs) play a crucial part in plant defense. PAs can occur in plants in two forms: tertiary amine (free base) and N-oxide. PA extraction and detection are of great importance for the understanding of the role of PAs as plant defense compounds, as the tertiary PA form is known for its stronger influence on several generalist insects, whereas the N-oxide form is claimed to be less deterrent. We measured PA N-oxides and their reduced tertiary amines by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We show that the occurrence of tertiary PAs is not an artifact of the extraction and detection method. We found up to 50% of tertiary PAs in shoots of Jacobine - chemotype plants of Jacobaea vulgaris. Jacobine and its derivatives (jacoline, jaconine, jacozine and dehydrojaconine) may occur for more than 20% in reduced form in the shoots and more than 10% in the roots. For 22 PAs detected in F(2) hybrids (J. vulgaris × Jacobaea aquatica), we calculate the tertiary amine percentage (TA%=the tertiary amine concentration/(tertiary amine concentration+the corresponding N-oxide concentration) × 100). We found that the TA% for various PAs was genotype-dependent. Furthermore, TA% for the different PAs were correlated and the highest correlations occurred between PAs which share high structural similarity.  相似文献   

11.
Introduction – Pyrrolizidine alkaloids (PAs) serve an important function in plant defence. Objective – To compare different extraction methods and detection techniques, namely gas chromatography with nitrogen phosphorus detection (GC‐NPD) and liquid chromatography tandem mass spectrometry (LC‐MS/MS) with quadrupole analysers for analysing PAs in Jacobaea vulgaris. Methodology – Both formic acid and sulfuric acid were tested for PA extraction from dry plant material. For GC‐NPD, reduction is required to transform PA N‐oxides into tertiary amines. Zinc and sodium metabisulfite were compared as reducing agents. Results – The lowest PA concentration measured with GC‐NPD was approximately 0.03 mg/g and with LC‐MS/MS 0.002 mg/g. The detection of major PAs by both techniques was comparable but a number of minor PAs were not detected by GC‐NPD. With the LC‐MS/MS procedure higher concentrations were found in plant extracts, indicating that losses may have occurred during the sample preparation for the GC‐NPD method. Zinc proved a more effective reducing agent than sodium metabisulfite. The sample preparation for LC‐MS/MS analysis using formic acid extraction without any reduction and purification steps is far less complex and less time consuming compared to GC‐NPD analysis with sulfuric acid extraction and PA N‐oxide reduction with zinc and purification. Conclusions – In terms of sensitivity and discrimination, formic acid extraction in combination with LC‐MS/MS detection is the method of choice for analysing PAs (both free and N‐oxides forms) in plant material. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
The total polyphenol, oxygen radical absorbance capacity (ORAC), ferric reducing antioxidant power (FRAP), radical cation scavenging ability, flavonol and flavanone contents were measured in the leaves, bulbs, roots, flowers and fruit (dry weight) of two natural populations of Gethyllis multifolia (Kukumakranka) and Gethyllis villosa. The flowers and fruit of G. multifolia and G. villosa showed higher, and in some cases significantly (P < 0.05) higher antioxidant activities when compared to the leaves, bulbs and roots. This, however, was not true for the flavanone content in both species. The total polyphenol content in the fruits of G. multifolia (21.54 mg GAE/g) and G. villosa (27.64 mg GAE/g) were found to be in agreement with those of raisins (28.30 mg GAE/g), blueberries (24 mg GAE/g) and strawberries (15.40 mg GAE/g). The FRAP values of G. multifolia flowers (76.66 μmole AAE/g) and fruit (91.51 μmole AAE/g) were found to be significantly (P < 0.05) higher than those of the other plant parts (16.76 to 39.08 μmol AAE/g). On the other hand, the flowers (590.23 μmol TE/g) and fruit (741.16 μmol TE/g) of G. villosa revealed a significantly (P < 0.05) higher ORAC when compared to the other plant parts (251.25 to 410.60 μmol TE/g). A strong correlation was evident in the fruit of both species between the total polyphenols and FRAP (r = 0.95), ORAC (r = 0.95) and flavonol content (r = 0.79).  相似文献   

13.
Lipid profiling is a targeted metabolomics platform that provides a comprehensive analysis of lipid species with high sensitivity. Profiling based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides quantitative data and is adaptable to high throughput analyses. Here we report the profiling of 140 apparent molecular species of polar glycerolipids in Arabidopsis leaves, flower stalks, flowers, siliques, roots, and seeds. Considerable differences in lipid species occur among these organs, providing insights into the different lipid metabolic activities in a specific organ. In addition, comparative profiling between wild-type and a knockout mutant pldalpha1 (locus ID: AT3G15730) provides insight into the metabolic function of phospholipase D (PLD) in different organs. PLDalpha1 contributes significantly to phosphatidic acid (PA) levels in roots, seeds, flowers, and flower stalks, but little to basal PA levels in siliques and leaves. In seeds of the pldalpha1 mutant plants, levels of PA, lysophosphatidylcholine, and lysophosphatidylethanolamine were significantly lower than those of wild-type seeds, suggesting a role for PLDalpha1 in membrane lipid degradation in seeds.  相似文献   

14.
Poplar (Populus spp.) is a widely distributed tree genus of significant economic and ecological importance. Poplar trees accumulate proanthocyanidins (PAs) in leaves, roots, and a variety of other tissues. Damage to leaves by insects causes a rapid accumulation of PAs, both at the site of damage and distally in undamaged leaves. This rapid PA accumulation is mediated by the activation of genes encoding enzymes involved in PA synthesis. PAs have been hypothesized to deter insect feeding and reduce the nutritive value of poplar leaf tissue, but experimental evidence supporting a role for PAs as an effective inducible defense against herbivores is lacking. Our recent paper described the identification of a MYB gene that regulates the PA pathway under multiple stress conditions, and we used this gene to constitutively activate the PA pathway in poplar. Here we describe observations that suggest that poplar PAs may have roles besides insect defense, for example, responses to UV light. The PA-modified trees will be a useful tool for analyzing the biological roles of PAs in this important model tree.Key words: tannins, herbivory, flavonoid, UV light, light stress  相似文献   

15.
Hybridization can lead to novel qualitative or quantitative variation of secondary metabolite (SM) expression that can have ecological and evolutionary consequences. We measured pyrrolizidine alkaloid (PA) expression in the shoots and roots of a family including one Jacobaea vulgaris genotype and one Jacobaea aquatica genotype (parental genotypes), two F(1) hybrid genotypes, and 102 F(2) hybrid genotypes using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We detected 37 PAs in the roots and shoots of J. vulgaris, J. aquatica and the hybrids. PA concentrations and compositions differed between genotypes, and between roots and shoots. Three otosenine-like PAs that only occurred in the shoots of parental genotypes were present in the roots of F(2) hybrids; PA compositions were sometimes novel in F(2) hybrids compared with parental genotypes, and in some cases transgressive PA expression occurred. We also found that PAs from within structural groups covaried both in the roots and in the shoots, and that PA expression was correlated between shoots and roots. Considerable and novel variation present among F(2) hybrids indicates that hybridization has a potential role in the evolution of PA diversity in the genus Jacobaea, and this hybrid system is useful for studying the genetic control of PA expression.  相似文献   

16.
The endemic Mexican genus Pittocaulon (subtribe Tussilagininae, tribe Senecioneae, Asteraceae) belongs to a monophyletic group of genera distributed in Mexico and North America. The five Pittocaulon species represent shrubs with broom-like succulent branches. All species were found to contain pyrrolizidine alkaloids (PAs). With one exception (i.e., stems of Pittocaulon velatum are devoid of PAs) PAs were found in all plant organs with the highest levels (up to 0.3% of dry weight) in the flower heads. Three structural types of PAs were found: (1) macrocyclic otonecine esters, e.g. senkirkine and acetylpetasitenine; (2) macrocyclic retronecine esters, e.g. senecionine, only found in roots, and (3) monoesters of 1,2-saturated necines with angelic acid. For an unambiguous assignment of the different stereoisomeric 1,2-saturated necine bases a GC-MS method was established that allows the separation and identification of the four stereoisomers as their diacetyl or trimethylsilyl derivatives. All otonecine esters that generally do not form N-oxides and the 1,2-saturated PAs were exclusively found as free bases, while the 1,2-unsaturated 7-angeloylheliotridine occurring in P. velatum was found only as its N-oxide. In a comparative study the 1H and 13C NMR spectra of the four stereoisomeric necine bases were completely assigned by the use of DEPT-135, H,H-COSY, H,C-HSQC and H,H-NOESY experiments and by iterative analysis of the 1H NMR spectra. Based on these methods the PA monoesters occurring in Pittocaulon praecox and P. velatum were assigned as 7-O-angeloyl ester respectively 9-O-angeloyl ester of dihydroxyheliotridane which could be identified for the first time as naturally occurring necine base. Unexpectedly, in the monoesters isolated from the three other Pittocaulon species dihydroxyheliotridane is replaced by the necine base turneforcidine with opposite configuration at C-1 and C-7. The species-specific and organ-typical PA profiles of the five Pittocaulon species are discussed in a biogenetic context.  相似文献   

17.
18.
19.
The aim of this review is to combine the knowledge of studies on effects of nutrients on pyrrolizidine alkaloids (PAs) in Senecio with those studies of effects of PAs on herbivores and pathogens in order to predict the effects that nutrients may have on herbivores and pathogens via changes in PAs. We discuss whether these predictions match with the outcome of studies where the effect of nutrients on herbivores and insects were measured. PA concentrations in S. jacobaea, S. vulgaris and S. aquaticus were mostly reduced by NPK fertilization, with genotype-specific effects occurring. Plant organs varied in their response to increased fertilization; PA concentrations in flowers remained constant, while shoot and roots were mostly negatively affected. Biomass change is probably largely responsible for the change in concentrations. Nutrients affect both the variety and the levels of PAs in the plant. The reduced PA concentrations after NPK fertilization was expected to benefit herbivores, but no or negative responses from insect herbivores were observed. Apparently other changes in the plant after fertilization are overriding the effect of PAs. Pathogens do seem to benefit from the lower PA concentrations after fertilization; they were more detrimental to fertilized plants than to unfertilized control plants. Future studies should include the effect of each element of nutrients separately and in combinations in order to gain more insight in the effect of specific nutrients on PA content in Senecio plants.  相似文献   

20.
用不同浓度NaCl处理7d龄大麦(Hordeum vulgareL.)幼苗3d。以非共价键和共价键形式分别与质膜和液泡膜微囊及膜蛋白结合的多胺含量受低 度盐的促进而被高浓度盐所抑制。以非共价键形式与膜微囊结合的各种多胺中亚精胺(Spd)含量最高,占膜上多胺总量的40%-70%,与膜蛋白共价结合的各种多胺中腐胺(Put)含量占主导地位,占膜蛋白上多胺总量的35%-60%。在根系液泡膜上发现一种含量丰  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号