首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MJ Michel  JH Knouft 《PloS one》2012,7(9):e44932
When species distribution models (SDMs) are used to predict how a species will respond to environmental change, an important assumption is that the environmental niche of the species is conserved over evolutionary time-scales. Empirical studies conducted at ecological time-scales, however, demonstrate that the niche of some species can vary in response to environmental change. We use habitat and locality data of five species of stream fishes collected across seasons to examine the effects of niche variability on the accuracy of projections from Maxent, a popular SDM. We then compare these predictions to those from an alternate method of creating SDM projections in which a transformation of the environmental data to similar scales is applied. The niche of each species varied to some degree in response to seasonal variation in environmental variables, with most species shifting habitat use in response to changes in canopy cover or flow rate. SDMs constructed from the original environmental data accurately predicted the occurrences of one species across all seasons and a subset of seasons for two other species. A similar result was found for SDMs constructed from the transformed environmental data. However, the transformed SDMs produced better models in ten of the 14 total SDMs, as judged by ratios of mean probability values at known presences to mean probability values at all other locations. Niche variability should be an important consideration when using SDMs to predict future distributions of species because of its prevalence among natural populations. The framework we present here may potentially improve these predictions by accounting for such variability.  相似文献   

2.
3.
4.
Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate‐driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species‐specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate‐driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over‐predict suitable environmental space under future climatic conditions.  相似文献   

5.
Climate change is predicted to result in changes in the geographic ranges and local prevalence of infectious diseases, either through direct effects on the pathogen, or indirectly through range shifts in vector and reservoir species. To better understand the occurrence of monkeypox virus (MPXV), an emerging Orthopoxvirus in humans, under contemporary and future climate conditions, we used ecological niche modeling techniques in conjunction with climate and remote-sensing variables. We first created spatially explicit probability distributions of its candidate reservoir species in Africa''s Congo Basin. Reservoir species distributions were subsequently used to model current and projected future distributions of human monkeypox (MPX). Results indicate that forest clearing and climate are significant driving factors of the transmission of MPX from wildlife to humans under current climate conditions. Models under contemporary climate conditions performed well, as indicated by high values for the area under the receiver operator curve (AUC), and tests on spatially randomly and non-randomly omitted test data. Future projections were made on IPCC 4th Assessment climate change scenarios for 2050 and 2080, ranging from more conservative to more aggressive, and representing the potential variation within which range shifts can be expected to occur. Future projections showed range shifts into regions where MPX has not been recorded previously. Increased suitability for MPX was predicted in eastern Democratic Republic of Congo. Models developed here are useful for identifying areas where environmental conditions may become more suitable for human MPX; targeting candidate reservoir species for future screening efforts; and prioritizing regions for future MPX surveillance efforts.  相似文献   

6.
Strictly speaking, fundamental niches are inestimable. Nevertheless, ecologists attempt approximating them to understand species’ distribution and plasticity to environmental changes, with invaluable repercussions on both theoretical and applied ecology. So far, individual‐based habitat selection models only characterized realized niches of populations delimited by physical (e.g. fences), historical (colonization) and biotic (competition) barriers constraining access to a subset of resources available to the species. As populations with different realized niches share the same fundamental niche, we developed a novel framework to scale‐up response curves from population‐scale habitat selection models to approximate the species’ optimal habitat choices, unbiased by barriers constraining accessibility. We used GPS‐locations from 147 wild mountain reindeer Rangifer t. tarandus, belonging to 7 of the remaining populations scattered throughout the subspecies’ range. We linked individual choices to accessible habitat features using conditional‐logistic regression with log‐link function in a use‐available design. Focal variables were modeled using 2nd degree polynomials on log‐scale, which correspond to a Gaussian curve used to approximate the fundamental niche optimum (curve mean) and breadth (variance). Using both real and simulated data we demonstrate that robust approximations of a fundamental niche optimum and breadth can be estimated using a relatively small number of representative populations with relatively few individuals. While each classical realized niche model had strong predictive power for the focal population but poorly predicted across populations, the approximation of the fundamental niche allowed for robust inter‐population comparisons in habitat quality. The proposed approach brings individual‐based habitat selection models forward along the continuum from investigating the realized niche of a population towards investigating a species’ fundamental niche, and allows us to quantify empirically the relationship between realized and fundamental niches. This allows improving the understanding of differences in fitness among populations, the prediction of species’ distributions and plasticity to environmental changes, and suggestions for mitigation priorities.  相似文献   

7.
【目的】生态位模型被广泛应用于入侵生物学和保护生物学研究,现有建模工具中,MaxEnt是最流行和运用最广泛的生态位模型。然而最近研究表明,基于MaxEnt模型的默认参数构建模型时,模型倾向于过度拟合,并非一定为最佳模型,尤其是在处理一些分布点较少的物种。【方法】以茶翅蝽为例,通过设置不同的特征参数、调控倍频以及背景拟不存在点数分别构建茶翅蝽的本土模型,然后将其转入入侵地来验证和比较模型,通过检测模型预测的物种对环境因子的响应曲线、潜在分布在生态空间中的生态位映射以及潜在分布的空间差异性,探讨3种参数设置对MaxEnt模型模拟物种分布和生态位的影响。【结果】在茶翅蝽的案例分析中,特征参数的设置对MaxEnt模型所模拟的潜在分布和生态位的影响最大,调控倍频的影响次之,背景拟不存在点数的影响最小。与其他特征相比,基于特征H和T的模型其响应曲线较为曲折;随着调控倍频的增加,响应曲线变得圆滑。【结论】在构建MaxEnt模型时,需要从生态空间中考虑物种的生态需求,分析模型参数对预测物种分布和生态位可能造成的影响。  相似文献   

8.
Slater H  Michael E 《PloS one》2012,7(2):e32202
Modelling the spatial distributions of human parasite species is crucial to understanding the environmental determinants of infection as well as for guiding the planning of control programmes. Here, we use ecological niche modelling to map the current potential distribution of the macroparasitic disease, lymphatic filariasis (LF), in Africa, and to estimate how future changes in climate and population could affect its spread and burden across the continent. We used 508 community-specific infection presence data collated from the published literature in conjunction with five predictive environmental/climatic and demographic variables, and a maximum entropy niche modelling method to construct the first ecological niche maps describing potential distribution and burden of LF in Africa. We also ran the best-fit model against climate projections made by the HADCM3 and CCCMA models for 2050 under A2a and B2a scenarios to simulate the likely distribution of LF under future climate and population changes. We predict a broad geographic distribution of LF in Africa extending from the west to the east across the middle region of the continent, with high probabilities of occurrence in the Western Africa compared to large areas of medium probability interspersed with smaller areas of high probability in Central and Eastern Africa and in Madagascar. We uncovered complex relationships between predictor ecological niche variables and the probability of LF occurrence. We show for the first time that predicted climate change and population growth will expand both the range and risk of LF infection (and ultimately disease) in an endemic region. We estimate that populations at risk to LF may range from 543 and 804 million currently, and that this could rise to between 1.65 to 1.86 billion in the future depending on the climate scenario used and thresholds applied to signify infection presence.  相似文献   

9.
张雷  刘世荣  孙鹏森  王同立 《生态学报》2011,31(19):5749-5761
物种分布模型是预测评估气候变化对物种分布影响的主要工具。为了降低物种分布模型在预测过程中的不确定性,近期有学者提出了采用组合预测的新方法,即采用多套建模数据、模型技术,模型参数,以及环境情景数据对物种分布进行预测,构成物种分布预测集合。但是,组合预测中各组分对变异的贡献还知之甚少,因此有必要把变异组分来源进行分割,以更有效地利用组合预测方法来降低模型预测中的不确定性。以油松为例,采用8个生态位模型,9套模型训练数据,3个GCM模型和一个SRES(A2)排放情景,模型分析了油松当前(1961-1990年)和未来气候条件下3个时间段(2010-2039年,2040-2069年,2070-2099年)的潜在分布。共计得到当前分布预测数据72套,未来每个时间段分布数据216套。采用开发的ClimateChina软件进行当前和未来气候数据的降尺度处理。采用Kappa、真实技巧统计方法(TSS)和接收机工作特征曲线下的面积(AUC)对模型预测能力进行评估。结果表明,随机森林(RF)、广义线性模型(GLM),广义加法模型(GAM)、多元自适应样条函数(MARS)以及助推法(GBM)预测效果较好,几乎不受建模数据之间差异的影响。混合判别分析模型(MDA)对建模数据之间的差异非常敏感,甚至出现建模失败现象。采用三因素方差分析方法对组合预测中的不确定性来源进行变异分割,结果表明,模型之间的差异对模拟预测结果不确定性的贡献最大且所占比例极高,而建模数据之间的差异贡献最小,GCM贡献居中。研究将有助于加深对物种分布模拟预测中不确定性的认识。  相似文献   

10.
Ecological niche models predict plant responses to climate change by circumscribing species distributions within a multivariate environmental framework. Most projections based on modern bioclimatic correlations imply that high-elevation species are likely to be extirpated from their current ranges as a result of rising growing-season temperatures in the coming decades. Paleoecological data spanning the last 15,000 years from the Greater Yellowstone region describe the response of vegetation to past climate variability and suggest that white pines, a taxon of special concern in the region, have been surprisingly resilient to high summer temperature and fire activity in the past. Moreover, the fossil record suggests that winter conditions and biotic interactions have been critical limiting variables for high-elevation conifers in the past and will likely be so in the future. This long-term perspective offers insights on species responses to a broader range of climate and associated ecosystem changes than can be observed at present and should be part of resource management and conservation planning for the future.  相似文献   

11.
Species distribution models (SDMs) yield reliable and needed predictions to identify regions that have similar environmental conditions and were used here to predict potential ranges of rare species to identify new localities were they might occur based on their occurrence probability (i.e. niche suitability). We modeled the potential distribution ranges of ten endangered or rare birds from the South American Cerrado biome, using four temperature- and four precipitation-related bioclimatic variables, three topographical variables, and nine different niche modeling methods for each species. We used an ensemble-forecasting approach to reach a consensus scenario to obtain the average distribution for each species based on the five best models generating a distribution map of each species. Model efficiency was related to sample size and not appropriate below ten independent spatial occurrences. The potential distributions of seven species revealed that their occurrence ranges might go beyond their known ranges, but that most of them seem to occur near the regions where they have already been reported. The models of only three species were considered unsatisfactory in helping identify their potential distribution. Models created maps with higher occurrence probability regions where rare Cerrado birds might occur. These range projections can potentially decrease the costs and improve the efficiency of future field searches. On methodological terms, the application of SDMs to predict species ranges should compare different modeling methods and evaluate the effect of sample size on their performance.  相似文献   

12.
Citizen science initiatives have been increasingly used by researchers as a source of occurrence data to model the distribution of alien species. Since citizen science presence-only data suffer from some fundamental issues, efforts have been made to combine these data with those provided by scientifically structured surveys. Surprisingly, only a few studies proposing data integration evaluated the contribution of this process to the effective sampling of species' environmental niches and, consequently, its effect on model predictions on new time intervals. We relied on niche overlap analyses, machine learning classification algorithms and ecological niche models to compare the ability of data from citizen science and scientific surveys, along with their integration, in capturing the realized niche of 13 invasive alien species in Italy. Moreover, we assessed differences in current and future invasion risk predicted by each data set under multiple global change scenarios. We showed that data from citizen science and scientific surveys captured similar species niches though highlighting exclusive portions associated with clearly identifiable environmental conditions. In terrestrial species, citizen science data granted the highest gain in environmental space to the pooled niches, determining an increased future biological invasion risk. A few aquatic species modelled at the regional scale reported a net loss in the pooled niches compared to their scientific survey niches, suggesting that citizen science data may also lead to contraction in pooled niches. For these species, models predicted a lower future biological invasion risk. These findings indicate that citizen science data may represent a valuable contribution to predicting future spread of invasive alien species, especially within national-scale programmes. At the same time, citizen science data collected on species poorly known to citizen scientists, or in strictly local contexts, may strongly affect the niche quantification of these taxa and the prediction of their future biological invasion risk.  相似文献   

13.
Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species’ niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species’ niches, resulting in predictions that are generally limited to climate‐occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place‐based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence–absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981–2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local‐scale differences in the realized niche of the American pika. This variation resulted in diverse and – in some cases – highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place‐based approach to species distribution modeling that includes fine‐scale factors when assessing current and future climate impacts on species’ distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas.  相似文献   

14.
Many ecological questions require information on species' optimal conditions or critical limits along environmental gradients. These attributes can be compared to answer questions on niche partitioning, species coexistence and niche conservatism. However, these comparisons are unconvincing when existing methods do not quantify the uncertainty in the attributes or rely on assumptions about the shape of species' responses to the environmental gradient. The aim of this study was to develop a model to quantify the uncertainty in the attributes of species response curves and allow them to be tested for substantive differences without making assumptions about the shape of the responses. We developed a model that used Bayesian penalised splines to produce and compare response curves for any two given species. These splines allow the data to determine the shape of the response curves rather than making a priori assumptions. The models were implemented using the R2OpenBUGS package for R, which uses Markov Chain Monte Carlo simulation to repetitively fit alternative response curves to the data. As each iteration produces a different curve that varies in optima, niche breadth and limits, the model estimates the uncertainty in each of these attributes and the probability that the two curves are different. The models were tested using two datasets of mosses from Antarctica. Both datasets had a high degree of scatter, which is typical of ecological research. This noise resulted in considerable uncertainty in the optima and limits of species response curves, but substantive differences were found. Schistidium antarctici was found to inhabit wetter habitats than Ceratodon purpureus, and Polytrichastrum alpinum had a lower optimal temperature for photosynthesis than Chorisodontium aciphyllum under high light conditions. Our study highlights the importance of considering uncertainty in physiological optima and other attributes of species response curves. We found that apparent differences in optima of 7.5 °C were not necessarily substantive when dealing with noisy ecological data, and it is necessary to consider the uncertainty in attributes when comparing the curves for different species. The model introduced here could increase the robustness of research on niche partitioning, species coexistence and niche conservatism.  相似文献   

15.
Aim We explore the impact of calibrating ecological niche models (ENMs) using (1) native range (NR) data versus (2) entire range (ER) data (native and invasive) on projections of current and future distributions of three Hieracium species. Location H. aurantiacum, H. murorum and H. pilosella are native to Europe and invasive in Australia, New Zealand and North America. Methods Differences among the native and invasive realized climatic niches of each species were quantified. Eight ENMs in BIOMOD were calibrated with (1) NR and (2) ER data. Current European, North American and Australian distributions were projected. Future Australian distributions were modelled using four climate change scenarios for 2030. Results The invasive climatic niche of H. murorum is primarily a subset of that expressed in its native range. Invasive populations of H. aurantiacum and H. pilosella occupy different climatic niches to those realized in their native ranges. Furthermore, geographically separate invasive populations of these two species have distinct climatic niches. ENMs calibrated on the realized niche of native regions projected smaller distributions than models incorporating data from species’ entire ranges, and failed to correctly predict many known invasive populations. Under future climate scenarios, projected distributions decreased by similar percentages, regardless of the data used to calibrate ENMs; however, the overall sizes of projected distributions varied substantially. Main conclusions This study provides quantitative evidence that invasive populations of Hieracium species can occur in areas with different climatic conditions than experienced in their native ranges. For these, and similar species, calibration of ENMs based on NR data only will misrepresent their potential invasive distribution. These errors will propagate when estimating climate change impacts. Thus, incorporating data from species’ entire distributions may result in a more thorough assessment of current and future ranges, and provides a closer approximation of the elusive fundamental niche.  相似文献   

16.
Understanding the factors that shape species’ distributions is a key topic in biogeography. As climates change, species can either cope with these changes through evolution, plasticity or by shifting their ranges to track the optimal climatic conditions. Ecological niche modeling (ENM) is a widespread technique in biogeography that estimates the niche of the organism by using occurrences and environmental data to estimate species’ potential distributions. ENMs are often criticized for failing to take species’ dispersal abilities into consideration. Here, we attempt to fill this gap by combining ENMs with dispersal and corridor modeling to study the range dynamics of North American spadefoot toads (Scaphiopodidae) over the Holocene. We first estimated the current and past distributions of spadefoot toads and then estimated their past distributions from the Last Glacial Maximum (LGM) to the present day. Then, we estimated how each taxon recolonized North American by using dispersal and corridor modeling. By combining these two modeling approaches we were able to 1) estimate the LGM refugia used by the North American spadefoot toads, 2) further refine these projections by estimating which of the putative LGM refugia contributed to the recolonization of North America via dispersal, and 3) estimate the relative influence of each LGM refugium to the current species’ distributions. The models were tested using previously published phylogeographic data, revealing a high degree of congruence between our models and the genetic data. These results suggest that combining ENMs and dispersal modeling over time is a promising approach to investigate both historical and future species’ range dynamics.  相似文献   

17.
The volcanic island of Grand Comoro, Malagasy biogeographic region, is inhabited by three species of Phelsuma day geckos; two island‐endemic taxa (Phelsuma comorensis and Phelsuma v‐nigra comoraegrandensis) and the introduced Phelsuma dubia. Phelsuma comorensis is restricted to elevations of greater than 150 m above sea level on the northern of the island's two volcanoes and is the only Phelsuma above 300 m. The other species are widespread at low elevations but also reach levels above 900 m at the southern volcano. To investigate these divergent distribution patterns, we used environmental niche models based on climate and habitat data and tested whether predicted climate change may influence species distributions. Analyses of niche overlap did not show significant differences between present‐day and predicted future potential distributions of any Phelsuma species studied, which could be seen as an indicator of resilience towards climate change. Climate models reflected the restricted distribution of P. comorensis with precipitation of the wettest month detected as most important variable, whereas habitat models predicted an island‐wide distribution. While climate appears to determine the distribution of P. comorensis, we propose isolation by migration barriers as an alternative and discuss the detection of causal versus spurious relationships in ecological niche models.  相似文献   

18.
Understanding the factors that govern the distribution of species is a central goal of evolutionary ecology. It is commonly assumed that geographic range limits reflect ecological niche limits and that species experience increasingly marginal conditions towards the edge of their ranges. Using spatial data and ecological niche models we tested these hypotheses in Arabidopsis lyrata. Specifically, we asked whether range limits coincide with predicted niche limits in this system and whether the suitability of sites declines towards the edge of the species’ range in North America. We further explored patterns of environmental change towards the edge of the range and asked whether genome‐wide patterns of genetic diversity decline with increasing peripherality and environmental marginality. Our results suggest that latitudinal range limits coincide with niche limits. Populations experienced increasingly marginal environments towards these limits – though patterns of environmental change were more complex than most theoretical models for range limits assume. Genomic diversity declined towards the edge of the species’ range and with increasing distance from the estimated centre of the species’ niche in environmental space, but not with the suitability of sites based on niche model predictions. Thus while latitudinal range limits in this system are broadly associated with niche limits, the link between environmental conditions and genetic diversity (and thus the adaptive potential of populations) is less clear.  相似文献   

19.
Maxent模型复杂度对物种潜在分布区预测的影响   总被引:4,自引:0,他引:4  
朱耿平  乔慧捷 《生物多样性》2016,24(10):1189-267
生态位模型在入侵生物学和保护生物学中具有广泛的应用, 其中Maxent模型最为流行, 被越来越多地应用在预测物种的现实分布和潜在分布的研究中。在Maxent模型中, 多数研究者采用默认参数来构建模型, 这些默认参数源自早期对266个物种的测试, 以预测物种的现实分布为目的。近期研究发现, Maxent模型采用复杂机械学习算法, 对采样偏差敏感, 易产生过度拟合, 模型转移能力仅在低阈值情况下较好。基于默认参数的Maxent模型不仅预测结果不可靠, 而且有时很难解释。在本研究中, 作者以入侵害虫茶翅蝽(Halyomorpha halys)为例, 采用经典模型构建方案(即构建本土模型然后将其转移至入侵地来评估), 利用ENMeval数据包来调整本土Maxent模型调控倍频和特征组合参数, 分析各种参数条件下模型的复杂度, 然后选取最低复杂度的模型参数(即为最优模型), 综合比较默认参数和调整参数后Maxent模型的响应曲线和预测结果, 探讨Maxent模型复杂度对预测结果的影响及Maxent模型构建时所需注意事项, 以期对物种潜在分布进行合理的预测, 促进Maxent模型在我国的合理运用和发展。作者认为, 环境变量的选择至关重要, 需要综合分析其对所模拟物种分布的限制作用和环境变量之间的空间相关性。构建Maxent模型前需对物种分布采样偏差及模型的构建区域进行合理地判断, 模型构建时需要比较不同参数下模型的预测结果和响应曲线, 选取复杂度较低的模型参数来最终建模。在茶翅蝽的分析中, Maxent模型的默认参数和最优模型参数不同, 与Maxent模型默认参数相比, 采用调整参数后所构建的模型预测效果较好, 响应曲线较为平滑, 模型转移能力较高, 能够较为合理反映物种对环境因子的响应和准确地模拟该物种的潜在分布。  相似文献   

20.
Aim The proportion of sampled sites where a species is present is known as prevalence. Empirical studies have shown that prevalence can affect the predictive performance of species distribution models. This paper uses simulated species data to examine how prevalence and the form of species environmental dependence affect the assessment of the predictive performance of models. Methods Simulated species data were based on various functions of simulated environmental data with differing degrees of spatial correlation. Seven model performance measures – sensitivity, specificity, class‐average (CA), overall prediction success, kappa (κ), normalized mutual information (NMI) and area under the receiver operating characteristic curve (AUC) – were applied to species models fitted by three regression methods. The response of the performance measures to prevalence was then assessed. Three probability threshold selection methods used to convert fitted logistic model values to presence or absence were also assessed. Results The study shows that the extent to which prevalence affects model performance depends on the modelling technique and its degree of success in capturing dominant environmental determinants. It also depends on the statistic used to measure model performance and the probability threshold method. The response based on κ generally preferred models with medium prevalence. All performance measures were least affected by prevalence when the probability threshold was chosen to maximize predictive performance or was based directly on prevalence. In these cases, the responses based on AUC, CA and NMI generally preferred models with small or large prevalence. Main conclusions The effect of prevalence on the predictive performance of species distribution models has a methodological basis. Relevant factors include the success of the fitted distribution model in capturing the dominant environmental determinant, the model performance measure and the probability threshold selection method. The fixed probability threshold method yields a marked response of model performance to prevalence and is therefore not recommended. The study explains previous empirical results obtained with real data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号