首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors influencing the heat shock response of Xenopus laevis embryos   总被引:1,自引:0,他引:1  
We have further characterized the heat shock response of Xenopus laevis embryos. Xenopus embryos respond to heat shock by consistently synthesizing four major heat shock proteins (hsps) of 62, 70, 76, and 87 kilodaltons. In addition to these hsps, heat-shocked embryos also exhibit the synthesis of several minor hsps. The synthesis of these hsps is often variable. We have monitored the effects of different temperatures and lengths of heat shock on the pattern and intensity of hsp synthesis. In general, the four major hsps are induced more strongly at higher temperatures and during increasing intervals of heat shock. The temperature and duration of heat shock can affect the synthesis of the minor hsps, however. Some hsps are synthesized at lower temperatures only (i.e., below 37 degrees C), whereas others are synthesized only at higher temperatures (i.e., above 37 degrees C). We have extensively examined the characteristics of hsp 35 synthesis, one of the most variably synthesized hsps. This hsp is characteristically synthesized at temperatures above 35 degrees C and usually during the first 40 min of heat shock, after which it becomes undetectable. In some experiments, its synthesis is restimulated during later intervals of heat shock. Hsp 35 is also under developmental regulation. It is not synthesized by heat-shocked embryos until the late blastula to early gastrula stage. After this brief period of inducibility, its synthesis is dramatically reduced in mid- to late gastrulae, but reappears in heat-shocked neurulae. We have previously demonstrated that hsp 35 is related to the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The induction of hsp 35 synthesis is inversely correlated with the constitutive levels of GAPDH specific activity. In this paper we document further correlations between the synthesis of hsp 35 and GAPDH specific activity during early Xenopus development.  相似文献   

2.
3.
Y Gafni  M D Chilton 《Gene》1985,39(2-3):141-146
The Agrobacterium tumor-inducing (Ti) plasmid pTiT37 encodes nopaline synthase (NOS) gene (nos) with eukaryotic promoter elements that is expressed in transformed plant cells but not in the bacterial host. We have fused the nos gene to the Escherichia coli trp promoter, and observed synthesis of NOS in E. coli. The nopaline produced by this enzyme is excreted into the culture medium. NOS is enzymatically active at 30 degrees C but not 37 degrees C, as based on nopaline production. NOS protein is produced at both temperatures, based on production in minicells.  相似文献   

4.
Among mycobacteria secretion of the enzyme diphenoloxidase has been established as a property of Mycobacterium leprae. The antileprosy drug dapsone (DDS), which completely inhibits the enzyme from plant and mammalian sources, does not readily penetrate intact M. leprae. When the drug is complexed with polylysine, it easily permeates the bacteria and produces 100% inhibition of its diphenoloxidase, suggesting a permeability barrier of the cytoplasmic membrane of M. leprae to dapsone. In this study: (1) when the organisms, purified from fresh tissues of experimentally infected armadillos, were treated with dilute alkali or exposed to warmer temperatures, DDS penetrated the bacteria and inhibited the diphenoloxidase. Washing with trypsin had no effect. Dapsone easily permeated the bacilli, purified from tissues stored at 0 degrees C or at -80 degrees C. (2) Diphenoloxidase of freshly-prepared M. leprae was stimulated when the bacteria were exposed to 50 degrees C for 10 min; at 60 degrees C the activity decreased, and at 100 degrees C the enzyme was completely inactivated. When the enzyme was assayed at temperatures below 37 degrees C, the activity was considerably lower, indicating that M. leprae may not be a psychrophilic organism in this respect. (3) The bacteria exposed to 50 degrees C failed to multiply in mouse footpads. M. leprae remained viable in tissues stored at 0 degrees C or -80 degrees C; but when the bacteria purified from these tissues were frozen, they lost their viability. On the other hand, the organisms separated from fresh tissues remained viable when frozen at -80 degrees C. The inhibition of diphenoloxidase of M. leprae by dapsone could serve as an indirect method to assess the integrity of the bacterial cell membrane and to predict whether the bacteria would retain their viability on freezing.  相似文献   

5.
The variations of thymidine kinase or ATP:thymidine 5'-phosphotransferase (EC 2.7.1.21) during the cell cycle of Physarum polycephalum plasmodia have been studied at two extreme physiological temperatures: 22 degrees C and 32 degrees C. At 22 degrees C the enzyme activity increases near mitosis and stays constant during late S and G2 phases, exhibiting the typical pattern of a 'step enzyme'. But at 32 degrees C thymidine kinase activity goes through a maximum 1 h 30 min after mitosis and decreases during the subsequent phases as expected for a 'peak enzyme'. The rate of enzyme degradation and/or inactivation, measured in the presence of metabolic poisons (cycloheximide or dinitrophenol), appears to follow a simple exponential function with a half-life of approximately 3 h and 1 h at 22 degrees C and 32 degrees C respectively. The effect of growth temperature on the decrease of thymidine kinase activity can account entirely for the differences in the pattern of enzyme activity at the two extreme temperatures. Tentative calculations indicate that the rate of enzyme synthesis is nearly constant during the cell cycle except near mitosis, where it is temporarily increased. The results suggest the existence of a regulatory mechanism able to modulate the rate of synthesis of thymidine kinase during the cell cycle.  相似文献   

6.
Most microorganisms isolated from low-temperature environments (below 4 degrees C) are eury-, not steno-, psychrophiles. While psychrophiles maximize or maintain growth yield at low temperatures to compensate for low growth rate, the mechanisms involved remain unknown, as does the strategy used by eurypsychrophiles to survive wide ranges of temperatures that include subzero temperatures. Our studies involve the eurypsychrophilic bacterium Psychrobacter cryopegella, which was isolated from a briny water lens within Siberian permafrost, where the temperature is -12 degrees C. P. cryopegella is capable of reproducing from -10 to 28 degrees C, with its maximum growth rate at 22 degrees C. We examined the temperature dependence of growth rate, growth yield, and macromolecular (DNA, RNA, and protein) synthesis rates for P. cryopegella. Below 22 degrees C, the growth of P. cryopegella was separated into two domains at the critical temperature (T(critical) = 4 degrees C). RNA, protein, and DNA synthesis rates decreased exponentially with decreasing temperatures. Only the temperature dependence of the DNA synthesis rate changed at T(critical). When normalized to growth rate, RNA and protein synthesis reached a minimum at T(critical), while DNA synthesis remained constant over the entire temperature range. Growth yield peaked at about T(critical) and declined rapidly as temperature decreased further. Similar to some stenopsychrophiles, P. cryopegella maximized growth yield at low temperatures and did so by streamlining growth processes at T(critical). Identifying the specific processes which result in T(critical) will be vital to understanding both low-temperature growth and growth over a wide range of temperatures.  相似文献   

7.
Kochhar S  Kochhar VK 《Planta》2008,228(2):307-318
We report a novel super stable superoxide dismutase (SOD) extracted from the leaves of Curcuma longa L.-a post-harvest waste. The scavenging activity of this SOD remains intact both in crude and purified forms before and after heating at boiling temperatures (80-100 degrees C) up to 20 min, autoclaving (6-20 bars up to 10 min) and microwaving (frequency of 2,450 megahertz (MHz) or million cycles per second for 1-3 min). This SOD has significant shelf life at room temperature (25-35 degrees C) and is stable for at least 18 months at 4 degrees C and with the retained activity of 82% at -10 degrees C and 88% at -20 degrees C without any infection or contamination. The heat stable enzyme is present both in cytoplasm and chloroplasts. The enzyme is also stable under wide range of pH, alcohol and SDS concentrations. The heat stability of this SOD protein is not due to any associated phenolic compound as no phenolic compound was bound to the novel thermo-stable SOD. The activity staining through native PAGE and purification of the enzyme protein have shown that this form of enzyme has a native molecular weight of 30.8 kDa and has two subunits of 15 kDa as shown by SDS PAGE. The characterized novel isoform is a Cu-Zn SOD as is indicated by its sensitivity to both H2O2 and KCN. Indian, US and PCT patents have been filed and products are being developed using this hyperthermophilic enzyme.  相似文献   

8.
K(V)11.1 (HERG) channels contribute to membrane potential in a number of excitable cell types. We cloned a variant of K(V)11.1 from human jejunum containing a 171 bp deletion spanning exons 3 and 4. Expression of a full-length cDNA clone containing this deletion gave rise to protein that trafficked to the cell membrane and generated robust currents. The deletion occurred in a G/C-rich region and identical sequence elements of UGGUGG were located at the deletion boundaries. In recent studies these features have been implicated to cause deletions via template switching during cDNA synthesis. To examine this possibility we compared cDNAs from human brain, heart, and jejunum synthesized at lower (42 degrees C) and higher temperatures (70 degrees C). The 171 bp deletion was absent at the higher temperature. Our results suggest that the sequence and secondary structure of mRNA in the G/C rich region leads to template switching producing a cDNA product with a 171 bp deletion.  相似文献   

9.
As a first step in elucidating one molecular mechanism of adaptation to life at extreme temperatures, we purified and characterized the enzyme histidinol dehydrogenase (EC 1.1.1.23) from a number of bacilli whose growth temperatures range from 5 degrees t to 90 degrees C. The enzymes were purified by (NH4)2SO4 precipitation, ion-exchange chromatography on Sephadex, affinity chromatography on histamine- or histidine-Sepharose and preparative gradient gel electrophoresis. All had similar mol.wts. (29200), sedimentation coefficients (S20,w 2.56S), affinities for histidinol and NAD+ (Km = 48 micron and 0.2 mM respectively) and all had pH optima at 9.6. Marked differences were observed in stability with respect to temperature and the temperature at which the initial velocity for histidinol dehydrogenation was optimal. These optima range from 25 degrees C for the enzyme from the psychrophilic species through to 41 degrees C for the mesophiles to 85-92 degrees C for the extreme thermophiles. It is concluded that the ability of the enzymes to operate at their various optimum temperatures is an intrinsic property of their amino acid sequences.  相似文献   

10.
C(4) plants are rare in the cool climates characteristic of high latitudes and elevations, but the reasons for this are unclear. We tested the hypothesis that CO(2) fixation by Rubisco is the rate-limiting step during C(4) photosynthesis at cool temperatures. We measured photosynthesis and chlorophyll fluorescence from 6 degrees C to 40 degrees C, and in vitro Rubisco and phosphoenolpyruvate carboxylase activity from 0 degrees C to 42 degrees C, in Flaveria bidentis modified by an antisense construct (targeted to the nuclear-encoded small subunit of Rubisco, anti-RbcS) to have 49% and 32% of the wild-type Rubisco content. Photosynthesis was reduced at all temperatures in the anti-Rbcs plants, but the thermal optimum for photosynthesis (35 degrees C) did not differ. The in vitro turnover rate (kcat) of fully carbamylated Rubisco was 3.8 mol mol(-)(1) s(-)(1) at 24 degrees C, regardless of genotype. The in vitro kcat (Rubisco Vcmax per catalytic site) and in vivo kcat (gross photosynthesis per Rubisco catalytic site) were the same below 20 degrees C, but at warmer temperatures, the in vitro capacity of the enzyme exceeded the realized rate of photosynthesis. The quantum requirement of CO(2) assimilation increased below 25 degrees C in all genotypes, suggesting greater leakage of CO(2) from the bundle sheath. The Rubisco flux control coefficient was 0.68 at the thermal optimum and increased to 0.99 at 6 degrees C. Our results thus demonstrate that Rubisco capacity is a principle control over the rate of C(4) photosynthesis at low temperatures. On the basis of these results, we propose that the lack of C(4) success in cool climates reflects a constraint imposed by having less Rubisco than their C(3) competitors.  相似文献   

11.
Possible involvement of impaired polyamine biosynthesis in the poor performance of tomato pollen (Lycopersicon esculentum Mill.) at high temperatures was investigated. Incubation of pollen at 38 degrees C suppressed the increase of S-adenosylmethionine decarboxylase (SAMDC) activity in germinating pollen with little influence on arginine decarboxylase activity. Consequently, spermidine and spermine content in the pollen did not increase at 38 degrees C, while putrescine content increased at both 25 degrees C and 38 degrees C. High-temperature inhibition of pollen germination was alleviated by the addition of spermidine or spermine but not of putrescine to the germination medium. Cycloheximide inhibited SAMDC activity in parallel with pollen germination at 25 degrees C, whereas actinomycin D had no effect on either of them, indicating that enhanced SAMDC activity is associated with de novo protein synthesis. Incubation of crude enzyme extracts at 40 degrees C for 1 h did not affect SAMDC. In addition, high temperatures did not enhance protease activity in germinating pollen. These results indicate that low activity of SAMDC, probably due to impaired protein synthesis or functional enzyme formation, is a major cause for the poor performance of tomato pollen at high temperatures.  相似文献   

12.
The activities of two enzymes, beef liver catalase (EC 1.11.1.6) and calf intestine alkaline phosphatase (EC 3.1.3.1), have been measured down to -97 degrees C and -100 degrees C, respectively. Enzyme activity has not previously been measured at such low temperatures. For catalase, the cryosolvents used were methanol:ethylene glycol:water (70:10:20) and DMSO:ethylene glycol:water (60:20:20). For alkaline phosphatase, methanol:ethylene glycol:water (70:10:20) was used. All of the Arrhenius plots were linear over the whole of the temperature range examined. Since the lowest temperatures at which activity was measured are well below the dynamic transition observed for proteins, the results indicate that the motions which cease below the dynamic transition are not essential for enzyme activity. In all cases the use of cryosolvent led to substantial increases in Arrhenius activation energies, and this imposed practical limitations on the measurement of enzyme activity below -100 degrees C. At even lower temperatures, enzyme activity may be limited by the effect of solvent fluidity on substrate/product diffusion, but overall there is no evidence that any intrinsic enzyme property imposes a lower temperature limit for enzyme activity.  相似文献   

13.
dnaA acts before dnaC in the initiation of DNA replication   总被引:9,自引:4,他引:5       下载免费PDF全文
We constructed a double mutant of Escherichia coli K-12 carrying dnaA(Ts) and dnaC(Cs) lesions. In this mutant DNA synthesis proeceeds normally at 32 degrees C and initiation is inhibited at both 41 and 20 degrees C. By shifting this culture grown at 32 degrees C to the two restrictive temperatures in different time sequences and assaying protein and DNA synthesis of cells growing at different temperatures, we found that dnaA and dnaC genes work independently with dnaA acting before dnaC. While preparing special strains for this work, we also showed that the order of genes in the neighborhood of dnaA is dnaA-tnaA-phoS-ilv.  相似文献   

14.
We devised an in situ assay method for the activity of serine palmitoyltransferase (SPT) that catalyzes the first step in sphingolipid biosynthesis and isolated a temperature-sensitive mutant of Chinese hamster ovary cells with thermolabile SPT. This mutant stopped growing at 40 degrees C after several generations, although the cells grew at 33 and 37 degrees C at rates similar to those of the parent. The SPT activity in cell homogenates of the mutant grown at low temperatures was 4-8% of that in the parent homogenates. When the cells were cultured for several generations at 40 degrees C, the activity in the mutant homogenate became negligible. When cell homogenates were incubated at 45 degrees C before enzyme assay, mutant SPT was more markedly inactivated than parental SPT, indicating that mutant SPT had become thermolabile. The rates of de novo synthesis of sphingolipids in the mutant were much slower at 40 degrees C than at lower temperatures, in contrast to those in the parent. The sphingomyelin content in the mutant cultivated at 40 degrees C for several generations was also less than that at low temperatures. These results indicate that SPT functions in the main pathway for sphingolipid biosynthesis. The temperature-sensitive growth of the mutant defective in sphingolipid synthesis suggests that sphingolipid(s) plays an essential role in cell growth.  相似文献   

15.
Sun S  Liu W  Wang J  Yang S  Gu L  Hong Y  Shang D  Wang B  Su X  Qi S 《The Biological bulletin》2008,215(1):108-114
Phenol oxidase (PO), a copper-containing enzyme with oxygenase activity, can convert mono- or diphenol into quinone and plays an important role in the arthropod melanization reaction. Here, we report a new property of PO from Musca domestica larvae: a thermotolerant endonuclease activity, by which PO can degrade plasmid DNA even after being heated to 80 degrees C for 20 min. We cloned PO cDNA, constructed the expression vector pVAX1-PO, and expressed it in HeLa cells. The expression product showed the same properties as purified PO. Our data indicate that PO is a bifunctional enzyme, exhibiting both oxygenase and endonuclease activity, suggesting new roles for this important molecule in the innate responses of M. domestica.  相似文献   

16.
17.
Previous experiments with Escherichia coli strain 2S142 have shown that the synthesis of stable RNA is preferentially blocked at the restrictive temperature. In this paper, we have examined the capacity of this mutant strain to synthesize RNA in vitro. Growth of the strain for as short a period as 10 min at 42 degrees C resulted in a 40 to 60% loss of RNA synthetic capacity and a fourfold decrease in percent rRNA synthesized in toluenized cell preparations. The time course for the loss and recovery of this RNA synthetic capacity correlated very well with the changes in RNA synthesis observed in vivo. We found no difference in temperature sensitivity of the purified RNA polymerase from the mutant and the parental strains. Moreover, there was no detectable alteration in the amount of enzyme, specific activity of the enzyme, or electrophoretic mobility of the subunits when the mutant strain was grown at 42 degrees C. The capacity for rRNA synthesis was also measured with the Zubay in vitro system (Reiness et al., Proc. Natl. Acad. Sci. 72:2881-2885, 1975). Supernatant fractions (S-30) prepared from cells grown at 30 degrees C were capable of up to 31.2% rRNA synthesis, using phi 80d3 DNA as template. S-30 fractions from cells grown at 42 degrees C synthesized 8.6% rRNA. The bottom one-third of the S-100 fraction and the ribosomal salt wash from 30 degrees C cells contained one or more factors which partially restored preferential rRNA synthesis in S-30 fractions from cells grown at 42 degrees C. Preliminary evidence suggests that the factor(s) is protein in nature.  相似文献   

18.
Gene 5 of bacteriophage T7 encodes a DNA polymerase essential for phage replication. A single point mutation in gene 5 confers temperature sensitivity for phage growth. The mutation results in an alanine to valine substitution at residue 73 in the exonuclease domain. Upon infection of Escherichia coli by the temperature-sensitive phage at 42 degrees C, there is no detectable T7 DNA synthesis in vivo. DNA polymerase activity in these phage-infected cell extracts is undetectable at assay temperatures of 30 degrees C or 42 degrees C. Upon infection at 30 degrees C, both DNA synthesis in vivo and DNA polymerase activity in cell extracts assayed at 30 degrees C or 42 degrees C approach levels observed using wild-type T7 phage. The amount of soluble gene 5 protein produced at 42 degrees C is comparable to that produced at 30 degrees C, indicating that the temperature-sensitive phenotype is not due to reduced expression, stability, or solubility. Thus the polymerase induced at elevated temperatures by the temperature-sensitive phage is functionally inactive. Consistent with this observation, biochemical properties and heat inactivation profiles of the genetically altered enzyme over-produced at 30 degrees C closely resemble that of wild-type T7 DNA polymerase. It is likely that the polymerase produced at elevated temperatures is a misfolded intermediate in its folding pathway.  相似文献   

19.
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.  相似文献   

20.
Upon heating cytochrome c peroxidase (ferrocytochrome c: hydrogen-peroxide oxidoreductase, EC 1.11.1.5) at pH 4 and 5, the enzyme precipitates at 41 degrees C and 51 degrees C, respectively. Incubating the enzyme at lower temperatures causes a slow dissociation of the heme from the protein. The heme precipitates, while the apoprotein remains soluble. Between pH 6 and 8, the native enzyme is converted to a low-spin ferric form upon heating. The Soret maximum shifts from 408 to 414 nm. The midpoint of this transition is pH-dependent, with a value of 46 degrees C at pH 6 decreasing to 29 degrees C at pH 8. At high temperatures the 414 nm form is converted to a species which has a 'free heme' spectrum with low absorptivity and Soret maximum at 390 nm. The midpoint temperature of this latter transition is 62 degrees C and 57 degrees C at pH 7 and 8, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号