首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Affibody (Affibody) ligands specific for human amyloid beta (Abeta) peptides (40 or 42 amino acid residues in size), involved in the progress of Alzheimer's disease, were selected by phage display technology from a combinatorial protein library based on the 58-amino acid residue staphylococcal protein A-derived Z domain. Post-selection screening of 384 randomly picked clones, out of which 192 clones were subjected to DNA sequencing and clustering, resulted in the identification of 16 Affibody variants that were produced and affinity purified for ranking of their binding properties. The two most promising Affibody variants were shown to selectively and efficiently bind to Abeta peptides, but not to the control proteins. These two Affibody ligands were in dimeric form (to gain avidity effects) coupled to affinity resins for evaluation as affinity devices for capture of Abeta peptides from human plasma and serum. It was found that both ligands could efficiently capture Abeta that were spiked (100 microgml(-1)) to plasma and serum samples. A ligand multimerization problem that would yield suboptimal affinity resins, caused by a cysteine residue present at the binding surface of the Affibody ligands, could be circumvented by the generation of second-generation Affibody ligands (having cysteine to serine substitutions). In an epitope mapping effort, the preferred binding site of selected Affibody ligands was mapped to amino acids 30-36 of Abeta, which fortunately would indicate that the Affibody molecules should not bind the amyloid precursor protein (APP). In addition, a significant effort was made to analyze which form of Abeta (monomer, dimer or higher aggregates) that was most efficiently captured by the selected Affibody ligand. By using Western blotting and a dot blot assay in combination with size exclusion chromatography, it could be concluded that selected Affibody ligands predominantly bound a non-aggregated form of analyzed Abeta peptide, which we speculate to be dimeric Abeta. In conclusion, we have successfully selected Affibody ligands that efficiently capture Abeta peptides from human plasma and serum. The potential therapeutic use of these optimized ligands for extracorporeal capture of Abeta peptides in order to slow down or reduce amyloid plaque formation, is discussed.  相似文献   

2.
Binding of manganese in human and rat plasma   总被引:5,自引:0,他引:5  
Albumin, transferrin and 'transmanganin' have all been proposed as the major Mn-binding ligand in plasma. The present investigations were initiated in order to resolve these discrepancies. Compared to other metals tested (109 Cd2+, 65Zn2+, 59Fe3+), 54Mn2+ bound poorly to purified albumin. The addition of exogenous albumin to plasma did not result in an increased 54Mn radioactivity associated with this protein. Also, incubation of 65Zn-albumin in the presence of excess Mn2+ (1 mM) did not result in the displacement of Zn from albumin or Mn binding. In contrast to these results, 54Mn was bound to purified transferrin, not as readily as Fe3+, but better than Zn2+ or Cd2+. Saturation of transferrin with Fe3+ (1.6 micrograms Fe/mg) prevented the binding of 54Mn indicating that Mn probably binds to Fe-binding sites on the protein. Polyacrylamide gel electrophoresis further demonstrated the association of 54Mn with transferrin rather than with albumin in both human and rat plasma. The amount of 54Mn radioactivity recovered with transferrin increased as incubation time was increased, probably due to oxidation of Mn2+ to Mn3+. Mn binding to transferrin reached a maximum within 5 and 12 h of incubation. About 50% of 54Mn migrated with transferrin, whereas only 5% was associated with albumin. A significant portion (20-55%) of the 54Mn radioactivity migrated with electrophoretically slow plasma components whose identity was not determined. Possibilities include alpha 2-macroglobulin, heavy gamma-globulins and/or heavy lipoproteins.  相似文献   

3.
A proper sample preparation, in particular, abundant protein removal is crucial in the characterization of low-abundance proteins including those harboring post-translational modifications. In human cerebrospinal fluid (CSF), approximately 80% of proteins originate from serum, and removal of major proteins is necessary to study brain-derived proteins that are present at low concentrations for successful biomarker and therapeutic target discoveries for neurological disorders. In this study, phospho- and glycoprotein specific fluorescent stains and mass spectrometry were used to map proteins from CSF on two-dimensional gel electropherograms after immunoaffinity based protein removal. Two protein removal methods were evaluated: batch mode with avian IgY antibody microbeads using spin filters and HPLC multiple affinity removal column. Six abundant proteins were removed from CSF: human serum albumin (HSA), transferrin, IgG, IgA, IgM, and fibrinogen with batch mode, and HSA, transferrin, IgG, IgA, antitrypsin, and haptoglobin with column chromatography. 2D gels were compared after staining for phospho-, glyco- and total proteins. The column format removed the major proteins more effectively and approximately 50% more spots were visualized when compared to the 2D gel of CSF without protein depletion. After protein depletion, selected phospho- and glycoprotein spots were identified using mass spectrometry in addition to some of the spots that were not visualized previously in nondepleted CSF. Fifty proteins were identified from 66 spots, and among them, 12 proteins (24%) have not been annotated in previously published 2D gels.  相似文献   

4.
Platelet-derived growth factor receptor (PDGFR) β is a marker of stromal pericytes and fibroblasts and represents an interesting target for both diagnosis and therapy of solid tumors. A receptor-specific imaging agent would be a useful tool for further understanding the prognostic role of this receptor in vivo. Affibody molecules constitute a class of very small binding proteins that are highly suited for in vivo imaging applications and that can be selected to specifically recognize a desired target protein. Here we describe the isolation of PDGFRβ-specific Affibody molecules with subnanomolar affinity. First-generation Affibody molecules were generated from a large naive library using phage display selection. Subsequently, sequences from binders having a desired selectivity profile and competing with the natural ligand for binding were used in the design of an affinity maturation library, which was created using a single partially randomized oligonucleotide. From this second-generation library, Affibody molecules with a 10-fold improvement in affinity (Kd = 0.4-0.5 nM) for human PDGFRβ and a 4-fold improvement in affinity (Kd = 6-7 nM) for murine PDGFRβ were isolated and characterized. Complete reversible folding after heating to 90 °C, as demonstrated by circular dichroism analysis, supports tolerance to labeling conditions for molecular imaging. The binders were highly specific, as verified by dot blot showing staining reactivity only with human and murine PDGFRβ, but not with human PDGFRα, or a panel of control proteins including 16 abundant human serum proteins. The final binder recognized the native conformation of PDGFRβ expressed in murine NIH-3T3 fibroblasts and human AU565 cells, and inhibited ligand-induced receptor phosphorylation in PDGFRβ-transfected porcine aortic endothelial cells. The PDGFRβ-specific Affibody molecule also accumulated around tumoral blood vessels in a model of spontaneous insulinoma, confirming a potential for in vivo targeting.  相似文献   

5.
Affinity reagents capable of selective recognition of the different human immunoglobulin isotypes are important detection and purification tools in biotechnology. Here we describe the development and characterization of affinity proteins (affibodies) showing selective binding to human IgA. From protein libraries constructed by combinatorial mutagenesis of a 58-amino-acid, three-helix bundle domain derived from the IgG-binding staphylococcal protein A, variants showing IgA binding were selected by using phage display technology and IgA monoclonal antibodies (myeloma) as target molecules. Characterization of selected clones by biosensor technology showed that five out of eight investigated affibody variants were capable of IgA binding, with dissociation constants (K(d)) in the range between 0.5 and 3 microm. One variant (Z(IgA1)) showing the strongest binding affinity was further analyzed, and showed that human IgA subclasses (IgA(1) and IgA(2)) as well as secretory IgA were recognized with similar efficiencies. No detectable cross-reactivity towards human IgG, IgM, IgD or IgE was observed. The potential use of the Z(IgA1) affibody as a ligand in affinity chromatography applications was first demonstrated by selective recovery of IgA protein from a spiked Escherichia coli total cell lysate, using an affinity column containing a divalent head-to-tail Z(IgA1) affibody dimer construct as a ligand. In addition, efficient affinity recovery of IgA from unconditioned human plasma was also demonstrated.  相似文献   

6.
Affibody molecules are a new class of small targeting proteins based on a common three-helix bundle structure. Affibody molecules binding a desired target may be selected using phage-display technology. An Affibody molecule Z HER2:342 binding with subnanomolar affinity to the tumor antigen HER2 has recently been developed for radionuclide imaging in vivo. Introduction of a single cysteine into the cysteine-free Affibody scaffold provides a unique thiol group for site-specific labeling of recombinant Affibody molecules. The recently developed maleimido-CHX-A' DTPA was site-specifically conjugated at the C-terminal cysteine of Z HER2:2395-C, a variant of Z HER2:342, providing a homogeneous conjugate with a dissociation constant of 56 pM. The yield of labeling with (111)In was >99% after 10 min at room temperature. In vitro cell tests demonstrated specific binding of (111)In-CHX-A' DTPA-Z 2395-C to HER2-expressing cell-line SKOV-3 and good cellular retention of radioactivity. In normal mice, the conjugate demonstrated rapid clearance from all nonspecific organs except kidney. In mice bearing SKOV-3 xenografts, the tumor uptake of (111)In-CHX-A' DTPA-Z 2395-C was 17.3 +/- 4.8% IA/g and the tumor-to-blood ratio 86 +/- 46 (4 h postinjection). HER2-expressing xenografts were clearly visualized 1 h postinjection. In conclusion, coupling of maleimido-CHX-A' DTPA to cysteine-containing Affibody molecules provides a well-defined uniform conjugate, which can be rapidly labeled at room temperature and provides high-contrast imaging of molecular targets in vivo.  相似文献   

7.
The importance of the ligand presentation format for the production of protein capture microarrays was evaluated using different Affibody molecules, produced either as single 6 kDa monomers or genetically linked head-to-tail multimers containing up to four domains. The performances in terms of selectivity and sensitivity of the monomeric and the multidomain Affibody molecules were compared by immobilization of the ligands on microarray slides, followed by incubation with fluorescent-labeled target protein. An increase in signal intensities for the multimers was demonstrated, with the most pronounced difference observed between monomers and dimers. A protein microarray containing six different dimeric Affibody ligands with specificity for IgA, IgE, IgG, TNF-alpha, insulin, or Taq DNA polymerase was characterized for direct detection of fluorescent-labeled analytes. No cross-reactivity was observed and the limits of detection were 600 fM for IgA, 20 pM for IgE, 70 fM for IgG, 20 pM for TNF-alpha, 60 pM for insulin, and 10 pM for Taq DNA polymerase. Also, different sandwich formats for detection of unlabeled protein were evaluated and used for selective detection of IgA or TNF-alpha in human serum or plasma samples, respectively. Finally, the presence of IgA was determined using detection of directly Cy5-labeled normal or IgA-deficient serum samples.  相似文献   

8.
Specific binding of ferric bovine transferrin to the human transferrin receptor was investigated using K562 cells propagated in serum-free medium without transferrin supplemented with 10(-5) elemental iron. Affinity chromatography of solubilized extracts of K562 cells surface-labeled with 125I was performed using bovine transferrin- and human transferrin-Sepharose 4B resins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of resin eluates reveal that bovine transferrin specifically binds a Mr = 188,000 protein which dissociates into a Mr = 94,000 protein under reducing conditions, a finding identical to what is seen with human transferrin. The Mr = 94,000 reduced protein isolated by bovine transferrin resin shows an identical one-dimensional partial proteolytic digestion map with that of the human transferrin receptor. Unlabeled bovine transferrin was shown to specifically compete 125I-labeled human transferrin from the human transferrin receptor on the surface of K562 cells at 4 degrees C in a similar manner as unlabeled human transferrin; however, approximately a 2,000-fold higher concentration of bovine ligand was required to achieve comparable competition (50% inhibition of binding). Indirect immunofluorescence cytolocalization of bovine transferrin in K562 cells grown in serum-free medium supplemented with ferric bovine transferrin reveal patterns similar to those seen for human transferrin (both focal perinuclear and diffuse cytoplasmic fluorescence). Monensin treatment results in a dramatic accumulation of bovine ligand in perinuclear aggregates, suggesting that it is recycled through the Golgi, as is human transferrin. K562 cells grown in serum-free medium supplemented with either 300 micrograms/ml of ferric human or ferric bovine transferrin were found to demonstrate superimposable growth curves.  相似文献   

9.
The interaction of hydroxypyridinones with human serum transferrin and ovotransferrin has been studied by analyzing the distribution of iron between the chelator and the proteins as a function of both ligand concentration and transferrin saturation. The kinetics of iron removal by 3-hydroxypyridin-4-ones from both transferrins is slow; in ovotransferrin it appears to be monophasic, in contrast to that observed for serum transferrin. After 24 hours incubation at a 40:1 chelator:protein molar ratio, the percentage of iron removed from Fe(III)-ovotransferrin is 50%-60%, and is somewhat higher in the case of serum transferrin, in line with the respective affinity constants for the metal. The 3-hydroxypyridin-2-ones and the 3-hydroxypyran-4-ones, both of which have lower affinities for Fe(III), remove smaller proportions of the metal. The percentage of desaturation obtained with bidentate and hexadentate pyridinones appears to be similar for both transferrin classes at chelator:protein molar ratios from 40:1. The degree of transferrin saturation influences the extent of chelator mediated iron mobilization in the case of serum transferrin, but not of ovotransferrin. 59Fe competition studies demonstrate that bidentate pyridin-4-ones are capable of donating iron to serum apotransferrin; the relative concentrations of ligand and protein influence the distribution of iron because their effective binding constants (at pH 7.4) for Fe(III) are similar.  相似文献   

10.
A transferrin binding protein was isolated from normal rat placenta and from iron-deficient rat plasma using a human transferrin affinity column. The yield of the isolated pure protein from iron-deficient rat plasma was about 0.5 micrograms/ml plasma. The major protein had a molecular mass of 85 kDa and contained carbohydrate. Reduction with mercaptoethanol did not change the molecular mass of the plasma transferrin binding protein whereas the native placental transferrin receptor of 180 kDa was reduced to 90 kDa. The transferrin binding protein reacted with both monoclonal and polyclonal antibodies raised against rat transferrin receptor. Immunoblotting of both normal and iron deficient rat plasma showed that the transferrin binding protein had a molecular mass of 85 kDa. In vitro digestion of purified rat placental transferrin receptor and red blood cells with trypsin provided an identical peptide profile, suggesting that the transferrin binding protein in rat plasma is derived from proteolysis of the extracellular portion of the transferrin receptor of the erythroid tissues.  相似文献   

11.
The mechanism and effectiveness of iron removal from transferrin by three series of new potential therapeutic iron sequestering agents have been analyzed with regard to the structures of the chelators. All compounds are hexadentate ligands composed of a systematically varied combination of methyl-3,2-hydroxypyridinone (Me-3,2-HOPO) and 2,3-dihydroxyterephthalamide (TAM) binding units linked to a polyamine scaffold through amide linkers; each series is based on a specific backbone: tris(2-aminoethyl)amine, spermidine, or 5-LIO(TAM), where 5-LIO is 2-(2-aminoethoxy)ethylamine. Rates of iron removal from transferrin were determined spectrophotometrically for the ten ligands, which all efficiently acquire ferric ion from diferric transferrin with a hyperbolic dependence on ligand concentration (saturation kinetics). The effect of the two iron-binding subunits Me-3,2-HOPO and TAM and of the scaffold structures on iron removal ability is discussed. At the low concentrations corresponding to therapeutic dose, TAM-containing ligands exhibit the fastest rates of iron removal, which correlates with their high affinity for ferric ion and suggests the insertion of such binding units into future therapeutic chelating agents. In addition, urea polyacrylamide gel electrophoresis was used to measure the individual microscopic rates of iron removal from the three iron-bound transferrin species (diferric transferrin, N-terminal monoferric transferrin, C-terminal monoferric transferrin) by the representative chelators 5-LIO(Me-3,2-HOPO)(2)(TAM) and 5-LIO(TAMmeg)(2)(TAM), where TAMmeg is 2,3-dihydroxy-1-(methoxyethylcarbamoyl)terephthalamide. Both ligands show preferential removal from the C-terminal site of the iron-binding protein. However, cooperative effects between the two binding sites differ with the chelator. Replacement of hydroxypyridinone moieties by terephthalamide groups renders the N-terminal site more accessible to the ligand and may represent an advantage for iron chelation therapy.  相似文献   

12.
Many G-protein coupled receptors (GPCRs) undergo ligand-dependent internalization upon activation. The parathyroid hormone (PTH) receptor undergoes endocytosis following prolonged exposure to ligand although the ultimate fate of the receptor following internalization is largely unknown. To investigate compartmentalization of the PTH receptor, we have established a stable cell line expressing a PTH receptor-green fluorescent protein (PTHR-GFP) conjugate and an algorithm to quantify PTH receptor internalization. HEK 293 cells expressing the PTHR-GFP were compared with cells expressing the wild-type PTH receptor in whole-cell binding and functional assays. 125I-PTH binding studies revealed similar Bmax and kD values in cells expressing either the PTHR-GFP or the wild-type PTH receptor. PTH-induced cAMP accumulation was similar in both cell lines suggesting that addition of the GFP to the cytoplasmic tail of the PTH receptor does not alter the ligand binding or G-protein coupling properties of the receptor. Using confocal fluorescence microscopy, we demonstrated that PTH treatment of cells expressing the PTHR-GFP conjugate produced a time-dependent redistribution of the receptor to the endosomal compartment which was blocked by pretreatment with PTH antagonist peptides. Treatment with hypertonic sucrose prevented PTH-induced receptor internalization, suggesting that the PTH receptor internalizes via a clathrin-dependent mechanism. Moreover, co-localization with internalized transferrin showed that PTHR-GFP trafficking utilized the endocytic recycling compartment. Experiments using cycloheximide to inhibit protein synthesis demonstrated that recycling of the PTHR-GFP back to the plasma membrane was complete within 1-2 h of ligand removal and was partially blocked by pretreatment with cytochalasin D, but not nocodazole. We also demonstrated that the PTH receptor, upon recycling to the plasma membrane, is capable of undergoing a second round of internalization, a finding consistent with a role for receptor recycling in functional resensitization.  相似文献   

13.
Affibody molecules present a new class of affinity proteins, which utilizes a scaffold based on a 58-amino acid domain derived from protein A. The small (7 kDa) Affibody molecule can be selected to bind to cell-surface targets with high affinity. An Affibody molecule (ZHER2:342) with a dissociation constant (Kd) of 22 pM for binding to the HER2 receptor has been reported earlier. Preclinical and pilot clinical studies have demonstrated the utility of radiolabeled ZHER2:342 in imaging of HER2-expressing tumors. The small size and cysteine-free structure of Affibody molecules enable complete peptide synthesis and direct incorporation of radionuclide chelators. The goal of this study was to evaluate if incorporation of the natural peptide sequences cysteine-diglycine (CGG) and cysteine-triglycine (CGGG) sequences would enable labeling of Affibody molecules with 99mTc. In a model monomeric form, the chelating sequences were incorporated by peptide synthesis. The HER2-binding affinity was 280 and 250 pM for CGG-ZHER2:342 and CGGG-ZHER2:342, respectively. Conjugates were directly labeled with 99mTc with 90% efficiency and preserved the capacity to bind specifically to HER2-expressing cells. The biodistribution in normal mice showed a rapid clearance from the blood and the majority of organs (except kidneys). In the mice bearing SKOV-3 xenografts, tumor uptake of 99mTc-CGG-ZHER2:342 was HER2-specific and a tumor-to-blood ratio of 9.2 was obtained at 6 h postinjection. Gamma-camera imaging with 99mTc-CGG-ZHER2:342 clearly visualized tumors at 6 h postinjection. The results show that the use of a cysteine-based chelator enables 99mTc-labeling of Affibody molecules for imaging.  相似文献   

14.
Transferrin-binding protein B (TbpB) is one component of a bipartite receptor in several gram-negative bacterial species that binds host transferrin and mediates the uptake of iron for growth. Transferrin and TbpB are both bilobed proteins, and the interaction between these proteins seems to involve similar lobe-lobe interactions. Synthetic overlapping peptide libraries representing the N lobe of TbpB from Moraxella catarrhalis were prepared and probed with labeled human transferrin. Transferrin-binding peptides were localized to six different regions of the TbpB N lobe, and reciprocal experiments identified six different regions of the C lobe of transferrin that bound TbpB. Truncations of the N lobe of TbpB that sequentially removed each transferrin-binding determinant were used to probe an overlapping peptide library of the C lobe of human transferrin. The removal of each TbpB N-lobe transferrin-binding determinant resulted in a loss of reactivity with peptides from the synthetic peptide library representing the C lobe of transferrin. Thus, individual peptide-peptide interactions between ligand and receptor were identified. A structural model of human transferrin was used to map surface regions capable of binding to TbpB.  相似文献   

15.
The ferric iron-binding protein (Fbp) expressed by pathogenic Neisseria spp. has been proposed to play a central role in the high-affinity acquisition of iron from human transferrin. The results of this investigation provide evidence that Fbp participates in this process as a functional analogue of a Gram-negative periplasmic-binding protein component, which operates as a part of a general active transport process for the receptor-mediated, high-affinity transport of iron from human transferrin. Known properties of Fbp are correlated with those of other well-characterized periplasmic-binding proteins, including structural features and the reversible binding of ligand. Predictive of a periplasmic-binding protein, which functions in the high-affinity acquisition of iron, is that Fbp is a transient participant in the process of iron acquisition from human transferrin. Evidence for this is demonstrated by results of pulse–chase experiments. Taken together, the data described here and elsewhere suggest that pathogenic Neisseria spp. use a periplasmic-binding protein-mediated active transport mechanism for the acquisition of iron from human transferrin.  相似文献   

16.
One of the forms of the insulin-like growth factor (IGF) binding proteins present in human amniotic fluid has been shown to potentiate the growth-promoting effect of IGF-I markedly. This study was undertaken to determine the cellular and hormonal factors that modulate this potentiation and to determine whether this protein would potentiate the effects of other mitogens. Although the combination of the IGFBP-1 (20 ng/ml) and IGF-I (10 ng/ml) induced a five- to sixfold increase in DNA synthesis compared with IGF-I alone, this response required the simultaneous addition of IGF-I with 0.1% platelet-poor plasma (PPP). If PPP was omitted from the incubation medium, no increase above the effect that was obtained with IGF-I alone was noted. Substitution of cerebrospinal fluid (CSF) for PPP permitted a full mitogenic response, although substitution with amniotic fluid resulted in no enhancement. The factor contained in PPP was heat and acid stable. If the binding protein was co-incubated with fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), or epidermal growth factor (EGF), a slight inhibition of the cellular response to each of these factors was detected. Co-incubation of IGF-I with the IGF-binding protein plus these other peptide growth factors resulted in no further enhancement of DNA synthesis above the level observed with IGF-I and the binding protein alone. Likewise, addition of plasma proteins such as transferrin or albumin did not result in a further enhancement of the DNA synthesis response to IGF-I plus binding protein, and these proteins could not substitute for PPP or IGFBP-1. Transient exposure of the cultures (2 hr) to the binding protein plus IGF-I resulted in a submaximal DNA synthesis response, and the binding protein had to be present continuously to achieve a maximal effect. These studies indicate that a factor contained in plasma and CSF is required for a maximal cellular response to IGFBP-1 plus IGF-I, and this factor does not appear to be a well-defined mitogen.  相似文献   

17.
Serum transferrin is the major iron transport protein in humans. Its function depends on its ability to bind iron with very high affinity, yet to release this bound iron at the lower intracellular pH. Possible explanations for the release of iron from transferrin at low pH include protonation of a histidine ligand and the existence of a pH-sensitive "trigger" involving a hydrogen-bonded pair of lysines in the N-lobe of transferrin. We have determined the crystal structure of the His249Glu mutant of the N-lobe half-molecule of human transferrin and compared its iron-binding properties with those of the wild-type protein and other mutants. The crystal structure, determined at 2.4 A resolution (R-factor 19.8%, R(free) 29.4%), shows that Glu 249 is directly bound to iron, in place of the His ligand, and that a local movement of Lys 296 has broken the dilysine interaction. Despite the loss of this potentially pH-sensitive interaction, the H249E mutant is only slightly more acid-stable than wild-type and releases iron slightly faster. We conclude that the loss of the dilysine interaction does make the protein more acid stable but that this is counterbalanced by the replacement of a neutral ligand (His) by a negatively charged one (Glu), thus disrupting the electroneutrality of the binding site.  相似文献   

18.
Serum transferrin is the protein that transports ferric ion through the bloodstream and is thus a potential target for iron chelation therapy. However, the release of iron from transferrin to low-molecular-weight chelating agents is usually quite slow. Thus a better understanding of the mechanism for iron release is important to assist in the design of more effective agents for iron removal. This paper describes the effect of sulfonate anions on the rates of iron removal from C-terminal monoferric transferrin by acetohydroxamic acid, deferiprone, nitrilotriacetic acid (NTA), and diethylenetriaminepentaacetic acid at 25 °C in 0.1 M N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (Hepes) buffer at pH 7.4. These ligands remove iron via a combination of pathways that show saturation and first order dependence on the ligand concentration. The kinetic effects of the anions methanesulfonate, methylenedisulfonate, and ethylenedisulfonate were evaluated. All these anions increase the overall rates of iron release, presumably by binding to an allosteric anion binding site on the protein. The two disulfonates produce a larger acceleration in iron release than the monosulfonate. More detailed studies using methylenedisulfonate show that this anion accelerates the rate of iron release via the saturation pathway. The addition of methylenedisulfonate results in the appearance of a large saturation pathway for iron release by NTA, which otherwise removes iron by a simple first-order process. The sulfonate group was selected for these studies because it represents an anionic functional group that can be covalently linked to a therapeutic ligand to accelerate iron release in vivo. The current studies indicate that the binding of the sulfonates to the allosteric site on the protein is quite weak, so that one would not expect a significant acceleration in iron release at clinically relevant ligand concentrations.  相似文献   

19.
The concentrations of total protein and albumin in cerebrospinal fluid (CSF) and plasma of tammar wallaby pouch young (Macropus eugenii) from birth until leaving the pouch have been measured. Total protein in CSF increased from birth (about 240 mg/100 ml) to 15-20 days postnatal (about 400 mg/100 ml) after which it declined. Albumin showed a proportionately greater increase from around 40 mg/100 ml to over 130 mg/100 ml, followed by decline after 75 days. Total protein and albumin in plasma increased throughout the period studied. Other proteins identified in CSF and plasma were: fetuin, alpha 2-macroglobulin, transferrin, alpha-lipoprotein, beta-lipoprotein, immunoglobin G and fibrinogen. One protein was only present in early pouch young (up to about 40 days) and was presumed to be the tammar equivalent of alpha-fetoprotein.  相似文献   

20.
Pathogenic Gram-negative bacteria of the Pasteurellaceae and Neisseriaceae acquire iron for growth from host transferrin through the action of specific surface receptors. Iron is removed from transferrin by the receptor at the cell surface and is transported across the outer membrane to the periplasm. A periplasmic binding protein-dependent pathway subsequently transports iron into the cell. The transferrin receptor is composed of a largely surface-exposed lipoprotein, transferrin binding protein B, and a TonB-dependent integral outer membrane protein, transferrin binding protein A. To examine the role of transferrin binding protein B in the iron removal process, complexes of recombinant transferrin binding protein B and transferrin were prepared and compared with transferrin in metal-binding and -removal experiments. A polyhistidine-tagged form of recombinant transferrin binding protein B was able to purify a complex with transferrin that was largely monodisperse by dynamic light scattering analysis. Gallium was used instead of iron in the metal-binding studies, since it resulted in increased stability of recombinant transferrin binding protein B in the complex. Difference absorption spectra were used to monitor removal of gallium by nitrilotriacetic acid. Kinetic and equilibrium binding studies indicated that transferrin binds gallium more tightly in the presence of transferrin binding protein B. Thus, transferrin binding protein B does not facilitate metal ion removal and additional components are required for this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号