首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
End-organ ischemia is a common source of patient morbidity and mortality. Stem cell therapy represents a novel treatment modality for ischemic diseases and may aid injured tissues through the release of beneficial paracrine mediators. Female bone marrow mesenchymal stem cells (MSCs) have demonstrated a relative resistance to detrimental TNF receptor 1 (TNFR1) signaling and are thought to be superior to male stem cells in limiting inflammation. However, it is not known whether sex differences exist in TNF receptor 2 (TNFR2)-ablated MSCs. Therefore, we hypothesized that 1) sex differences would be observed in wild-type (WT) and TNFR2-ablated MSC cytokine signaling, and 2) the production of IL-6, VEGF, and IGF-1 in males, but not females, would be mediated through TNFR2. MSCs were harvested from male and female WT and TNFR2 knockout (TNFR2KO) mice and were subsequently exposed to TNF (50 ng/ml) or LPS (100 ng/ml). After 24 h, supernatants were collected and measured for cytokines. TNF and LPS stimulated WT stem cells to produce cytokines, but sex differences were only seen in IL-6 and IGF-1 after TNF stimulation. Ablation of TNFR2 increased VEGF and IGF-1 production in males compared with wild-type, but no difference was observed in females. Female MSCs from TNFR2KOs produced significantly lower levels of VEGF and IGF-1 compared with male TNFR2KOs. The absence of TNFR2 signaling appears to play a greater role in male MSC cytokine production. As a result, male, but not female stem cell cytokine production may be mediated through TNFR2 signaling cascades.  相似文献   

2.
Sudo K  Yamada Y  Moriwaki H  Saito K  Seishima M 《Cytokine》2005,29(5):236-244
Chronic liver injury causes liver regeneration, resulting in fibrosis. The proinflammatory cytokine tumor necrosis factor (TNF) is involved in the pathogenesis of many acute and chronic liver diseases. TNF has pleiotropic functions, but its role in liver fibrosis has not been clarified. Chronic repeated injection of CCl4 induces liver fibrosis in mice. We examined whether signaling through TNF receptors was critical for this process, using mice lacking either TNF receptor (TNFR) type 1 or TNFR type 2 to define the pathophysiologic role of TNFR signals in liver fibrosis. Liver fibrosis caused by chronic CCl4 exposure was TNF-dependent; histological fibrosis was seen in wild-type (WT) and TNFR-2 knockout (KO) mice, but not in TNFR-1 KO mice. Furthermore, a marked reduction in procollagen and TGF-beta synthesis was observed in TNFR-1 KO mice, which also had little detectable NF-kappa B, STAT3, and AP1 binding, and reduced levels of liver interleukin-6 (IL-6) mRNA compared to WT and TNFR-2 KO mice. In conclusion, our results indicate the possibility that NF-kappa B, STAT3, and AP1 binding by signals transduced through TNFR-1 plays an important role in liver fibrosis formation.  相似文献   

3.
The host immune responses that mediate Chlamydia-induced chronic disease sequelae are incompletely understood. The role of TNF-α, TNF receptor 1 (TNFR1), and TNF receptor 2 (TNFR2), in Chlamydia pneumoniae (CPN)-induced atherosclerosis was studied using the high-fat diet-fed male C57BL/6J mouse model. Following intranasal CPN infection, TNF-α knockout (KO), TNFR1 KO, TNFR2 KO, and TNFR 1/2 double-knockout, displayed comparable serum anti-chlamydial antibody response, splenic antigen-specific cytokine response, and serum cholesterol profiles compared to wild type (WT) animals. However, atherosclerotic pathology in each CPN-infected KO mouse group was reduced significantly compared to WT mice, suggesting that both TNFR1 and TNFR2 promote CPN-induced atherosclerosis.  相似文献   

4.
Stem cells may be a novel treatment modality for organ ischemia, possibly through beneficial paracrine mechanisms. Stem cells from older hosts have been shown to exhibit decreased function during stress. We therefore hypothesized that 1) neonatal bone marrow mesenchymal stem cells (nBMSCs) would produce different levels of IL-6, VEGF, and IGF-1 compared with adults (aBMSCs) when stimulated with TNF or LPS; 2) differences in cytokines would be due to distinct cellular characteristics, such as proliferation or pluripotent potential; and 3) differences in cytokines would be associated with differences in p38 MAPK and ERK signaling within nBMSCs. BMSCs were isolated from adult and neonatal mice. Cells were exposed to TNF or LPS with or without p38 or ERK inhibition. Growth factors were measured via ELISA, proliferation via daily cell counts, cell surface markers via flow cytometry, and pluripotent potential via alkaline phosphatase activity. nBMSCs produced lower levels of IL-6 and VEGF, but higher levels of IGF-1 under basal conditions, as well as after stimulation with TNF, but not LPS. Neonatal and adult BMSCs had similar pluripotent potentials and cell surface markers, but nBMSCs proliferated faster. Furthermore, p38 and ERK appeared to play a more substantial role in nBMSC cytokine and growth factor production. Neonatal stem cells may aid in decreasing the local inflammatory response during ischemia, and could possibly be expanded more rapidly than adult cells prior to therapeutic use.  相似文献   

5.
We investigated the requirement for tumor necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 receptors in the pathogenesis of the pulmonary and hepatic responses to Escherichia coli lipopolysaccharide (LPS) by studying wild-type mice and mice deficient in TNF type 1 receptor [TNFR1 knockout (KO)] or both TNF type 1 and IL-1 receptors (TNFR1/IL-1R KO). In lung tissue, NF-kappaB activation was similar among the groups after exposure to aerosolized LPS. After intraperitoneal injection of LPS, NF-kappaB activation in liver was attenuated in TNFR1 KO mice and further diminished in TNFR1/IL-1R KO mice; however, in lung tissue, no impairment in NF-kappaB activation was found in TNFR1 KO mice and only a modest decrease was found in TNFR1/IL-1R KO mice. Lung concentrations of KC and macrophage-inflammatory peptide 2 were lower in TNFR1 KO and TNFR1/IL-1R KO mice after aerosolized and intraperitoneal LPS. We conclude that LPS-induced NF-kappaB activation in liver is mediated through TNF-alpha- and IL-1 receptor-dependent pathways, but, in the lung, LPS-induced NF-kappaB activation is largely independent of these receptors.  相似文献   

6.
Stem cells have shown promise for the treatment of end organ ischemia. NFkB has been demonstrated to regulate growth factor secretion in human adult bone marrow stem cells (aBMSCs). We hypothesized that: (1) NFkB is an important mediator in aBMSC and neonatal BMSC (nBMSC) VEGF and IL-6 secretion; and (2) inhibition of NFkB will result in a decrease of VEGF and IL-6 in nBMSCs. BMSCs were plated and exposed to TNF (50 ng/ml) or LPS (100 ng/ml), with or without NFkB or IKK inhibition. VEGF and IL-6 were measured via ELISA in 24-h supernatants. Inhibition of NFkB and IKK both demonstrated a decrease in VEGF (p < 0.05) in aBMSCs but not nBMSCs. The LPS-stimulated nBMSC with IKK inhibition group was the only exception which demonstrated a decrease in VEGF secretion. However, both NFkB inhibition caused both aBMSCs and nBMSCs to produced less IL-6 after LPS stimulation (p < 0.05). Only aBMSCs’ secretion of IL-6 decreased with NFkB and IKK inhibition when stimulated with TNF (p < 0.05) differing only when TNF-stimulated nBMSCs were inhibited with IKK. VEGF and IL-6 secretion in aBMSCs is dependent on the classic NFkB pathway. However, neonatal BMSC VEGF and IL-6 secretion is stimulant-specific and utilization of the NFkB pathway is more complex.  相似文献   

7.
Tumor necrosis factor-alpha (TNF-alpha) plays an important role in the development of heart failure. There is a direct correlation between myocardial function and myocardial TNF levels in humans. TNF may induce local inflammation to exert tissue injury. On the other hand, suppressors of cytokine signaling (SOCS) proteins have been shown to inhibit proinflammatory signaling. However, it is unknown whether TNF mediates myocardial inflammation via STAT3/SOCS3 signaling in the heart and, if so, whether this effect is through the type 1 55-kDa TNF receptor (TNFR1). We hypothesized that TNFR1 deficiency protects myocardial function and decreases myocardial IL-6 production via the STAT3/SOCS3 pathway in response to TNF. Isolated male mouse hearts (n = 4/group) from wild-type (WT) and TNFR1 knockout (TNFR1KO) were subjected to direct TNF infusion (500 pg.ml(-1).min(-1) x 30 min) while left ventricular developed pressure and maximal positive and negative values of the first derivative of pressure were continuously recorded. Heart tissue was analyzed for active forms of STAT3, p38, SOCS3 and SOCS1 (Western blot analysis), as well as IL-1beta and IL-6 (ELISA). Coronary effluent was analyzed for lactate dehydrogenase (LDH) activity. As a result, TNFR1KO had significantly better myocardial function, less myocardial LDH release, and greater expression of SOCS3 (percentage of SOCS3/GAPDH: 45 +/- 4.5% vs. WT 22 +/- 6.5%) after TNF infusion. TNFR1 deficiency decreased STAT3 activation (percentage of phospho-STAT3/STAT3: 29 +/- 6.4% vs. WT 45 +/- 8.8%). IL-6 was decreased in TNFR1KO (150.2 +/- 3.65 pg/mg protein) versus WT (211.4 +/- 26.08) mice. TNFR1 deficiency did not change expression of p38 and IL-1beta following TNF infusion. These results suggest that deficiency of TNFR1 protects myocardium through SOCS3 and IL-6 but not p38 MAPK or IL-1beta.  相似文献   

8.
The aim of the present study was to investigate the importance of tumor necrosis factor (TNF)-alpha receptor-1 (TNFR1)-mediated pathways in a murine model of myocardial infarction and remodeling. One hundred and ninety-four wild-type (WT) and TNFR1 gene-deleted (TNFR1KO) mice underwent left coronary artery ligation to induce myocardial infarction. On days 1, 3, 7, and 42, mice underwent transesophageal echocardiography. Hearts were weighed, and the left ventricle (LV) was assayed for matrix metalloproteinase (MMP)-2 and -9 activity and for tissue inhibitor of MMP (TIMP)-1 and -2 expression. Deletion of the TNFR1 gene substantially improved survival because no deaths were observed in TNFR1KO mice versus 56.4% and 18.2% in WT males and females, respectively (P < 0.002). At 42 days, LV remodeling, assessed by LV function (fractional area change of 31.9 +/- 7.9%, 32.2 +/- 7.7%, and 21.6 +/- 7.1% in TNFR1KO males, TNFR1KO females, and WT females, respectively, P < 0.04), and hypertrophy (heart weight-to-body weight ratios of 5.435 +/- 0.986, 5.485 +/- 0.677, and 6.726 +/- 0.704 mg/g, P < 0.04) were ameliorated in TNFR1KO mice. MMP-9 activity was highest at 3 days postinfarction and was highest in WT males (1.9 +/- 0.4 4, 3.6 +/- 0.24, 1.15 +/- 0.28, and 1.3 +/- 1.2 ng/100 microg protein, respectively, in TNFR1KO males, WT males, TNFR1KO females, and WT females, respectively, P < 0.002), whereas at 3 days TIMP-1 mRNA fold upregulation compared with type- and sex-matched controls was lowest in WT males (138.32 +/- 13.05, 46.74 +/- 5.43, 186.09 +/- 28.07, and 101.76 +/- 22.48, respectively, P < 0.002). MMP-2 and TIMP-2 increased similarly in all infarcted groups. These findings suggest that the benefits of TNFR1 ablation might be attributable at least in part to the attenuation of cytokine-mediated imbalances in MMP-TIMP activity.  相似文献   

9.
LPS is radioprotective in the mouse small intestine through a mechanism that includes the synthesis of cyclooxygenase-2 (COX-2) and PGE2. The goal of this study was to identify the intermediate steps in this process. We used wild-type (WT) C57BL/6 mice and knockouts for tumor necrosis factor receptors 1 and 2 (TNFR1-/-, TNFR2-/-) and recombination-activating gene 1-/- mice. Mice were given parenteral LPS and then subjected to 12 Gy total body gamma irradiation. The number of surviving intestinal crypts was assessed 3.5 days after irradiation using a clonogenic assay. Crypt cell apoptosis was assessed by histology. Parenteral administration of LPS induced COX-2 expression, PGE2 production, and radioprotection in WT and TNFR2-/- mice but not in TNFR1-/- mice. TNFR1-/- mice were radioprotected by administration of exogenous 16,16-dimethyl PGE2. Immunohistochemical studies localized TNFR1 and COX-2 expression to subeptihelial fibroblasts and villus epithelial cells. Radiation-induced apoptosis was reduced by pretreatment with LPS in WT and TNFR2-/- mice but not in TNFR1-/- mice. In the absence of LPS, crypt survival was elevated in TNFR1-/- when compared with WT mice. These findings demonstrate that TNFR1 function is required for LPS-induced radioprotection in C57BL/6 mice and define an essential role for TNFR1 function in the induction of COX-2 expression and PGE2 production in this process. The immunolocalization of TNFR1 and COX-2 expression to subepithelial fibroblasts following LPS administration suggests that this cell type plays an intermediate role in LPS-induced radioprotection in the intestine.  相似文献   

10.
Tumor necrosis factor (TNF) is a key player in inflammatory bowel disease and has been variably associated with carcinogenesis, but details of the cross talk between inflammatory and tumorigenic pathways remain incompletely understood. It has been shown that, in C57BL/6 mice, signaling via TNF receptor 1 (TNFR1) is protective from injury and inflammation in experimental colitis. Therefore, we hypothesized that loss of TNFR1 signaling would confer increased risk of developing colitis-associated carcinoma. Using three models of murine tumorigenesis based on repeated bouts of inflammation or systemic tumor initiator, we sought to determine the roles of TNF and TNFR1 with regard to neoplastic transformation in the colon in wild-type (WT), TNFR1 knockout (R1KO), and TNF knockout (TNFKO) mice. We found R1KO animals to have more severe disease, as defined by weight loss, hematochezia, and histology. TNFKO mice demonstrated less weight loss but were consistently smaller, and rates and duration of hematochezia were comparable to WT mice. Histological inflammation scores were higher and neoplastic lesions occurred more frequently and earlier in R1KO mice. Apoptosis is not affected in R1KO mice although epithelial proliferation following injury is more ardent even before tumorigenesis is apparent. Lastly, there is earlier and more intense expression of activated β-catenin in these mice, implying a connection between TNFR1 and Wnt signaling. Taken together, these findings show that in the context of colitis-associated carcinogenesis TNFR1 functions as a tumor suppressor, exerting this effect not via apoptosis but by modulating activation of β-catenin and controlling epithelial proliferation.  相似文献   

11.
12.
Tissue factor expression on the surface of endothelial cells can be induced by tumor necrosis factor (TNF) and vascular endothelial growth factor (VEGF) in a synergistic manner. We have investigated the role of the two different TNF receptors for this synergy. Firstly, stimulation of the 60 kDa TNF receptor (TNFR60) by a mutant of TNF specific for TNFR60 induced responses comparable to wild-type TNF. In contrast, stimulation of TNFR80 by a TNFR80-specific TNF mutein did not result in enhancement of tissue factor expression even in the presence of a suboptimal TNFR60 triggering. Secondly, we tested neutralizing TNF receptor antibodies for inhibition of tissue factor synthesis induced by VEGF and TNF. A TNFR60-specific antibody inhibited tissue factor production over a broad range of TNF concentrations, indicating an essential role of TNFR60 in the TNF/VEGF synergy. In contrast, blocking of TNF binding to TNFR80 strongly inhibited TNF-induced tissue factor expression at low, but less pronounced at high, TNF concentrations. In conclusion, these data are in agreement with a model in which TNFR80 participates in the synergy between VEGF and low concentrations of soluble TNF by passing the ligand to the signalling TNFR60.  相似文献   

13.
TNF-α, a pro-inflammatory cytokine, is highly expressed after being irradiated (IR) and is implicated in mediating radiobiological bystander responses (RBRs). Little is known about specific TNF receptors in regulating TNF-induced RBR in bone marrow-derived endothelial progenitor cells (BM-EPCs). Full body γ-IR WT BM-EPCs showed a biphasic response: slow decay of p-H2AX foci during the initial 24 h and increase between 24 h and 7 days post-IR, indicating a significant RBR in BM-EPCs in vivo. Individual TNF receptor (TNFR) signaling in RBR was evaluated in BM-EPCs from WT, TNFR1/p55KO, and TNFR2/p75KO mice, in vitro. Compared with WT, early RBR (1–5 h) were inhibited in p55KO and p75KO EPCs, whereas delayed RBR (3–5 days) were amplified in p55KO EPCs, suggesting a possible role for TNFR2/p75 signaling in delayed RBR. Neutralizing TNF in γ-IR conditioned media (CM) of WT and p55KO BM-EPCs largely abolished RBR in both cell types. ELISA protein profiling of WT and p55KO EPC γ-IR-CM over 5 days showed significant increases in several pro-inflammatory cytokines, including TNF-α, IL-1α (Interleukin-1 alpha), RANTES (regulated on activation, normal T cell expressed and secreted), and MCP-1. In vitro treatments with murine recombinant (rm) TNF-α and rmIL-1α, but not rmMCP-1 or rmRANTES, increased the formation of p-H2AX foci in nonirradiated p55KO EPCs. We conclude that TNF-TNFR2 signaling may induce RBR in naïve BM-EPCs and that blocking TNF-TNFR2 signaling may prevent delayed RBR in BM-EPCs, conceivably, in bone marrow milieu in general.  相似文献   

14.
15.
Tumour necrosis factor (TNF) induces apoptosis in a range of cell types via its two receptors, TNFR1 and TNFR2. Here, we demonstrate that proliferation and TNFR2 expression was increased in human leukaemic TF-1 cells by granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-3 (IL-3), with TNFR1 expression unaffected. Consequently, they switch from a proliferative to a TNF-induced apoptotic phenotype. Raised TNFR2 expression and susceptibility to TNF-induced apoptosis was not a general effect of proliferation as IL-1beta and IFN-gamma both proliferated TF-1 cells with no effect on TNFR expression or apoptosis. Although raised TNFR2 expression correlated with the apoptotic phenotype, stimulation of apoptosis in GM-CSF-pretreated cells was mediated by TNFR1, with stimulation of TNFR2 alone insufficient to initiate cell death. However, TNFR2 did play a role in apoptotic and proliferative responses as they were blocked by the presence of an antagonistic TNFR2 antibody. Additionally, coincubation with cycloheximide blocked the mitotic effects of GM-CSF or IL-3, allowing only the apoptotic responses of TNF to persist. TNF life/death was also observed in K562, but not MOLT-4 and HL-60 human leukaemic cell types. These findings show a cooperative role of TNFR2 in the TNF life/death switching phenomenon.  相似文献   

16.
Obesity is associated with elevated levels of IL-6. High IL-6 is prognostic of mortality in sepsis, while controversial data link obesity to sepsis outcome. We used Lean and diet-induced obese (DIO) WT and IL-6 KO mice to investigate the interaction between obesity and IL-6 in endotoxemia. Circulating levels of IL-6 were significantly higher in WT DIO versus WT Lean mice receiving LPS (2.5 μg/mouse, ip). Obesity lead to greater weight loss in response to LPS, with IL-6 deficiency being partially protective. Plasma TNFα, IFNγ, Galectin-3 and leptin were significantly elevated in response to LPS and were each differentially affected by obesity and/or IL-6 deficiency. Plasma Galectin-1 and adiponectin were significantly suppressed by LPS, with obesity and IL-6 deficiency modulating the response. However, LPS comparably increased IL-10 levels in each group. Leukopenia with relative neutrophilia and thrombocytopenia developed in each group after injection of LPS, with obesity and genotype affecting the kinetics, but not the magnitude, of the response. Hepatic induction of the acute-phase protein SAA by LPS was not affected by obesity or IL-6 deficiency, although baseline levels were highest in WT DIO mice. Injection of LPS significantly increased hepatic mRNA expression of PAI-1 in Lean WT and Lean KO mice, while it suppressed the high baseline levels observed in the liver of DIO WT and DIO KO mice. Thus, both IL-6 and obesity modulate the response to endotoxemia, suggesting a complex interaction that needs to be considered when evaluating the effect of obesity on the outcome of septic patients.  相似文献   

17.
TNF, IL-1, and IL-6 are integral components of the cytokine cascade released in the response to inflammatory stimuli such as LPS. IL-8 is produced both in response to LPS as well as TNF and IL-1. The early, local production of TNF and IL-1 may therefore contribute to the subsequent expression of IL-8. This hypothesis was tested using LPS-stimulated human whole blood as an ex vivo model of local cytokine production. The production of TNF, IL-1 alpha, IL-1 beta, IL-6, and IL-8 was found to be responsive to a wide range of LPS concentrations (0.1 ng/ml-10 micrograms/ml). These cytokines were first detected between 1 to 4 h post-LPS stimulation, and reached plateau levels after 6 to 12 h. IL-8, however, also displayed a secondary wave of production, with the levels again increasing between 12 to 24 h. The IL-8 present in the plasma after LPS stimulation was biologically active, as assessed by neutrophil chemotaxis. In further studies, addition of anti-TNF and anti-IL-1 neutralizing antibodies, alone and in combination, to LPS-stimulated blood resulted in nearly complete ablation of the secondary phase of IL-8 synthesis at both the levels of protein and mRNA, while leaving the first, LPS-mediated phase of IL-8 synthesis unaffected. This model of cytokine production in human whole blood may reflect the sequence of events in a localized environment of inflammation where both a primary stimulus and the induced early cytokine mediators may serve to elicit multiple, temporally distinct phases of IL-8 production.  相似文献   

18.
Tumor necrosis factor (TNF)-alpha acts directly on adipocytes to increase production of the lipostatic factor, leptin. However, which TNF receptor (TNFR) mediates this response is not known. To answer this question, leptin was measured in plasma of wild-type (WT), p55, and p75 TNFR knockout (KO) mice injected intraperitoneally with murine TNF-alpha and in supernatants from cultured WT, p55, and p75 TNFR KO adipocytes incubated with TNF-alpha. Leptin also was measured in supernatants from C3H/HeOuJ mouse adipocytes cultured with blocking antibodies to each TNFR and TNF-alpha as well as in supernatants from adipocytes incubated with either human or murine TNF-alpha, which activate either one or both TNFR, respectively. The results using all four strategies show that the induction of leptin production by TNF-alpha requires activation of the p55 TNFR and that although activation of the p75 TNFR alone cannot cause leptin production, its presence affects the capability of TNF-alpha to induce leptin production through the p55 TNFR. These results provide new information on the interplay between cells of the immune system and adipocytes.  相似文献   

19.
The IL-6/STAT3 and TNFα/NFκB pathways are emerging as critical mediators of inflammation-associated colon cancer. TNF receptor (TNFR) 2 expression is increased in inflammatory bowel diseases, the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated cancer, and by combined interleukin (IL) 6 and TNFα. The molecular mechanisms that regulate TNFR2 remain undefined. This study used colon cancer cell lines to test the hypothesis that IL-6 and TNFα induce TNFR2 via STAT3 and/or NFκB. Basal and IL-6 + TNFα-induced TNFR2 were decreased by pharmacologic STAT3 inhibition. NFκB inhibition had little effect on IL-6 + TNFα-induced TNFR2, but did inhibit induction of endogenous IL-6 and TNFR2 in cells treated with TNFα alone. Chromatin immunoprecipitation (ChIP) revealed cooperative effects of IL-6 + TNFα to induce STAT3 binding to a -1,578 STAT response element in the TNFR2 promoter but no effect on NFκB binding to consensus sites. Constitutively active STAT3 was sufficient to induce TNFR2 expression. Overexpression of SOCS3, a cytokine-inducible STAT3 inhibitor, which reduces tumorigenesis in preclinical models of colitis-associated cancer, decreased cytokine-induced TNFR2 expression and STAT3 binding to the -1,578 STAT response element. SOCS3 overexpression also decreased proliferation of colon cancer cells and dramatically decreased anchorage-independent growth of colon cancer cells, even cells overexpressing TNFR2. Collectively, these studies show that IL-6- and TNFα-induced TNFR2 expression in colon cancer cells is mediated primarily by STAT3 and provide evidence that TNFR2 may contribute to the tumor-promoting roles of STAT3.  相似文献   

20.
Understanding the mechanisms by which adult stem cells produce growth factors may represent an important way to optimize their beneficial paracrine and autocrine effects. Components of the wound milieu may stimulate growth factor production to promote stem cell-mediated repair. We hypothesized that tumor necrosis factor-alpha (TNF-alpha), endotoxin (LPS), or hypoxia may activate human mesenchymal stem cells (MSCs) to increase release of vascular endothelial growth factor (VEGF), fibroblast growth factor 2 (FGF2), insulin-like growth factor 1 (IGF-1), or hepatocyte growth factor (HGF) and that nuclear factor-kappa B (NF kappa B), c-Jun NH2-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) mediates growth factor production from human MSCs. To study this, human MSCs were harvested, passaged, divided into four groups (100,000 cells, triplicates) and treated as follows: 1) with vehicle; 2) with stimulant alone [24 h LPS (200 ng/ml), 24 h TNF-alpha (50 ng/ml), or 24 h hypoxia (1% O2)]; 3) with inhibitor alone [NF kappa B (PDTC, 1 mM), JNK (TI-JIP, 10 microM), or ERK (ERK Inhibitor II, 25 microM)]; and 4) with stimulant and the various inhibitors. After 24 h incubation, MSC activation was determined by measuring supernatants for VEGF, FGF2, IGF-1, or HGF (ELISA). TNF-alpha, LPS, and hypoxia significantly increased human MSC VEGF, FGF2, HGF, and IGF-1 production versus controls. Stem cells exposed to injury demonstrated increased activation of NF kappa B, ERK, and JNK. VEGF, FGF2, and HGF expression was significantly reduced by NF kappa B inhibition (50% decrease) but not ERK or JNK inhibition. Moreover, ERK, JNK, and NF kappa B inhibitor alone did not activate MSC VEGF expression over controls. Various stressors activate human MSCs to increase VEGF, FGF2, HGF, and IGF-1 expression, which depends on an NFkB mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号