首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A DNA-based model system is described for studying electron spin-spin interactions between a paramagnetic metal ion and a nitroxide spin label. The modified base deoxythymidine-EDTA (dT-EDTA) chelates the divalent or trivalent metal ion and produces a new feature in the circular dichroism (CD) spectra that makes it possible to monitor local DNA melting. Based on the results of optical and electron paramagnetic resonance (EPR) experiments, we find that the terminus of the DNA duplex that incorporates dT-EDTA and the spin-label melts at a higher temperature than the rest of the DNA duplex. EPR microwave progressive power saturation experiments performed at 77 K are consistent with the specific binding of Dy(III) at the EDTA site and an intramolecular dipole-dipole interaction between the nitroxide spin-label and the chelated Dy(III). This model system should be suitable for studying the relaxation properties of metal ions by saturation-recovery EPR.  相似文献   

2.
We report on the structure and dynamics of a model system for measuring long-range distances in biological macromolecules by saturation-recovery EPR. Four DNA duplexes that incorporate a paramagnetic dysprosium ion (Dy(III)) and a nitroxide spin-label were examined by electron paramagnetic resonance (EPR), circular dichroism (CD), and ultra-violet absorbance (UV) spectroscopy. Dy(III) is chelated by the modified base deoxythymidine-EDTA, (dT-EDTA). Electron spin-spin interactions between the Dy(III) ion and the nitroxide radical are observed at distances as great as ∼5.3 nm. A slight change in the conformation of those nucleotides lying between the EDTA(Dy(III)) complex and the nitroxide spin-label results in a “stiffening” of the DNA helix on the EPR time scale. Changes in conformation and helix dynamics are due to the binding of the EDTA(Dy(III)) complex to the phosphodiester backbone of the complementary strand. Molecular mechanics calculations indicate that binding occurs in the 5′ direction on the complementary strand, at a position 3 or 4 phosphates distant from the dT-EDTA(Dy(III)) * dA base pair.  相似文献   

3.
 Ribonucleotide reductase protein R2 contains a diiron-oxo center with the ability to generate and stabilize a catalytically essential tyrosyl radical. The six protein-derived ligands (four carboxylates and two histidines) of the diiron site were, in separate experiments, mutated to alanines and in two cases also to histidines. We found that removal or exchange of an iron ligand did not in general abolish the formation of a diiron site in the mutant proteins, although all mutant proteins lost the bound metal ions with time upon storage. Iron bound to the mutant proteins was characterized by light absorption, EPR and resonance Raman spectroscopy. In addition, the ability of the mutant proteins to form a tyrosyl free radical and the catalytic competence of the latter were determined by EPR spectroscopy and activity measurements. The diiron sites of mutant proteins D84H and E238A were quite reminiscent of that in wild-type R2. Four of the other mutant proteins (H118A, E204A, E204H, H241A) could form the same number of metal sites as wild-type R2, but with different spectroscopic properties. The mutation E115A affecting the only μ-bridging ligand lowered the amount of bound iron to less than half. An important observation was that D84A, H118A and E204A formed transient tyrosyl radicals, but only the E204A mutant protein was enzymatically active. D84A and H118A affect iron ligands which have been suggested to participate in long-range electron transfer during catalysis. Our observation that these mutant proteins are catalytically inert, despite formation of a tyrosyl radical, underscores the necessity for an intact electron transfer pathway for catalytic activity in ribonucleotide reductase. Received: 31 August 1995 / Accepted: 14 February 1996  相似文献   

4.
Nitroxyl free radical electron spin relaxation times for spin-labeled low-spin methemoglobins were measured between 6 and 120 K by two-pulse electron spin echo spectroscopy and by saturation recovery electron paramagnetic resonance (EPR). Spin-lattice relaxation times for cyano-methemoglobin and imidazole-methemoglobin were measured between 8 and 25 K by saturation recovery and between 4.2 and 20 K by electron spin echo. At low temperature the iron electron spin relaxation rates are slow relative to the iron-nitroxyl electron-electron spin-spin splitting. As temperature is increased, the relaxation rates for the Fe(III) become comparable to and then greater than the spin-spin splitting, which collapses the splitting in the continuous wave EPR spectra and causes an increase and then a decrease in the nitroxyl electron spin echo decay rate. Throughout the temperature range examined, interaction with the Fe(III) increases the spin lattice relaxation rate (1/T1) for the nitroxyl. The measured relaxation times for the Fe(III) were used to analyze the temperature-dependent changes in the spin echo decays and in the saturation recovery (T1) data for the interacting nitroxyl and to determine the interspin distance, r. The values of r for three spin-labeled methemoglobins were between 15 and 15.5 A, with good agreement between values obtained by electron spin echo and saturation recovery. Analysis of the nitroxyl spin echo and saturation recovery data also provides values of the iron relaxation rates at temperatures where the iron relaxation rates are too fast to measure directly by saturation recovery or electron spin echo spectroscopy. These results demonstrate the power of using time-domain EPR measurements to probe the distance between a slowly relaxing spin and a relatively rapidly relaxing metal in a protein.  相似文献   

5.
This study addresses the dynamic interactions among alpha-tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha-tocopherol-containing sodium dodecyl sulfate micelles, one-electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models were assessed by ultraviolet (UV) and electron paramagnetic resonance (EPR), entailing direct- and continuous-flow experiments, spectroscopy and by separation and identification of products by HPLC. The alpha-tocopheroxyl radical EPR signal generated by UV irradiation of alpha-tocopherol-containing micelles was suppressed by caffeic acid and ascorbate; in the former case, no other EPR signal was observed at pH 7.4, whereas in the latter case, the alpha-tocopheroxyl radical EPR signal was replaced by a doublet EPR spectrum corresponding to the ascorbyl radical (A*-). The potential interactions between caffeic acid and ascorbate were further analyzed by assessing, on the one hand, the ability of ascorbate to reduce the caffeic acid o-semiquinone (generated by oxidation of caffeic acid by ferrylmyoglobin) and, on the other hand, the ability of caffeic acid to reduce ascorbyl radical (generated by autoxidation or oxidation of ascorbate by ferrylmyoglobin). The data presented indicate that the reductive decay of ascorbyl radical (A*-) and caffeic acid o-semiquinone (Caf-O*) can be accomplished by caffeic acid (Caf-OH) and ascorbate (AH-), respectively, thus pointing to the reversibility of the reaction Caf-O* + AH- <--> Caf-OH + A*-. Continuous-flow EPR measurements of mixtures containing ferrylmyoglobin, alpha-tocopherol-containing micelles, caffeic acid, and ascorbate revealed that ascorbate is the ultimate electron donor in the sequence encompassing transfer of the radical character from the micellar phase to the phase. In independent experiments, the effects of caffeic acid and ascorbate on the oxidation of two low-density lipoprotein (LDL) populations, control and alpha-tocopherol-enriched, were studied and results indicated that alpha-tocopherol, caffeic acid, and ascorbate acted synergistically to afford optimal protection of LDL against oxidation. These results are analyzed for each individual antioxidant in terms of three domains: its localization and that of the antioxidant-derived radical, its reduction potential, and the predominant decay pathways for the antioxidant-derived radical, that exert kinetic control on the process.  相似文献   

6.
Tetrathiatriarylmethyl radicals are ideal spin probes for biological electron paramagnetic resonance (EPR) spectroscopy and imaging. The wide application of trityl radicals as biosensors of oxygen or other biological radicals was hampered by the lack of affordable large-scale syntheses. We report the large-scale synthesis of the Finland trityl radical using an improved addition protocol of the aryl lithium monomer to methylchloroformate. A new reaction for the formal one-electron reduction of trityl alcohols to trityl radicals using neat trifluoroacetic acid is reported as well. Initial applications show that the compound is very sensitive to molecular oxygen. It has already provided high-resolution EPR images on large aqueous samples and should be suitable for a broad range of in vivo applications.  相似文献   

7.
Versatile peroxidase (VP) from Bjerkandera adusta is a structural hybrid between lignin (LiP) and manganese (MnP) peroxidase. This hybrid combines the catalytic properties of the two above peroxidases, being able to oxidize typical LiP and MnP substrates. The catalytic mechanism is that of classical peroxidases, where the substrate oxidation is carried out by a two-electron multistep reaction at the expense of hydrogen peroxide. Elucidation of the structures of intermediates in this process is crucial for understanding the mechanism of substrate oxidation. In this work, the reaction of H(2)O(2) with the enzyme in the absence of substrate has been investigated with electron paramagnetic resonance (EPR) spectroscopy. The results reveal an EPR signal with partially resolved hyperfine structure typical of an organic radical. The yield of this radical is approximately 30%. Progressive microwave power saturation measurements indicate that the radical is weakly coupled to a paramagnetic metal ion, suggesting an amino acid radical in moderate distance from the ferryl heme. A tryptophan radical was identified as a protein-based radical formed during the catalytic mechanism of VP from Bjerkandera adusta through X-band and high-field EPR measurements at 94 GHz, aided by computer simulations for both frequency bands. A close analysis of the theoretical model of the VP from Bjerkandera sp. shows the presence of a tryptophan residue near to the heme prosthetic group, which is solvent-exposed as in the case of LiP and other VPs. The catalytic role of this residue in a long-range electron-transfer pathway is discussed.  相似文献   

8.
This short review compiles high-field electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) studies on different intermediate amino acid radicals, which emerge in wild-type and mutant class I ribonucleotide reductase (RNR) both in the reaction of protein subunit R2 with molecular oxygen, which generates the essential tyrosyl radical, and in the catalytic reaction, which involves a radical transfer between subunits R2 and R1. Recent examples are presented, how different amino acid radicals (tyrosyl, tryptophan, and different cysteine-based radicals) were identified, assigned to a specific residue, and their interactions, in particular hydrogen bonding, were investigated using high-field EPR and ENDOR spectroscopy. Thereby, unexpected diiron-radical centers, which emerge in mutants of R2 with changed iron coordination, and an important catalytic cysteine-based intermediate in the substrate turnover reaction in R1 were identified and characterized. Experiments on the essential tyrosyl radical in R2 single crystals revealed the so far unknown conformational changes induced by formation of the radical. Interesting structural differences between the tyrosyl radicals of class Ia and Ib enzymes were revealed. Recently accurate distances between the tyrosyl radicals in the protein dimer R2 could be determined using pulsed electron-electron double resonance (PELDOR), providing a new tool for docking studies of protein subunits. These studies show that high-field EPR and ENDOR are important tools for the identification and investigation of radical intermediates, which contributed significantly to the current understanding of the reaction mechanism of class I RNR.  相似文献   

9.
Friedhelm Lendzian 《BBA》2005,1707(1):67-90
This short review compiles high-field electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) studies on different intermediate amino acid radicals, which emerge in wild-type and mutant class I ribonucleotide reductase (RNR) both in the reaction of protein subunit R2 with molecular oxygen, which generates the essential tyrosyl radical, and in the catalytic reaction, which involves a radical transfer between subunits R2 and R1. Recent examples are presented, how different amino acid radicals (tyrosyl, tryptophan, and different cysteine-based radicals) were identified, assigned to a specific residue, and their interactions, in particular hydrogen bonding, were investigated using high-field EPR and ENDOR spectroscopy. Thereby, unexpected diiron-radical centers, which emerge in mutants of R2 with changed iron coordination, and an important catalytic cysteine-based intermediate in the substrate turnover reaction in R1 were identified and characterized. Experiments on the essential tyrosyl radical in R2 single crystals revealed the so far unknown conformational changes induced by formation of the radical. Interesting structural differences between the tyrosyl radicals of class Ia and Ib enzymes were revealed. Recently accurate distances between the tyrosyl radicals in the protein dimer R2 could be determined using pulsed electron-electron double resonance (PELDOR), providing a new tool for docking studies of protein subunits. These studies show that high-field EPR and ENDOR are important tools for the identification and investigation of radical intermediates, which contributed significantly to the current understanding of the reaction mechanism of class I RNR.  相似文献   

10.
A simple strategy to separate overlapping electron paramagnetic resonance (EPR) signals in biological systems is presented. Pulsed EPR methods (inversion- and saturation-recovery) allow the determination of the T(1) spin-lattice relaxation times of paramagnetic centers. T(1) may vary by several orders of magnitude depending on the species under investigation. These variations can be employed to study selectively individual species from a spectrum that results from an overlap of two species using an inversion-recovery filtered (IRf) pulsed EPR technique. The feasibility of such an IRf field-swept technique is demonstrated on model compounds (alpha,gamma-bisphenylene-beta-phenylallyl-benzolate, BDPA, and 2,2,6,6-tetramethyl-piperidine-1-oxyl, TEMPO) and a simple strategy for the successful analysis of such mixtures is presented. Complex I is a multisubunit membrane protein of the respiratory chain containing several iron-sulfur (FeS) centers, which are observable with EPR spectroscopy. It is not possible to investigate the functionally important FeS cluster N2 separately because this EPR signal always overlaps with the other FeS signals. This cluster can be studied selectively using the IRf field-swept technique and its EPR spectrum is in excellent agreement with previous cw-EPR data from the literature. In addition, the possibility to separate the hyperfine spectra of two spectrally overlapping paramagnetic species is demonstrated by applying this relaxation filter together with hyperfine spectroscopy (REFINE). For the first time, the application of this filter to a three-pulse electron spin-echo envelope modulation (ESEEM) pulse sequence is demonstrated to selectively observe hyperfine spectra on a system containing two paramagnetic species. Finally, REFINE is used to assign the observed nitrogen modulation in complex I to an individual iron-sulfur cluster.  相似文献   

11.
Tetrathiatriarylmethyl (TAM) radicals represent soluble paramagnetic probes for biomedical electron paramagnetic resonance (EPR)-based spectroscopy and imaging. There is an increasing demand in the development of multifunctional, biocompatible and targeted trityl probes hampered by the difficulties in derivatization of the TAM structure. We proposed a new straightforward synthetic strategy using click chemistry for the covalent conjugation of the TAM radical with a water-soluble biocompatible carrier exemplified here by dextran. A set of dextran-grafted probes varied in the degrees of Finland trityl radical loading and dextran modification by polyethelene glycol has been synthesized. The EPR spectrum of the optimized macromolecular probe exhibits a single narrow line with high sensitivity to oxygen and has advantages over the unbound Finland trityl of being insensitive to interactions with albumin. In vivo EPR imaging of tissue oxygenation performed in breast tumor-bearing mouse using dextran-grafted probe demonstrates its utility for preclinical oximetric applications.  相似文献   

12.
Ribonucleotide reductases from Escherichia coli and from mammalian cells are heterodimeric enzymes. One of the subunits, in the bacterial enzyme protein B2 and in the mammalian enzyme protein M2, contains iron and a tyrosyl free radical that both are essential for enzyme activity. The iron center in protein B2 is an antiferromagnetically coupled pair of high-spin ferric ions. This study concerns magnetic interaction between the tyrosyl radical and the iron center in the two proteins. Studies of the temperature dependence of electron paramagnetic resonance (EPR) relaxation and line shape reveal significant differences between the free radicals in proteins B2 and M2. The observed temperature-dependent enhanced EPR relaxation and line broadening of the enzyme radicals are furthermore completely different from those of a model UV-induced free radical in tyrosine. The results are discussed in terms of magnetic dipolar as well as exchange interactions between the free radical and the iron center in both proteins. The free radical and the iron center are thus close enough in space to exhibit magnetic interaction. For protein M2 the effects are more pronounced than for protein B2, indicating a stronger magnetic interaction.  相似文献   

13.
Both heterologous crosses of the Clostridium pasteurianum and Azotobacter vinelandii nitrogenase components are completely inactive, although the reasons for this incompatibility are not known. We have compared a number of properties of the MoFe proteins from these organisms (Cp1 and Av1, respectively) in an attempt to find differences that could explain this lack of functional activity. Optical and CD spectroscopic titrations are similar for both Av1 and Cp1, but EPR titrations are significantly different, suggesting different chemical reactivity patterns and/or magnetic interaction behavior. Similarly, reduction measurements on the six-electron-oxidized state of Cp1 and Av1 at controlled potentials indicate a difference in both the relative reduction sequence of the redox centers and the numerical values for their measured midpoint potentials. EPR measurements as a function of temperature also demonstrate that the relaxation behavior of the S = 3/2 MoFe centers associated with the proteins differ markedly. The Cp1 EPR signal only begins to undergo broadening above 65 K, whereas the Av1 signal is severely broadened above 25 K. These variations in the EPR properties for the two proteins are not likely to be due to differences in the stoichiometry and/or geometry of the MoFe cluster units themselves since similar EPR studies of the isolated cofactors showed them to be essentially identical. Thus, the different EPR behavior of the two proteins seems to arise either from protein constraints imposed on identical cofactors, and/or from magnetic interactions due to neighboring metal clusters.  相似文献   

14.
We have used site-directed spin labeling and electron paramagnetic resonance (EPR) to map interactions between the transmembrane (TM) domains of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) and phospholamban (PLB) as affected by PLB phosphorylation. In the cardiac sarcoplasmic reticulum, PLB binding to SERCA results in Ca-dependent enzyme inhibition, which is reversed by PLB phosphorylation at Ser16. Previous spectroscopic studies on SERCA-PLB have largely focused on the cytoplasmic domain of PLB, showing that phosphorylation induces a structural shift in this domain relative to SERCA. However, SERCA inhibition is due entirely to TM domain interactions. Therefore, we focus here on PLB’s TM domain, attaching Cys-reactive spin labels at five different positions. In each case, continuous-wave EPR indicated moderate spin-label mobility, with the addition of SERCA revealing two populations, one indistinguishable from PLB alone and another with more restricted rotational mobility, presumably due to SERCA-binding. Phosphorylation had no effect on the rotational mobility of either component but significantly decreased the mole fraction of the restricted component. Solvent-accessibility experiments using power-saturation EPR and saturation-recovery EPR confirmed that these two spectral components were SERCA-bound and unbound PLB and showed that phosphorylation increased the overall lipid accessibility of the TM domain by increasing the fraction of unbound PLB. However—based on these results—at physiological levels of SERCA and PLB, most SERCA would have bound PLB even after phosphorylation. Additionally, no structural shift in the TM domain of SERCA-bound PLB was detected, as there were no significant changes in membrane insertion depth or its accessibility. Therefore, we conclude that under physiological conditions, the phosphorylation of PLB induces little or no change in the interaction of the TM domain with SERCA, so relief of inhibition is predominantly due to the previously observed structural shift in the cytoplasmic domain.  相似文献   

15.
Petersen J  Fisher K  Mitchell CJ  Lowe DJ 《Biochemistry》2002,41(44):13253-13263
Nitrogenase naturally requires adenosine nucleoside triphosphates and divalent metal cations for catalytic activity. Their energy of hydrolysis controls several mechanistic functions, most probably via separate structural conformers of the nitrogenase Fe protein. To characterize the ligand environment of the divalent metal in the ternary complex, with ADP or ATP and the Fe protein from Klebsiella pneumoniae, the hyperfine structures have been investigated by electron paramagnetic resonance (EPR) spectroscopy by substituting naturally occurring diamagnetic Mg(2+) by paramagnetic oxovanadium. This metal replacement leads to inhibition of nitrogenase activity. Moreover, depending on pH, two distinctly different VO(2+) EPR spectra are detected. At pH 7.4 each of the vanadyl EPR hyperfine lines is further split into two. This indicates that several spectroscopically distinguishable metal coordination environments coexist for VO(2+)-nucleotide chelate complexes in the presence of the reduced Fe protein. Overall, a total of at least three distinct local metal coordination environments have been identified. We report the EPR parameters for each of the disparate metal coordinations measured at different pH values with ADP and ATP bound. EPR spectra have also been recorded for the oxidized Fe protein showing essentially similar spectra to that of the reduced protein. The EPR parameters of VO-nucleotides in the presence of the Fe protein are consistent, for all metal coordination environments, with direct metal ligation by nucleotide phosphate groups and the formation of mononucleotide complexes. The nucleotide binding environment with the highest ligand field strength is compatible with a metal coordination structure that is also found in various G-proteins with GTP bound. No significant EPR line width change is detected after exchange into D(2)O buffer solution for any of the pH forms although differences exist between the pH forms. The missing difference between the EPR parameters in the presence of ADP or ATP suggests that there is little or no conformational rearrangement between these two forms; this contrasts with behavior of G-proteins that undergo substantial conformational changes upon hydrolysis. This could be related to the inhibition of nitrogenase by VO(2+).  相似文献   

16.
We have collected electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectra from the hydrogen peroxide compound of yeast cytochrome c peroxidase, termed ES, employing EPR microwave frequencies of 9.6 and 11.6 GHz. We have measured and analyzed the temperature dependence of the spin-lattice relaxation rate (1/T1) of the paramagnetic center of ES over the temperature range 1.9 to 4 K. In addition, an upper bound to exchange coupling between the ferryl heme and EPR-visible centers of ES has been calculated and expressions for the dipolar interaction between a ferryl heme and a free radical have been derived. These results all confirm that the EPR signal of ES is not associated with an aromatic amino acid radical, and in particular not with a tryptophanyl radical. This conclusion has led us to consider an explanation of the EPR signal in terms of a nucleophilically stabilized methionyl radical.  相似文献   

17.
A pulse saturation-recovery electron paramagnetic resonance (EPR) method has been developed that allows estimation of the exchange rates of a spin-labeled lipid between the bulk domain and the protein-rich membrane domain, in which the rate of collision between the spin label and molecular oxygen is reduced (slow-oxygen transport domain, or SLOT domain). It is based on the measurements of saturation-recovery signals of a lipid spin label as a function of concentrations of both molecular oxygen and the spin label. Influenza viral membrane, one of the simplest paradigms for the study of biomembranes, showed the presence of two membrane domains with slow and fast collision rates with oxygen (a 16-fold difference) at 30 degrees C. The outbound rate from and the inbound rate into the SLOT domain (or possibly the rate of the domain disintegration and formation) were estimated to be 7.7 x 10(4) and 4.6 x 10(4) s(-1), (15 micros residency time), respectively, indicating that the SLOT domain is highly dynamic and that the entire SLOT domain represents about one-third of the membrane area. Because the oxygen transport rate in the SLOT domain is a factor of two smaller than that in purple membrane, where bacteriorhodopsin is aggregated, we propose that the SLOT domain in the viral membrane is the cholesterol-rich raft domain stabilized by the trimers of hemagglutinin and/or the tetramers of neuraminidase.  相似文献   

18.
The reaction of water-soluble cytochrome c (c(2)) with its physiological redox partners is facilitated by electrostatic attractions between the two protein surfaces. Using spin-labeled cytochrome c(2) from Rhodobacter capsulatus and pulse electron paramagnetic resonance (EPR) measurements we compared spatial orientation of cytochrome c(2) upon its binding to surfaces of opposite charge. We observed that cytochrome c(2) can use its negatively charged "back" side when exposed to interact with positively charged surfaces (DEAE resin) which is the opposite to the use of its positively charged "front" side in physiological interaction with negatively charged binding domain of cytochrome bc(1). The later orientation is also adopted upon non-physiological binding of cytochrome c(2) to negatively charged carboxymethyl cellulose resin. These results directly demonstrate how the electric dipolar nature of cytochrome c(2) influences its orientation in interactions with charged surfaces, which may facilitate collisions with other redox proteins in a proper orientation to support physiologically-competent electron transfer. Saturation recovery EPR provides an attractive tool for monitoring spatial orientation of proteins in their interaction with surfaces in liquid phase. It is particularly valuable for metalloproteins engaged in redox reactions as a means to monitor the geometry and dynamics of formation of protein complexes in measurements that are independent of electron transfer processes.  相似文献   

19.
DNA photolyase repairs pyrimidine dimer lesions in DNA through light-induced electron donation to the dimer. During isolation of the enzyme, the flavin cofactor necessary for catalytic activity becomes one-electron-oxidized to a semiquinone radical. In the absence of external reducing agents, the flavin can be cycled through the semiquinone radical to the fully reduced state with light-induced electron transfer from a nearby tryptophan residue. This cycle provides a convenient means of studying the process of electron transfer within the protein by using transient EPR. By studying the excitation wavelength dependence of the time-resolved EPR signals we observe, we show that the spin-polarized EPR signal reported earlier from this laboratory as being initiated by semiquinone photochemistry actually originates from the fully oxidized form of the flavin cofactor. Exciting the semiquinone form of the flavin produces two transient EPR signals: a fast signal that is limited by the time response of the instrument and a slower signal with a lifetime of approximately 6 ms. The fast component appears to correlate with a dismutation reaction occurring with the flavin. The longer lifetime process occurs on a time scale that agrees with transient absorption data published earlier; the magnetic field dependence of the amplitude of this kinetic component is consistent with redox chemistry that involves electron transfer between flavin and tryptophan. We also report a new procedure for the rapid isolation of DNA photolyase.  相似文献   

20.
We report a multifrequency (9.6-, 94-, 190-, and 285-GHz) EPR study of a freeze-quenched intermediate obtained from reaction of substrate-free cytochrome P450cam (CYP101) and its Y96F and Y96F/Y75F mutants with peroxy acids. It is generally assumed that in such a shunt reaction an intermediate [Fe(IV)=O, porphyrin-pi-cation radical] is formed, which should be identical to the species in the natural reaction cycle. However, for the wild type as well as for the mutant proteins, a porphyrin-pi-cation radical is not detectable within 8 ms. Instead, EPR signals corresponding to tyrosine radicals are obtained for the wild type and the Y96F mutant. Replacement of both Tyr-96 and Tyr-75 by phenylalanine leads to the disappearance of the tyrosine EPR signals. EPR studies at 285 GHz on freeze-quenched wild type and Y96F samples reveal g tensor components for the radical (stretched g(x) values from 2.0078 to 2.0064, g(y) = 2.0043, and g(z) = 2.0022), which are fingerprints for tyrosine radicals in a heterogeneous polar environment. The measurements at 94 GHz using a fundamental mode microwave resonator setup confirm the 285-GHz study. From the simulation of the hyperfine structure in the 94-GHz EPR spectra the signals have been assigned to Tyr-96 in the wild type and to Tyr-75 in the Y96F mutant. We suggest that a transiently formed Fe(IV)=O porphyrin-pi-cation radical intermediate in P450cam is reduced by intramolecular electron transfer from these tyrosines within 8 ms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号