共查询到20条相似文献,搜索用时 0 毫秒
1.
With the available Arabidopsis genome and near-completion of the rice genome sequencing project, large-scale analysis of plant proteins with mass spectrometry has now become possible. Determining the proteome of a cell is a challenging task, which is complicated by proteome dynamics and complexity. The biochemical heterogeneity of proteins constrains the use of standardized analytical procedures and requires demanding techniques for proteome analysis. Several proteome studies of plant cell organelles have been reported, including chloroplasts and mitochondria. Chloroplasts are of particular interest for plant biologists because of their complex biochemical pathways for essential metabolic functions. Information from the chloroplast proteome will therefore provide new insights into pathway compartmentalization and protein sorting. Some approaches for the analysis of the chloroplast proteome and future prospects of plastid proteome research are discussed here. 相似文献
2.
3.
Schistosome biology and proteomics: progress and challenges 总被引:1,自引:0,他引:1
The recent availability of schistosomal genome-sequence information allows protein identification in schistosome-derived samples by mass spectrometry (proteomics). Over the last few years, several proteome studies have been performed that addressed important questions in schistosome biology. This review summarizes the applied experimental approaches that have been used so far, it provides an overview of the most important conclusions that can be drawn from the performed studies and finally discusses future challenges in this research area. 相似文献
4.
Selected reaction monitoring mass spectrometry is an emerging targeted proteomics technology that allows for the investigation of complex protein samples with high sensitivity and efficiency. It requires extensive knowledge about the sample for the many parameters needed to carry out the experiment to be set appropriately. Most studies today rely on parameter estimation from prior studies, public databases, or from measuring synthetic peptides. This is efficient and sound, but in absence of prior data, de novo parameter estimation is necessary. Computational methods can be used to create an automated framework to address this problem. However, the number of available applications is still small. This review aims at giving an orientation on the various bioinformatical challenges. To this end, we state the problems in classical machine learning and data mining terms, give examples of implemented solutions and provide some room for alternatives. This will hopefully lead to an increased momentum for the development of algorithms and serve the needs of the community for computational methods. We note that the combination of such methods in an assisted workflow will ease both the usage of targeted proteomics in experimental studies as well as the further development of computational approaches. 相似文献
5.
ProteinChip technology, a suite of analytical tools that includes retentate chromatography, on-chip protein characterization, and multivariate analysis, allows researchers to examine patterns ofprotein expression and modification. Based on the surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) approach, ProteinChip technology has been pioneered by researchers at Ciphergen Biosystems (Fremont, CA, USA), as well as by users of Ciphergen's commercial embodiment of this technology the ProteinChip Biomarker System. This report will begin with a background of the technology and describe its applications in clinical proteomics and will then conclude with a discussion of tools and strategies to mine the large amounts of data generated during the course of a typical clinical proteomics study. 相似文献
6.
Global gene expression profiling by genomic and proteomic analyses has changed the face of drug discovery and biological research in the past few years. The benefit of these technologies in the area of process development for recombinant protein production has been increasingly realized. This review discusses the application of genome-wide expression profiling tools in the design and optimization of bioprocesses, with the emphasis on the effect on process development of mammalian cell culture. Despite the lack of genome sequence information for most of the relevant mammalian cell lines used, these technologies can be applied during various process development steps. Although there are only a few examples in the literature that present a major improvement in productivity based on genomics and proteomics, further advances in analytical tools and genome sequencing technologies will greatly increase our knowledge at the molecular level and will drive the design of future bioprocesses. 相似文献
7.
Archaea display amazing physiological properties that are of interest to understand at the molecular level including the ability to thrive at extreme environmental conditions, the presence of novel metabolic pathways (e.g. methanogenesis, methylaspartate cycle) and the use of eukaryotic-like protein machineries for basic cellular functions. Coupling traditional genetic and biochemical approaches with advanced technologies, such as genomics and proteomics, provides an avenue for scientists to discover new aspects related to the molecular physiology of archaea. This review emphasizes the unusual properties of archaeal proteomes and how high-throughput and specialized mass spectrometry-based proteomic studies have provided insight into the molecular properties of archaeal cells. 相似文献
8.
Update and challenges on proteomics in rice 总被引:4,自引:0,他引:4
Rice is not only an important agricultural resource but also a model plant for biological research. Our previous review highlighted different aspects of the construction of rice proteome database, cataloguing rice proteins of different tissues and organelle, differential proteomics using 2-DE and functional characterization of some of the proteins identified (Komatsu, S., Tanaka, N., Proteomics 2005, 5, 938-949). In this review, the powerfulness and weaknesses of proteomic technologies as a whole and limitations of the currently used techniques in rice proteomics are discussed. The information obtained from these techniques regarding proteins modification, protein-protein interaction and the development of new methods for differential proteomics will aid in deciphering more precisely the functions of known and/or unknown proteins in rice. 相似文献
9.
Renal and urinary proteomics: current applications and challenges 总被引:10,自引:0,他引:10
During the past few years, proteomics has been extensively applied to various fields of medicine including nephrology. Current applications of renal and urinary proteomics are to better understand renal physiology, to explore the complexity of disease mechanisms, and to identify novel biomarkers and new therapeutic targets. This review provides some examples and perspectives of how proteomics can be applied to nephrology and how experimental data can be linked to physiology, functional significance and clinical applications. In some instances, proteomic analysis can be utilized to generate a new hypothesis from a set of candidates that are obtained from expression studies. The new hypothesis can then be addressed rapidly by conventional molecular biology methods, as demonstrated by identification of an altered renal elastin-elastase system in diabetic nephropathy and alterations in the renal kallikrein-kallistatin pathway in hypoxia-induced hypertension. The strengths and limitations of proteomics in renal research are summarized. Optimization of analytical protocols is required to overcome current limitations. Applications of proteomics to nephrology will then be more fruitful and successful. 相似文献
10.
Avian proteomics: advances, challenges and new technologies 总被引:1,自引:0,他引:1
Proteomics is defined as an analysis of the full complement of proteins of a cell or tissue under given conditions. Avian proteomics, or more specifically chicken proteomics, has focussed on the study of individual tissues and organs of interest to specific researchers. Researchers have looked at skeletal muscle and growth, and embryonic development and have performed initial studies in avian disease. Traditional proteomics involves identifying and cataloguing proteins in a cell and identifying relative changes in populations between two or more states, be that physiological or disease-induced states. Recent advances in proteomic technologies have included absolute quantification, proteome simplification and the ability to determine the turnover of individual proteins in a global context. This review discusses the current developments in this relatively new field, new technologies and how they may be applied to biological questions, and the challenges faced by researchers in this ever-expanding and exciting field. 相似文献
11.
Hondermarck H 《Molecular & cellular proteomics : MCP》2003,2(5):281-291
Proteomics is now entering into the field of biomedicine with declared hopes for the identification of new pathological markers and therapeutic targets. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of low-abundant proteins. However, the major limitation of proteomic investigations remains the complexity of biological structures and physiological processes, rendering the path of exploration of related pathologies paved with various difficulties and pitfalls. The case of breast cancer illustrates the major challenge facing modern proteomics and more generally post-genomics: to tackle the complexity of life. 相似文献
12.
Our current knowledge in biology has been mostly derived from studying model organisms and cell lines in which only a small fraction of all described species have been extensively studied. Although these model organisms are amenable to genetic manipulations, this blinds researchers to the true variability of life. Groundbreaking discoveries are often achieved by analyzing "noncanonical" species; for example, the characterization of Taq polymerase from Thermus aquaticus ultimately led to a revolution in the field of molecular biology. Brazil possesses a rich biodiversity and a considerable fraction of Brazilian groups use current proteomic techniques to explore this natural treasure-trove. However, in our opinion, much more than the widely adopted peptide spectrum match approach is required to explore this rich "proteomosphere." Here, we provide a critical overview of the available strategies for the analysis of proteomic data from "noncanonical" biological samples (e.g. proteins from unsequenced genomes or genomes with high levels of polymorphisms), and demonstrate some limitations of existing approaches for large-scale protein identification and quantitation. An understanding of the premises behind these computational tools is necessary to properly deal with their limitations and draw accurate conclusions. 相似文献
13.
Bürckstümmer T Bennett KL Preradovic A Schütze G Hantschel O Superti-Furga G Bauch A 《Nature methods》2006,3(12):1013-1019
Tandem affinity purification (TAP) is a generic two-step affinity purification protocol that enables the isolation of protein complexes under close-to-physiological conditions for subsequent analysis by mass spectrometry. Although TAP was instrumental in elucidating the yeast cellular machinery, in mammalian cells the method suffers from a low overall yield. We designed several dual-affinity tags optimized for use in mammalian cells and compared the efficiency of each tag to the conventional TAP tag. A tag based on protein G and the streptavidin-binding peptide (GS-TAP) resulted in a tenfold increase in protein-complex yield and improved the specificity of the procedure. This allows purification of protein complexes that were hitherto not amenable to TAP and use of less starting material, leading to higher success rates and enabling systematic interaction proteomics projects. Using the well-characterized Ku70-Ku80 protein complex as an example, we identified both core elements as well as new candidate effectors. 相似文献
14.
Renu Deswal Ravi Gupta Vivek Dogra Raksha Singh Jasmeet Kaur Abat Abhijit Sarkar Yogesh Mishra Vandana Rai Yelam Sreenivasulu Ramesh Sundar Amalraj Manish Raorane Ram Prasad Chaudhary Ajay Kohli Ashok Prabhakar Giri Niranjan Chakraborty Sajad Majeed Zargar Vishwanath Prasad Agrawal Ganesh Kumar Agrawal Dominique Job Jenny Renaut Randeep Rakwal 《Physiology and Molecular Biology of Plants》2013,19(4):461-477
Plant proteomics has made tremendous contributions in understanding the complex processes of plant biology. Here, its current status in India and Nepal is discussed. Gel-based proteomics is predominantly utilized on crops and non-crops to analyze majorly abiotic (49 %) and biotic (18 %) stress, development (11 %) and post-translational modifications (7 %). Rice is the most explored system (36 %) with major focus on abiotic mainly dehydration (36 %) stress. In spite of expensive proteomics setup and scarcity of trained workforce, output in form of publications is encouraging. To boost plant proteomics in India and Nepal, researchers have discussed ground level issues among themselves and with the International Plant Proteomics Organization (INPPO) to act in priority on concerns like food security. Active collaboration may help in translating this knowledge to fruitful applications. 相似文献
15.
Proteomics is progressing at an unprecedented pace, as can be exemplified by the progress in model organisms such as yeast, bacteria, and mammals. Proteomics research in plants, however, has not progressed at the same pace. Unscrambling of the genome sequences of the dicotyledoneous Arabidopsis thaliana (L.) and monocotyledoneous rice (Oryza sativa L.) plant species, respectively, has made them accessible reference organisms to study plant proteomics. Study of these two reference plants is expected to unravel the mystery of plant biology. Rice, a critically important food crop on the earth, has been termed a "cornerstone" and the "Rosetta stone" for functional genomics of cereal crops. Here, we look at the progress in unraveling rice proteomes and present the facts, challenges, and vision. The text is divided into two major parts: the first part presents the facts and the second part discusses the challenges and vision. The facts include the technology and its use in developing proteomes, which have been critically and constructively reviewed. The challenges and vision deal with the establishment of technologies to exhaustively investigate the protein components of a proteome, to generate high-resolution gel-based reference maps, and to give rice proteomics a functional dimension by studying PTMs and isolation of multiprotein complexes. Finally, we direct a vision on rice proteomics. This is our third review in series on rice proteomics, which aims to stimulate an objective discussion among rice researchers and to understand the necessity and impact of unraveling rice proteomes to their full potential. 相似文献
16.
17.
18.
Maja Semanjski 《Expert review of proteomics》2016,13(2):139-156
Mass spectrometry-based proteomics is increasingly used in analysis of bacterial pathogens. Simple experimental set-ups based on high accuracy mass spectrometry and powerful biochemical and bioinformatics tools are capable of reliably quantifying levels of several thousand bacterial proteins in a single experiment, reaching the analytical capacity to completely map whole proteomes. Here the authors present the state-of-the-art in bacterial pathogen proteomics and discuss challenges that the field is facing, especially in analysis of low abundant, modified proteins from organisms that are difficult to culture. Constant improvements in speed and sensitivity of mass spectrometers, as well as in bioinformatic and biochemical workflows will soon allow for comprehensive analysis of regulatory mechanisms of pathogenicity and enable routine application of proteomics in the clinical setting. 相似文献
19.
Sigal A Milo R Cohen A Geva-Zatorsky N Klein Y Alaluf I Swerdlin N Perzov N Danon T Liron Y Raveh T Carpenter AE Lahav G Alon U 《Nature methods》2006,3(7):525-531
We examined cell cycle-dependent changes in the proteome of human cells by systematically measuring protein dynamics in individual living cells. We used time-lapse microscopy to measure the dynamics of a random subset of 20 nuclear proteins, each tagged with yellow fluorescent protein (YFP) at its endogenous chromosomal location. We synchronized the cells in silico by aligning protein dynamics in each cell between consecutive divisions. We observed widespread (40%) cell-cycle dependence of nuclear protein levels and detected previously unknown cell cycle-dependent localization changes. This approach to dynamic proteomics can aid in discovery and accurate quantification of the extensive regulation of protein concentration and localization in individual living cells. 相似文献
20.
Jarvik JW Fisher GW Shi C Hennen L Hauser C Adler S Berget PB 《BioTechniques》2002,33(4):852-4, 856, 858-60 passim
A self-inactivating CD-tagging retroviral vector was used to introduce epitope and GFP tags into genes and proteins in NIH 3T3 cells. Several hundred cell clones, each expressing GFP fluorescence in a distinctive pattern, were isolated. Molecular analysis showed that a wide variety of genes and proteins, some known and some newly discovered, had been tagged. The analysis also revealed that, in the great majority of instances, the abundance and cellular location of the tagged protein mirrored that of its untagged counterpart. This approach provides a systematic means for the functional annotation of mammalian genomes and proteomes in living cells. 相似文献