首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The color patterns on the wings of lepidopterans are among the most striking patterns in nature and have inspired diverse biological hypotheses such as the ecological role of aposomatic coloration, the evolution of mimicry, the role of human activities in industrial melanism, and the developmental basis of phenotypic plasticity. Yet, the developmental mechanisms underlying color pattern development are not well understood for three reasons. First, few mutations that alter color patterns have been characterized at the molecular level, so there is little mechanistic understanding of how mutant phenotypes are produced. Second, although gene expression patterns resembling adult color patterns are suggestive, there are few data available showing that gene products have a functional role in color pattern formation. Finally, because with few exceptions (notably Bombyx), genetic maps for most species of Lepidoptera are rudimentary or nonexistent, it is very difficult to characterize spontaneous mutants or to determine whether mutations with similar phenotypes are because of lesions in the same gene or different genes. Discussed here are two strategies for overcoming these difficulties: germ-line transformation of lepidopteran species using transposon vectors and amplified frequency length polymorphism-based genetic mapping using variation between divergent strains within a species or between closely related and interfertile species. These advances, taken together, will create new opportunities for the characterization of existing genetic variants, the creation of new sequence-tagged mutants, and the testing of proposed functional genetic relationships between gene products, and will greatly facilitate our understanding of the evolution and development of lepidopteran color patterns.  相似文献   

2.
BACKGROUND: Animal melanin patterns are involved in diverse aspects of their ecology, from thermoregulation to mimicry. Many theoretical models have simulated pigment patterning, but little is known about the developmental mechanisms of color pattern formation. In Drosophila melanogaster, several genes are known to be necessary for cuticular melanization, but the involvement of these genes in melanin pattern evolution is unknown. We have taken a genetic approach to elucidate the developmental mechanisms underlying melanin pattern formation in various drosophilids. RESULTS: We show that, in D. melanogaster, tyrosine hydroxylase (TH) and dopa decarboxylase (DDC) are required for melanin synthesis. Ectopic expression of TH, but not DDC, alone was sufficient to cause ectopic melanin patterns in the wing. Thus, changes in the level of expression of a single gene can result in a new level of melanization. The ontogeny of this ectopic melanization resembled that found in Drosophila species bearing wing melanin patterns and in D. melanogaster ebony mutants. Importantly, we discovered that in D. melanogaster and three other Drosophila species these wing melanin patterns are dependent upon and shaped by the circulation patterns of hemolymph in the wing veins. CONCLUSIONS: Complex wing melanin patterns are determined by two distinct developmental mechanisms. Spatial prepatterns of enzymatic activity are established late in wing development. Then, in newly eclosed adults, melanin precursors gradually diffuse out from wing veins and are oxidized into dark brown or black melanin. Both the prepatterning and hemolymph-supplied components of this system can change during evolution to produce color pattern diversity.  相似文献   

3.
Lepidopteran wing scales play important roles in a number of functions including color patterning and thermoregulation. Despite the importance of wing scales, however, we still have a limited understanding of the genetic mechanisms that underlie scale patterning, development, and coloration. Here, we explore the function of the phenoloxidase‐encoding gene laccase2 in wing and scale development in the nymphalid butterfly Vanessa cardui. Somatic deletion mosaics of laccase2 generated by CRISPR/Cas9 genome editing presented several distinct mutant phenotypes. Consistent with the work in other nonlepidopteran insect groups, we observed reductions in melanin pigmentation and defects in cuticle formation. We were also surprised, however, to see distinct effects on scale development including complete loss of wing scales. This study highlights laccase2 as a gene that plays multiple roles in wing and scale development and provides new insight into the evolution of lepidopteran wing coloration.  相似文献   

4.
The color patterns on the wings of butterflies are unique among animal color patterns in that the elements that make up the overall pattern are individuated. Unlike the spots and stripes of vertebrate color patterns, the elements of butterfly wing patterns have identities that can be traced from species to species, and typically across genera and families. Because of this identity it is possible to recognize homologies among pattern elements and to study their evolution and diversification. Individuated pattern elements evolved from non-individuated precursors by compartmentalization of the wing into areas that became developmentally autonomous with respect to color pattern formation. Developmental compartmentalization led to the evolution of serially repeated elements and the emergence of serial homology. In these compartments, serial homologues were able to acquire site-specific developmental regulation and this, in turn, allowed them to diverge morphologically. Compartmentalization of the wing also reduced the developmental correlation among pattern elements. The release from this developmental constraint, we believe, enabled the great evolutionary radiation of butterfly wing patterns. During pattern evolution, the same set of individual pattern elements is arranged in novel ways to produce species-specific patterns, including such adaptations as mimicry and camouflage.  相似文献   

5.
SUMMARY The larval color patterns in Lepidoptera exhibit splendid diversity, and identifying the genes responsible for pigment distribution is essential to understanding color‐pattern evolution. The swallowtail butterfly, Papilio xuthus, is a good candidate for analyzing marking‐associated genes because its body markings change dramatically at the final molt. Moreover, the silkworm Bombyx mori is most suitable for identification of lab‐generated color mutants because genome information and many color mutants are available. Here, we analyzed the expression pattern of 10 melanin‐related genes in P. xuthus, and analyzed whether these genes were responsible for Bombyx larval color mutants. We found that seven genes correlated strongly with the stage‐specific larval cuticular markings of P. xuthus, suggesting that, compared with Drosophila, more genes showed marking specificity in lepidopteran larvae. We newly found that the expression of both tan and laccase2 is strongly correlated with the larval black markings in both P. xuthus and B. mori. The results of F2 linkage analysis and mutant analysis strongly suggest that tan is the responsible gene for Bombyx larval color mutant rouge, and that tan is important in emphasizing black markings of lepidopteran larvae. Detailed comparison of temporal and spatial expression patterns showed that larval cuticular markings were regulated at two different phases. Marking‐specific expression of oxidizing enzymes preceded the marking‐specific expression of melanin synthesis enzymes at mRNA level, which is the reverse of the melanin synthesis step.  相似文献   

6.
Lepidopterans (butterflies and moths) are a rich and diverse order of insects, which, despite their economic impact and unusual biological properties, are relatively underrepresented in terms of genomic resources. The genome of the silkworm Bombyx mori has been fully sequenced, but comparative lepidopteran genomics has been hampered by the scarcity of information for other species. This is especially striking for butterflies, even though they have diverse and derived phenotypes (such as color vision and wing color patterns) and are considered prime models for the evolutionary and developmental analysis of ecologically relevant, complex traits. We focus on Bicyclus anynana butterflies, a laboratory system for studying the diversification of novelties and serially repeated traits. With a panel of 12 small families and a biphasic mapping approach, we first assigned 508 expressed genes to segregation groups and then ordered 297 of them within individual linkage groups. We also coarsely mapped seven color pattern loci. This is the richest gene-based map available for any butterfly species and allowed for a broad-coverage analysis of synteny with the lepidopteran reference genome. Based on 462 pairs of mapped orthologous markers in Bi. anynana and Bo. mori, we observed strong conservation of gene assignment to chromosomes, but also evidence for numerous large- and small-scale chromosomal rearrangements. With gene collections growing for a variety of target organisms, the ability to place those genes in their proper genomic context is paramount. Methods to map expressed genes and to compare maps with relevant model systems are crucial to extend genomic-level analysis outside classical model species. Maps with gene-based markers are useful for comparative genomics and to resolve mapped genomic regions to a tractable number of candidate genes, especially if there is synteny with related model species. This is discussed in relation to the identification of the loci contributing to color pattern evolution in butterflies.  相似文献   

7.
Kalay G  Wittkopp PJ 《PLoS genetics》2010,6(11):e1001222
cis-regulatory DNA sequences known as enhancers control gene expression in space and time. They are central to metazoan development and are often responsible for changes in gene regulation that contribute to phenotypic evolution. Here, we examine the sequence, function, and genomic location of enhancers controlling tissue- and cell-type specific expression of the yellow gene in six Drosophila species. yellow is required for the production of dark pigment, and its expression has evolved largely in concert with divergent pigment patterns. Using Drosophila melanogaster as a transgenic host, we examined the expression of reporter genes in which either 5' intergenic or intronic sequences of yellow from each species controlled the expression of Green Fluorescent Protein. Surprisingly, we found that sequences controlling expression in the wing veins, as well as sequences controlling expression in epidermal cells of the abdomen, thorax, and wing, were located in different genomic regions in different species. By contrast, sequences controlling expression in bristle-associated cells were located in the intron of all species. Differences in the precise pattern of spatial expression within the developing epidermis of D. melanogaster transformants usually correlated with adult pigmentation in the species from which the cis-regulatory sequences were derived, which is consistent with cis-regulatory evolution affecting yellow expression playing a central role in Drosophila pigmentation divergence. Sequence comparisons among species favored a model in which sequential nucleotide substitutions were responsible for the observed changes in cis-regulatory architecture. Taken together, these data demonstrate frequent changes in yellow cis-regulatory architecture among Drosophila species. Similar analyses of other genes, combining in vivo functional tests of enhancer activity with in silico comparative genomics, are needed to determine whether the pattern of regulatory evolution we observed for yellow is characteristic of genes with rapidly evolving expression patterns.  相似文献   

8.
Many species belonging to the order Lepidoptera are major pests in agriculture and arboriculture. The sterile insect technique (SIT) is an eco-friendly and highly efficient genetically targeted pest management approach. In many cases, it is preferable to release only sterile males in an SIT program, and efficient sexing strategies are crucial to the successful large-scale implementation of SIT. In the present study, we established 160 transgenic silkworm (Bombyx mori) lines to test the possibility of genetic sexing using a W chromosome-linked transgene, which is thought to be the best sexing strategy for lepidopteran species. One transgenic line with a female-specific expression pattern of reporter gene was obtained. The expression level of the W-linked transgene was comparable with autosomal insertions and was stable for 17 continuous generations. Molecular characterization showed this line contained a single copy of the reporter gene on the W chromosome, and the integration site was TTAG in contig W-BAC-522N19-C9. The feasibility of using a W chromosome-linked transgene demonstrated here and the possible improvements discussed will provide valuable information for other lepidopteran pests. The novel W chromosome-linked transgenic line established in this study will serve as an important resource for fundamental research with the silkworm B. mori.  相似文献   

9.
为了给生产单位害虫管理的普通技术人员提供简便易操作的昆虫鉴别方法, 本文提出了一种新颖的基于图像颜色及纹理特征的昆虫图像识别方法。鳞翅目昆虫翅面图像经过预处理, 确定目标区域, 再进行特征提取。首先将彩色图像从三原色(red-green-blue, RGB)空间转换至色调饱和值(HSV)空间并提取有效区域内的色度、饱和度直方图特征, 然后经图像位置校准, 提取灰度图的双树复小波变换(DTCWT)特征; 匹配首先计算两颜色直方图特征向量之间的相关性, 将相关性大于阈值的样本再进一步用DTCWT特征匹配; DTCWT匹配通过计算Canberra距离实现, 从通过第一层颜色匹配的样本中取出最近邻作为最终匹配类别。算法在包含100类鳞翅目昆虫的图像库中进行试验验证, 取得了76%的识别率, 其中前翅识别率则达92%, 同时取得了理想的时间性能。试验结果证明了本文方法的有效性。  相似文献   

10.
Recent studies indicate that relatively few genomic regions are repeatedly involved in the evolution of Heliconius butterfly wing patterns. Although this work demonstrates a number of cases where homologous loci underlie both convergent and divergent wing pattern change among different Heliconius species, it is still unclear exactly how many loci underlie pattern variation across the genus. To address this question for Heliconius erato, we created fifteen independent crosses utilizing the four most distinct color pattern races and analyzed color pattern segregation across a total of 1271 F2 and backcross offspring. Additionally, we used the most variable brood, an F2 cross between H. himera and the east Ecuadorian H. erato notabilis, to perform a quantitative genetic analysis of color pattern variation and produce a detailed map of the loci likely involved in the H. erato color pattern radiation. Using AFLP and gene based markers, we show that fewer major genes than previously envisioned control the color pattern variation in H. erato. We describe for the first time the genetic architecture of H. erato wing color pattern by assessing quantitative variation in addition to traditional linkage mapping. In particular, our data suggest three genomic intervals modulate the bulk of the observed variation in color. Furthermore, we also identify several modifier loci of moderate effect size that contribute to the quantitative wing pattern variation. Our results are consistent with the two-step model for the evolution of mimetic wing patterns in Heliconius and support a growing body of empirical data demonstrating the importance of major effect loci in adaptive change.  相似文献   

11.
12.
The evolution of wings and the adaptive advantage they provide have allowed insects to become one of the most evolutionarily successful groups on earth. The incredible diversity of their shape, size, and color patterns is a direct reflection of the important role wings have played in the radiation of insects. In this review, we highlight recent studies on both butterflies and Drosophila that have begun to uncover the types of genetic variations and developmental mechanisms that control diversity in wing color patterns. In butterflies, these analyses are now possible because of the recent development of a suite of genomic and functional tools, such as detailed linkage maps and transgenesis. In one such study, extensive linkage mapping in Heliconius butterflies has shown that surprisingly few, and potentially homologous, loci are responsible for several major pattern variations on the wings of these butterflies. Parallel work on a clade of Drosophila has uncovered how cis-regulatory changes of the same gene correlate with the repeated gain and loss of pigmented wing spots. Collectively, our understanding of formation and evolution of color pattern in insect wings is rapidly advancing because of these recent breakthroughs in several different fields.  相似文献   

13.
SUMMARY Understanding the complex interaction between genotype and phenotype is a major challenge of Evolutionary Developmental Biology. One important facet of this complex interaction has been called "Developmental System Drift" (DSD). DSD occurs when a similar phenotype, which is homologous across a group of related species, is produced by different genes or gene expression patterns in each of these related species. We constructed a mathematical model to explore the developmental and evolutionary dynamics of DSD in the gene network underlying wing polyphenism in ants. Wing polyphenism in ants is the ability of an embryo to develop into a winged queen or a wingless worker in response to an environmental cue. Although wing polyphenism is homologous across all ants, the gene network that underlies wing polyphenism has evolved. In winged ant castes, our simulations reproduced the conserved gene expression patterns observed in the network that controls wing development in holometabolous insects. In wingless ant castes, we simulated the suppression of wings by interrupting (up- or downregulating) the expression of genes in the network. Our simulations uncovered the existence of four groups of genes that have similar effects on target gene expression and growth. Although each group is comprised of genes occupying different positions in the network, their interruption produces vestigial discs that are similar in size and shape. The implications of our results for understanding the origin, evolution, and dissociation of the gene network underlying wing polyphenism in ants are discussed.  相似文献   

14.
Horizontal gene transfer (HGT) plays an important role in evolutionary processes as organisms adapt to their environments, and now cases of gene duplication after HGT in eukaryotes are emerging at an increasing rate. However, the fate and roles of the duplicated genes over time in eukaryotes remain unclear. Here we conducted a comprehensive analysis of the evolution of cysteine synthase (CYS) in lepidopteran insects. Our results indicate that HGT-derived CYS genes are widespread and have undergone duplication following horizontal transfer in many lepidopteran insects. Moreover, lepidopteran CYS proteins not only have β-cyanoalanine synthase activity but also possess cysteine synthase activity that is involved in sulfur amino acid biosynthesis. Duplicated CYS genes show marked divergence in gene expression patterns and enzymatic properties, suggesting that they probably have undergone subfunctionalization and/or neofunctionalization in Lepidoptera. The gene transfer of CYS genes and subsequent duplication appears to have facilitated the adaptation of lepidopteran insects to different diets and promoted their ecological diversification. Overall, this study provides valuable insights into the ecological and evolutionary contributions of CYS in lepidopteran insects.Subject terms: Molecular ecology, Molecular evolution  相似文献   

15.
16.
【目的】灵活操控靶基因的表达水平对于研究基因的功能十分重要。Gal4/UAS系统已被广泛应用于调控基因表达,可研究果蝇Drosophila等模式生物复杂的生物学问题。受采用载体的特性及插入位点的影响,Gal4或UAS转基因品系在构建好之后,其调控靶基因的能力基本是确定的。本研究旨在在现有Gal4/UAS系统的基础上,开发一种新的策略,实现在果蝇翅芽中灵活操控wingless(wg)基因的表达水平。【方法】用遗传学手段将黑腹果蝇Drosophila melanogaster品系的UAS-wg和UAS-wg-RNAi转基因重组到同一黑腹果蝇品系中。将该重组黑腹果蝇品系与dpp-Gal4黑腹果蝇品系杂交,同时驱动UAS-wg和UAS-wg-RNAi在果蝇幼虫翅芽中共表达。杂交子代幼虫分别放置在不同的温度(18, 25和30℃)下培养。将幼虫翅芽解剖并进行免疫组化染色,测量染色的荧光强度,分析翅芽中wg的表达水平。【结果】在低温(18℃)下,UAS-wg在基因表达调控中起主要作用,wg表现为超表达,但其超表达的效率可被UAS-wg-RNAi有效地削弱。相反,在高温(30℃)下,UAS-wg-RNAi起主导作用,wg的表达受到抑制。并且通过转换温度,可实现wg在翅芽发育的不同阶段在超表达和抑制之间相互转化,从而灵活地操控wg基因在翅芽中的表达水平。【结论】该方法可以灵活操控果蝇翅芽中wg基因的表达水平,对于调控转基因的表达有重要的意义。  相似文献   

17.
The gene vestigial has been proposed to act as a master gene because of its supposed capacity to initiate and drive wing development. We show that the ectopic expression of vestigial only induces ectopic outgrowths with wing cuticular differentiation and wing blade gene expression patterns in specific developmental and genetic contexts. In the process of transformation, wingless seems to be an essential but insufficient co-factor of vestigial. vestigial ectopic expression alone or vestigial plus wingless co-expression in clones differentiate 'mixed' cuticular patterns (they contain wing blade trichomes and chaetae characteristic of the endogenous surrounding tissue) and express wing blade genes only in patches of cells within the clones. In addition, we have found that these clones, in the wing imaginal disc, may cause autonomous as well as non-autonomous cuticular transformations and wing blade gene expression patterns. These non-autonomous effects in surrounding cells result from recruitment or 'inductive assimilation' of vestigial or wingless-vestigial overexpressing cells.  相似文献   

18.
Marcus JM  Evans TM 《Bio Systems》2008,93(3):250-255
The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. A recent computational model tested genetic regulatory hierarchies hypothesized to underlie the formation of butterfly eyespot foci [Evans, T.M., Marcus, J.M., 2006. A simulation study of the genetic regulatory hierarchy for butterfly eyespot focus determination. Evol. Dev. 8, 273-283]. The computational model demonstrated that one proposed hierarchy was incapable of reproducing the known patterns of gene expression associated with eyespot focus determination in wild-type butterflies, but that two slightly modified alternative hierarchies were capable of reproducing all of the known gene expressions patterns. Here we extend the computational models previously implemented in Delphi 2.0 to two mutants derived from the squinting bush brown butterfly (Bicyclus anynana). These two mutants, comet and Cyclops, have aberrantly shaped eyespot foci that are produced by different mechanisms. The comet mutation appears to produce a modified interaction between the wing margin and the eyespot focus that results in a series of comet-shaped eyespot foci. The Cyclops mutation causes the failure of wing vein formation between two adjacent wing-cells and the fusion of two adjacent eyespot foci to form a single large elongated focus in their place. The computational approach to modeling pattern formation in these mutants allows us to make predictions about patterns of gene expression, which are largely unstudied in butterfly mutants. It also suggests a critical experiment that will allow us to distinguish between two hypothesized genetic regulatory hierarchies that may underlie all butterfly eyespot foci.  相似文献   

19.
The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.  相似文献   

20.
The color patterns on the wings of butterflies have been an important model system in evolutionary developmental biology. Two types of models have been used to study these patterns. The first type of model employs computational techniques and generalized mechanisms of pattern formation to make predictions about how color patterns will vary as parameters of the model are changed. These generalized mechanisms include diffusion gradient, reaction-diffusion, lateral inhibition, and threshold responses. The second type of model uses known genetic interactions from Drosophila melanogaster and patterns of candidate gene expression in one of several butterfly species (most often Junonia (Precis) coenia or Bicyclus anynana) to propose specific genetic regulatory hierarchies that appear to be involved in color pattern formation. This study combines these two approaches using computational techniques to test proposed genetic regulatory hierarchies for the determination of butterfly eyespot foci (also known as border ocelli foci). Two computer programs, STELLA 8.1 and Delphi 2.0, were used to simulate the determination of eyespot foci. Both programs revealed weaknesses in a genetic model previously proposed for eyespot focus determination. On the basis of these simulations, we propose two revised models for eyespot focus determination and identify components of the genetic regulatory hierarchy that are particularly sensitive to changes in model parameter values. These components may play a key role in the evolution of butterfly eyespots. Simulations like these may be useful tools for the study of other evolutionary developmental model systems and reveal similar sensitive components of the relevant genetic regulatory hierarchies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号