首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
2.
We studied effects of L-theanine, a unique amino acid in tea, on carbon tetrachloride (CCl(4))-induced liver injury in mice. The mice were pre-treated orally with L-theanine (50, 100 or 200 mg/kg) once daily for seven days before CCl(4) (10 ml/kg of 0.2% CCl(4) solution in olive oil) injection. L-theanine dose-dependently suppressed the increase of serum activity of ALT and AST and bilirubin level as well as liver histopathological changes induced by CCl(4) in mice. L-theanine significantly prevented CCl(4)-induced production of lipid peroxidation and decrease of hepatic GSH content and antioxidant enzymes activities. Our further studies demonstrated that L-theanine inhibited metabolic activation of CCl(4) through down-regulating cytochrome P450 2E1 (CYP2E1). As a consequence, L-theanine inhibited oxidative stress-mediated inflammatory response which included the increase of TNF-α and IL-1β in sera, and expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in livers. CCl(4)-induced activation of apoptotic related proteins including caspase-3 and PARP in mouse livers was also prevented by L-theanine treatment. In summary, L-theanine protects mice against CCl(4)-induced acute liver injury through inhibiting metabolic activation of CCl(4) and preventing CCl(4)-induced reduction of anti-oxidant capacity in mouse livers to relieve inflammatory response and hepatocyte apoptosis.  相似文献   

3.
4.
It is widely recognized that activated hepatic stellate cells (HSC) play a pivotal role in development of liver fibrosis. A platelet-derived growth factor (PDGF) is the most potent mitogen for HSC. The aim of this study was to examine the effect of imatinib mesylate (STI-571, Gleevec), a clinically used PDGF receptor (PDGFR) tyrosine kinase inhibitor, on development of experimental liver fibrosis. The rat model of pig serum-induced hepatic fibrosis was used to assess the effect of daily oral administration of STI-571 on the indexes of fibrosis. STI-571 markedly attenuated development of liver fibrosis and hepatic hydroxyproline and serum fibrosis markers. The number of alpha-smooth muscle actin-positive cells and mRNA expression of alpha2-(I)-procollagen, tissue inhibitor of metalloproteinases-1, and transforming growth factor-beta were also significantly suppressed by STI-571. Our in vitro study showed that STI-571 markedly attenuated PDGF-BB-induced proliferation and migration and alpha-SMA and alpha2-(I)-procollagen mRNA of activated HSC in a dose-dependent manner. STI-571 also significantly attenuated PDGF-BB-induced phosphorylation of PDGFR-beta, MEK1/2, and Akt in activated HSC. Because STI-571 is widely used in clinical practice, it may provide an effective new strategy for antifibrosis therapy.  相似文献   

5.
Zinc deficiency is common in the liver of patients with chronic liver disease. Zinc supplementation suppresses the progression of liver fibrosis induced by bile duct ligation (BDL) in mice. The present study was undertaken to specifically investigate a possible mechanism by which zinc plays this role in the liver. Kunming mice were subjected to BDL for 4 weeks to induce liver fibrosis, and concomitantly treated with zinc sulfite or saline as control by gavage once a day. The results showed that zinc supplementation significantly suppressed liver fibrosis and inflammation along with inhibition of hepatic stellate cells activation induced by BDL. These inhibitory effects were accompanied by the reduction of collagen deposition and a significant reduction of macrophage infiltration affected livers. Importantly, zinc selectively inhibited M1 macrophage polarization and M1-related inflammatory cytokines. This inhibitory effect was further confirmed by the reduction of relevant biomarkers of M1 macrophages including inducible NO synthase (iNOS), monocyte chemotactic protein-1 (MCP-1/CCL2), and tumor necrosis factor-α in the zinc supplemented BDL livers. In addition, zinc inhibition of M1 macrophages was associated with a decrease of Notch1 expression. Taken together, these data indicated that zinc supplementation inhibited liver inflammation and fibrosis in BDL mice through selective suppression of M1 macrophages, which is associated with inhibition of Notch1 pathway in M1 macrophage polarization.  相似文献   

6.
7.
Although the various biological roles of thymosin β4 (Tβ4) have been studied widely, the effect of Tβ4 and Tβ4-expressing cells in the liver remains unclear. Therefore, we investigated the expression and function of Tβ4 in chronically damaged livers. CCl4 was injected into male mice to induce a model of chronic liver disease. Mice were sacrificed at 6 and 10 weeks after CCl4 treatment, and the livers were collected for biochemical analysis. The activated LX-2, human hepatic stellate cell (HSC) line, were transfected with Tβ4-specific siRNA and activation markers of HSCs were examined. Compared to HepG2, higher expression of Tβ4 in RNA and protein levels was detected in the activated LX-2. In addition, Tβ4 was up-regulated in human liver with advanced liver fibrosis. The expression of Tβ4 increased during mouse HSC activation. Tβ4 was also up-regulated and Tβ4-positive cells were co-localized with α-smooth muscle actin (α-SMA) in the livers of CCl4-treated mice, whereas such cells were rarely detected in the livers of corn-oil treated mice. The suppression of Tβ4 in LX-2 cells by siRNA induced the down-regulation of HSC activation-related genes, tgf-β, α-sma, collagen, and vimentin, and up-regulation of HSC inactivation markers, ppar-γ and gfap. Immunofluorescent staining detected rare co-expressing cells with Tβ4 and α-SMA in Tβ4 siRNA-transfected cells. In addition, cytoplasmic lipid droplets were observed in Tβ4 siRNA-treated cells. These results demonstrate that activated HSCs expressed Tβ4 in chronically damaged livers, and this endogenous expression of Tβ4 influenced HSC activation, indicating that Tβ4 might contribute to liver fibrosis by regulating HSC activation.  相似文献   

8.
9.
10.
Kim KY  Choi I  Kim SS 《Molecules and cells》2000,10(3):289-300
In order to identify a fibrogenic factor associated with the potential of hepatic stellate cells (HSC) activation that arises during the CCl4-induced fibrogenic process, the relationship between the activation of HSC and levels of several fibrogenic factors were investigated. After isolation of HSC from the liver at different stages of CCl4 intoxication, the activation of HSC was assessed by the expression of alpha-smooth muscle actin. Levels of cytokines and oxidative stress in liver homogenates and plasma were measured by enzyme linked immunosorbent assay and the colorimetric method. In primary culture, HSC isolated from a rat liver were gradually activated in a time-dependent manner according to CCl4 administration. The progression of HSC activation was closely correlated with parameters related to oxidative stress in liver homogenates rather than the tissue levels of several cytokines. Also, the levels of antioxidants and arginase activity were inversely correlated with HSC activation. In plasma, the levels of oxidative stress and cytokines in CCl4-treated rat livers were not associated with the activation of HSC found during the CCl4-induced fibrogenic process. The relationship between HSC activation and oxidative stress was also confirmed through several factor-treated HSC cultures. In conclusion, the activation of HSC was accelerated according to CCl4 administration, and the progression of HSC activation is absolutely related to the oxidative stress. These results show that enhanced oxidative stress is an important signal for activation of HSC in experimental liver fibrogenesis.  相似文献   

11.
Catecholamines participate in the pathogenesis of portal hypertension and liver fibrosis through alpha1-adrenoceptors. However, the underlying cellular and molecular mechanisms are largely unknown. Here, we investigated the effects of norepinephrine (NE) on human hepatic stellate cells (HSC), which exert vasoactive, inflammatory, and fibrogenic actions in the injured liver. Adrenoceptor expression was assessed in human HSC by RT-PCR and immunocytochemistry. Intracellular Ca2+ concentration ([Ca2+]i) was studied in fura-2-loaded cells. Cell contraction was studied by assessing wrinkle formation and myosin light chain II (MLC II) phosphorylation. Cell proliferation and collagen-alpha1(I) expression were assessed by [3H]thymidine incorporation and quantitative PCR, respectively. NF-kappaB activation was assessed by luciferase reporter gene and p65 nuclear translocation. Chemokine secretion was assessed by ELISA. Normal human livers expressed alpha(1A)-adrenoceptors, which were markedly upregulated in livers with advanced fibrosis. Activated human HSC expressed alpha(1A)-adrenoceptors. NE induced multiple rapid [Ca2+]i oscillations (Ca2+ spikes). Prazosin (alpha1-blocker) completely prevented NE-induced Ca2+ spikes, whereas propranolol (nonspecific beta-blocker) partially attenuated this effect. NE caused phosphorylation of MLC II and cell contraction. In contrast, NE did not affect cell proliferation or collagen-alpha1(I) expression. Importantly, NE stimulated the secretion of inflammatory chemokines (RANTES and interleukin-8) in a dose-dependent manner. Prazosin blocked NE-induced chemokine secretion. NE stimulated NF-kappaB activation. BAY 11-7082, a specific NF-kappaB inhibitor, blocked NE-induced chemokine secretion. We conclude that NE stimulates NF-kappaB and induces cell contraction and proinflammatory effects in human HSC. Catecholamines may participate in the pathogenesis of portal hypertension and liver fibrosis by targeting HSC.  相似文献   

12.
Placental growth factor (PlGF) is a member of the vascular endothelial growth factor (VEGF) family and is involved in pathological angiogenesis associated with chronic liver diseases. However, the precise mechanisms underlying PlGF signalling contributing to liver fibrosis and angiogenesis remain largely unexplored. This study aimed to assess the effect of reducing PlGF expression using small interfering RNA (siRNA) on experimental liver fibrosis and angiogenesis, and to elucidate the underlying molecular mechanisms. Fibrosis was induced in mice by carbon tetrachloride (CCl4) for 8 weeks, and mice were treated with PlGF siRNA or non‐targeting control siRNA starting two weeks after initiating CCl4 injections. The results showed that PlGF was highly expressed in cirrhotic human and mice livers; which mainly distributed in activated hepatic stellate cells (HSCs). PlGF silencing robustly reduced liver inflammation, fibrosis, intrahepatic macrophage recruitment, and inhibited the activation of HSCs in vivo. Moreover, PlGF siRNA‐treated fibrotic mice showed diminished hepatic microvessel density and angiogenic factors, such as hypoxia‐inducible factor‐1α (HIF‐1α), VEGF and VEGF receptor‐1. Moreover, down‐regulation of PlGF with siRNA in HSCs inhibited the activation and proliferation of HSCs. Mechanistically, overexpression of PlGF in activated HSCs was induced by hypoxia dependent on HIF‐1α, and PlGF induces HSC activation and proliferation via activation the phosphatidylinositol 3‐kinase (PI3K)/Akt signalling pathways. These findings indicate that PlGF plays an important role in liver fibrosis‐associated angiogenesis and that blockage of PlGF could be an effective strategy for chronic liver disease.  相似文献   

13.
14.

Aims

We investigated the protective effect of berberine (BBR) on chronic liver fibrosis in mice and the potential mechanism underlying the activation of AMP-activated protein kinase (AMPK) pathway.

Main methods

CCl4-induced chronic liver fibrosis model in mice was established and activated rat hepatic stellate cell was treated with BBR. Cell viability was evaluated by SRB assay and protein expressions were detected by Western blot.

Key findings

Our results showed that BBR ameliorated the liver fibrosis in mice with CCl4-induced liver injury and inhibited the proliferation of hepatic stellate cell in dose- and time-dependent manner. BBR decreased the enzyme release of ALT, AST, and ALP in serum, elevated SOD and reduced MDA content of liver tissue in CCl4-induced liver fibrosis model. BBR delayed the formation of regenerative nodules and reduced necrotic areas compared to CCl4 group. Moreover, BBR treatment activated AMPK, decreased the protein expression of Nox4, TGF-β1 and the phosphorylated Akt. The expression of smooth muscle actin (α-SMA), the marker of activated hepatic stellate cell, was also reduced by BBR treatment.

Significance

Our studies firstly demonstrated that BBR exerted hepatoprotective effects possibly via activation of AMPK, blocking Nox4 and Akt expression. Our findings may benefit the development of new strategies in the prevention of chronic liver disease.  相似文献   

15.
Unmitigated oxidative stress is deleterious, as epitomized by CCl4 intoxication. In this well-characterized model of free radical-initiated damage, liver metabolism of CCl4 to CCl3. causes lipid peroxidation, F-ring isoprostane formation, and pathologic leukocyte activation. The nature of the mediator that couples oxidation to the hepatotoxic inflammatory response is uncharacterized. We found that oxidatively modified phosphatidylcholines were present in the livers of CCl4-exposed rats and not in livers from control animals, that CCl4 metabolism generated lipids that activated 293 cells stably transfected with the human platelet-activating factor (PAF) receptor, and that this PAF-like activity was formed as rapidly as isoprostane-containing phosphatidylcholine (iPC) during oxidation. iPC and the PAF-like activity also had similar chromatographic properties. The potential for iPC activation of the PAF receptor has been unexplored, but we conclude that iPC themselves did not activate the PAF receptor, as phospholipase A1 hydrolysis completely destroyed iPC, but none of the PAF-like bioactivity. Oxidatively fragmented phospholipids are potent agonists of the PAF receptor, but mass spectrometry characterized PAF as the major inflammatory component coeluting with iPC. Oxidatively fragmented phospholipids and iPC are markers of free radical generation in CCl4-intoxicated liver, but PAF generation by activated hepatic cells generated the inflammatory agent.  相似文献   

16.
17.
18.
19.
20.
Hepatic ischemia-reperfusion (I/R) injury continues to be a fatal complication after liver surgery. Heat shock (HS) preconditioning is an effective strategy for protecting the liver from I/R injury, but its exact mechanism is still unclear. Because the activation of nuclear factor-kappaB (NF-kappaB) is an important event in the hepatic I/R-induced inflammatory response, the effect of HS preconditioning on the pathway for NF-kappaB activation was investigated. In the control group, NF-kappaB was activated 60 min after reperfusion, but this activation was suppressed in the HS group. Messenger RNA expressions of proinflammatory mediators during reperfusion were also reduced with HS preconditioning. Concomitant with NF-kappaB activation, NF-kappaB inhibitor I-kappaB proteins were degraded in the control group, but this degradation was suppressed in the HS group. This study shows that HS preconditioning protected the liver from I/R injury by suppressing the activation of NF-kappaB and the subsequent expression of proinflammatory mediators through the stabilization of I-kappaB proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号