共查询到20条相似文献,搜索用时 0 毫秒
1.
The conditions used for in vitro differentiation of hMSCs contain substances that affect the activity and expression of cyclooxygenase enzymes (COX1/COX2) and thereby the synthesis of prostanoids. hMSC constitutively produce PGE2 when cultivated in vitro. In this study we have investigated effects of PGE2 on proliferation of hMSC. We here demonstrate that one of the main control molecules in the Wnt pathway, GSK-3β, is phosphorylated at the negative regulatory site ser-9 after treating the cells with PGE2. This phosphorylation is mediated by elevation of cAMP and subsequent activation of PKA. Furthermore, PGE2 treatment leads to enhanced nuclear translocation of β-catenin, thus influencing cell proliferation. The presence of two PKA isoforms, types I and II, prompted us to investigate their individual contribution in PGE2-mediated regulation of proliferation. Specific activation of PKA type II with synthetic cAMP analogues, resulted in enhancement of proliferation. On the other side, we found that treatment of hMSC with high concentrations of PGE2 inhibited cell proliferation by arresting the cells in G0/G1 phase, an effect we found to be mediated by PKA I. Hence, the two different PKA isoforms seem to have opposing functions in the regulation of proliferation and differentiation in these cells. 相似文献
2.
V Mihajlovic A J Krolczyk W Auerbach M Buchwald B P Schimmer 《Biochimie et biologie cellulaire》1992,70(10-11):1039-1046
Caco-2 human colonic carcinoma cells were transfected with an expression vector encoding a mutant form of RI (regulatory subunit of the type 1 cAMP-dependent protein kinase), driven by the metallothionein 1 promoter. A stable transformant was isolated that expressed the mutant RI gene in a Zn(2+)-inducible manner. The consequences of the RI mutation on cAMP-dependent protein kinase activity, cell division, and regulation of chloride efflux were examined. When grown in the absence of ZnSO4, protein kinase activity in the transformant was stimulated 2.5-fold by cAMP and approached the levels of cAMP-dependent protein kinase activity seen in parental Caco-2 cells; when treated with ZnSO4, cAMP-dependent protein kinase activity in the transformant was inhibited by 60%. In the absence of ZnSO4 the transformant grew with the same doubling time and to the same saturation density as the untransformed parent. In the presence of ZnSO4 the transformant exhibited a cAMP-reversible inhibition of cell division, indicating that a functional cAMP-dependent protein kinase was required for the growth of these cells in culture. Induction of the mutant RI gene also abolished forskolin-stimulated chloride efflux from these cells, suggesting obligatory roles for cAMP and cAMP-dependent protein kinase in forskolin's actions on chloride channel activity. We anticipate that this transformant will be useful for further studies on the roles of cAMP and cAMP-dependent protein kinase in the regulation of intestinal epithelial cells, including regulation of cell proliferation and differentiation, and regulation of chloride channel activity by neurohormones and neurotransmitters. 相似文献
3.
Activation of protein kinase C inhibits TRAIL-induced caspases activation, mitochondrial events and apoptosis in a human leukemic T cell line 总被引:4,自引:0,他引:4
TRAIL causes apoptosis in numerous types of tumor cells. However, the mechanisms regulating TRAIL-induced apoptosis remain to be elucidated. We have investigated the role of PKC in regulating TRAIL-induced mitochondrial events and apoptosis in the Jurkat T cell line. We found a caspase-dependent decline in mitochondrial membrane potential and translocation of cytochrome c from mitochondria into the cytosol in response to TRAIL. Both these events were prevented by PKC activation. Moreover, PKC activation considerably reduced the activation of caspases, PARP cleavage and apoptosis when induced upon TRAIL treatment. MAPK activation was involved in the mechanism of PKC-mediated inhibition of TRAIL-induced cytochrome c release from mitochondria. Furthermore, inhibition of the MAPK pathway partially reversed the PKC-mediated inhibition of TRAIL-induced apoptosis. Besides, PKC activation may also inhibit the TRAIL-induced apoptosis through a MAPK-independent mechanism. Altogether, these results indicate a negative role of PKC in the regulation of apoptotic signals generated upon TRAIL receptor activation. 相似文献
4.
Natalia Buzzi Paola Scodelaro BilbaoRicardo Boland Ana Russo de Boland 《Biochimica et Biophysica Acta (BBA)/General Subjects》2009,1790(12):1651-1659
Background
ATP exerts diverse effects on various cell types via specific purinergic P2Y receptors. Intracellular signaling cascades are the main routes of communication between P2Y receptors and regulatory targets in the cell.Methods and results
We examined the role of ATP in the modulation of ERK1/2, JNK1/2, and p38 MAP kinases (MAPKs) in human colon cancer Caco-2 cells. Immunoblot analysis showed that ATP induces the phosphorylation of MAPKs in a time- and dose-dependent manner, peaking at 5 min at 10 µM ATP. Moreover, ATPγS, UTP, and UDP but not ADP or ADPβS increased phosphorylation of MAPKs, indicating the involvement of, at least, P2Y2/P2Y4 and P2Y6 receptor subtypes. RT–PCR studies and PCR product sequencing supported the expression of P2Y2 and P2Y4 receptors in this cell line. Spectrofluorimetric measurements showed that cell stimulation with ATP induced transient elevations in intracellular calcium concentration. In addition, ATP-induced phosphorylation of MAPKs in Caco-2 cells was dependent on Src family tyrosine kinases, calcium influx, and intracellular Ca2+ release and was partially dependent on the cAMP/PKA and PKC pathways and the EGFR.General significance
These findings provide new molecular basis for further understanding the mechanisms involved in ATP functions, as a signal transducer and activator of MAP kinase cascades, in colon adenocarcinoma Caco-2 cells. 相似文献5.
Vitamin A metabolism in the human intestinal Caco-2 cell line 总被引:2,自引:0,他引:2
The human intestinal Caco-2 cell line, described as enterocyte-like in a number of studies, was examined for its ability to carry out the metabolism of vitamin A normally required in the absorptive process. Caco-2 cells contained cellular retinol-binding protein II, a protein which is abundant in human villus-associated enterocytes and may play an important role in the absorption of vitamin A. Microsomal preparations from Caco-2 cells contained retinal reductase, acyl-CoA-retinol acyltransferase (ARAT), and lecithin-retinol acyltransferase (LRAT) activities, which have previously been proposed to be involved in the metabolism of dietary vitamin A in the enterocyte. When intact Caco-2 cells were provided with beta-carotene, retinyl acetate, or retinol, synthesis of retinyl palmitoleate, oleate, palmitate, and small amounts of stearate resulted. However, exogenous retinyl palmitate or stearate was not used by Caco-2 cells as a source of retinol for ester synthesis. While there was a disproportionate synthesis of monoenoic fatty acid esters of retinol in Caco-2 cells compared to the retinyl esters typically found in human chylomicrons or the esters normally synthesized in rat intestine, the pattern was consistent with the substantial amount of unsaturated fatty acids, particularly 18:1 and 16:1, found in the sn-1 position of Caco-2 microsomal phosphatidylcholine, the fatty acyl donor for LRAT. Both ARAT and LRAT have been proposed to be responsible for retinyl ester synthesis in the enterocyte.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Alpha-tomatine induces apoptosis and inhibits nuclear factor-kappa B activation on human prostatic adenocarcinoma PC-3 cells 总被引:1,自引:0,他引:1
Background
Alpha-tomatine (α-tomatine) is the major saponin in tomato (Lycopersicon esculentum). This study investigates the chemopreventive potential of α-tomatine on androgen-independent human prostatic adenocarcinoma PC-3 cells.Methodology/Principal Findings
Treatment of highly aggressive human prostate cancer PC-3 cells with α-tomatine resulted in a concentration-dependent inhibition of cell growth with a half-maximal efficient concentration (EC50) value of 1.67±0.3 µM. It is also less cytotoxic to normal human liver WRL-68 cells and normal human prostate RWPE-1 cells. Assessment of real-time growth kinetics by cell impedance-based Real-Time Cell Analyzer (RTCA) showed that α-tomatine exhibited its cytotoxic effects against PC-3 cells as early as an hour after treatment. The inhibitory effect of α-tomatine on PC-3 cancer cell growth was mainly due to induction of apoptosis as evidenced by positive Annexin V staining and decreased in mitochondrial membrane potential but increased in nuclear condensation, polarization of F-actin, cell membrane permeability and cytochrome c expressions. Results also showed that α-tomatine induced activation of caspase-3, -8 and -9, suggesting that both intrinsic and extrinsic apoptosis pathways are involved. Furthermore, nuclear factor-kappa B (NF-κB) nuclear translocation was inhibited, which in turn resulted in significant decreased in NF-κB/p50 and NF-κB/p65 in the nuclear fraction of the treated cells compared to the control untreated cells. These results provide further insights into the molecular mechanism of the anti-proliferative actions of α-tomatine.Conclusion/Significance
α-tomatine induces apoptosis and inhibits NF-κB activation on prostate cancer cells. These results suggest that α-tomatine may be beneficial for protection against prostate cancer development and progression. 相似文献7.
8.
研究东亚钳蝎毒素对人结肠癌细胞Caco-2增殖的影响。以不同浓度的东亚钳蝎(Buthus martensii Karsch)毒素(10、20、40滋g/mL)干预体外培养的Caco-2细胞,分别于24 h、48 h后,用四甲基偶氮唑盐(MTT)比色法,观察毒素对Caco-2细胞的增殖抑制作用。运用淋巴细胞转化实验和乳酸脱氢酶(LDH)释放实验检测蝎毒素对Caco-2细胞的作用途径。结果表明:东亚钳蝎毒不仅能抑制Caco-2细胞的增殖而且能促进淋巴细胞转化,毒素对Caco-2细胞增殖的抑制作用与浓度和作用时间密切相关。 相似文献
9.
Busserolles J Megías J Terencio MC Alcaraz MJ 《The international journal of biochemistry & cell biology》2006,38(9):1510-1517
Heme oxygenase-1 can play a protective role against cellular stress. In colon cancer cells, these effects would be relevant to oncogenesis and resistance to chemotherapy. The aim of the study was to examine the effects of heme oxygenase-1 induction on cell survival in a human colon cancer cell line, Caco-2. Serum deprivation induced apoptosis, reduced Akt and p38 phosphorylation, and increased p21(Cip/WAF1) levels. Heme oxygenase-1 induction by treatment with cobalt protoporphyrin IX resulted in resistance to apoptosis, activation of Akt, reduction in p21(Cip/WAF1) levels and modification of bcl2/bax ratio towards survival. Indomethacin reduced apoptosis but in contrast to heme oxygenase-1, arrested cells in G0/G1. Apoptosis was also inhibited by the heme oxygenase metabolites bilirubin and biliverdin but the CO donor tricarbonyldichlororuthenium(II) dimer did not exert significant effects. Protection against apoptosis in cells treated with cobalt protoporphyrin IX was reverted by incubation with heme oxygenase-1 small interfering RNA. This study shows an antiapoptotic effect of heme oxygenase-1 in colon cancer cells which could be mediated by the formation of bilirubin and biliverdin. Our results support an antiapoptotic role for HO-1 in these cells and provide a mechanism by which overexpression of HO-1 may promote tumor resistance to stress in conditions of limited nutrient supply. We have extended these observations by demonstrating that these effects are independent of p38 but are mediated via Akt pathway. 相似文献
10.
Uppugunduri Srinivas Elda Tagliabue Manuela Campiglio Sylvie Ménard Maria Ines Colnaghi 《Cancer immunology, immunotherapy : CII》1993,36(6):397-402
In the present study we utilized two previously described monoclonal antibodies (mAb), and their respective Fab portions, directed against the extracellular domain of p185HER2, a transmembrane glycoprotein with intrinsic tyrosine kinase activity coded by theHER2/neu oncogene, to study the mechanism of mAb-induced receptor internalization and phosphorylation. Fluorescence scan analysis and direct binding of radiolabelled mAb and their Fab fragments showed that entire MGR2 and MGR3 mAb were reactive with similar binding affinity on two cell lines (Calu-3 and Sk-Br-3) overexpressing the p185HER2 receptor, and unreactive on unrelated cells. The corresponding Fab fragments were positive on the related cells, but bound with diminished intensity and affinity. Entire MGR2 and MGR3 induced internalization in both Calu-3 and Sk-Br-3 cells, whereas their Fab portions were not internalized. When the bivalency of the MGR2 Fab fragment was artificially reconstituted by incubation with rabbit anti-(mouse IgG), internalization was obtained. Monovalent binding of the entire labelled antibodies, obtained in the presence of a saturating amount of unlabelled antibody, decreased both the rate and the final amount of internalized antibody. Metabolic labelling and immunoblotting experiments showed that incubation with entire MGR3 amplified the basal phosphorylation of the p185HER2 receptor in Calu-3 and Sk-Br-3 cells, whereas MGR3 Fab decreased the signal. Taken together, our data indicate that antibody-mediated activation of p185HER2 in Calu-3 and Sk-Br-3 cells occurs through the dimerization of receptor molecules and that bivalency of the activating antibody is mandatory for induction of internalization and phosphorylation of the receptor. Our data support an allosteric model of activation for the p185HER2 receptor. 相似文献
11.
Arkadiusz J. Krolczyk Christine E. Bear Patrick F. H. Lai Bernard P. Schimmer 《Journal of cellular physiology》1995,162(1):64-73
In order to evaluate the importance of cAMP and cAMP-dependent protein kinase (cAMPdPK) in the regulation of chloride efflux via the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, Caco-2, human colonic carcinoma cells were transfected with an expression vector encoding a mutant form of regulator subunit of cAMPdPK under control of the mouse metallothionein 1 promoter. Four stable transformants were isolated that expressed the mutant subunit in a Zn2+-inducible manner and exhibited Zn2+-inducible inhibition of cAMPdPK activity. The parental and transformed Caco-2 cells were examined for their abilities to regulate chloride efflux in response to various secretagogues using a radioactive iodide-efflux assay. In the transformants, induction of the protein kinase mutation with ZnSo4 markedly decreased chloride efflux in response to forskolin, the 8-(4-chlorophenylthio) analog of cAMP, vasoactive intestial polypeptide, prostaglandin E2 and isoproterenol, whereas Zn2+-treated parental cells remained responsive to these secretagogues. Treatment with carbachol, calcium ionophores or phorbol ester did not acutely affect chloride efflux. Together, these studies indicate that cAMP and cAMPdPK are essential components of secretagogue-regulated chloride channel activity in the Caco-2 cell line. In whole cell patch clamp recordings, induction of the cAMPdPK mutation inhibited anionic conductances indicative of the CFTR chloride channel, whereas purified catalytic subunit of cAMPdPK, added intracellularly, reversed the inhibition. These latter results demonstrate that the CFTR chloride channels in the protein kinase-defective transformants are normal and that the protein kinase mutation specifically affects their regulation, presumably by direct phosphorylation. © 1995 Wiley-Liss, Inc. 相似文献
12.
Jun Li Zhi-Guang Wang Long-Bin Pang Rong-Hua Zhang 《Bioscience, biotechnology, and biochemistry》2019,83(6):1077-1084
CENPU (centromere protein U), a centromere component essential for mitosis, relates with some cancers progression. However, it is not well illustrated in lung adenocarcinoma (LAC). Here, we aimed to investigate the potential effect of CENPU on LAC progression and prognosis. In this experiment, expression level of CENPU and association between its expression and LAC patients’ clinicopathological characteristics and prognosis were analyzed. The proliferation, migration and invasive abilities of LAC cells were determined by CCK-8, colony formation, transwell assays. Western blot was used to detect PI3K/AKT signaling key proteins. We found CENPU level was overexpressed in LAC tissues on comparing normal tissues. Moreover, CENPU overexpression correlated with clinicopathological variables and predicted an independent prognostic indicator in LAC patients. Functionally, CENPU downregulation significantly inhibited LAC cell proliferation, migration and invasion in, which was possibly mediated by PI3K/AKT pathway inactivation. Our findings insinuate targeting CENPU may be a potential therapeutic strategy for LAC. 相似文献
13.
Liu X 《Biochemical and biophysical research communications》2007,353(1):121-126
We have previously reported that cigarette smoke can induce DNA damage in human lung cells without leading to apoptosis or necrosis. In this study, we report that STAT3 is required for the survival of human bronchial epithelial cells (HBECs) following cigarette smoke-induced DNA damage. Cigarette smoke extract (CSE) exposure increases STAT3 phosphorylation (Tyr 705) and DNA binding activity in HBECs. CSE also stimulates IL-6 release and mRNA expression. Anti-IL-6 neutralizing antibody partially blocks STAT3 activation and renders the cells sensitive to CSE-induced DNA damage. Suppression of STAT3 by siRNA results in severe DNA damage and cell death in response to CSE exposure. These findings suggest that STAT3 mediates HBEC survival in response to CSE-induced DNA damage, at least in part, through the IL-6/STAT3 signaling pathway. 相似文献
14.
Overexpression of Aurora-A kinase promotes tumor cell proliferation and inhibits apoptosis in esophageal squamous cell carcinoma cell line 总被引:8,自引:0,他引:8
Attrora-A kinase, a serine/threonine protein kinase, is a potential oncogene. Amplification and overexpression of Aurora-A have been found in several types of human tumors, including esophageal squamous cell carcinoma (ESCC). It has been demonstrated that cells overexpressing Attrora-A are more resistant to cisplatin-induced apoptosis. However, the molecular mechanisms mediating these effects remain largely unknown. In this report, we showed that overexpression of Attrora-A through stable transfection of pEGFP-Aurora-A in human ESCC KYSE150 cells significantly promoted cell proliferation and inhibited cisplatin- or UV irradiation-induced apoptosis. Cleavages of caspase-3 and poly (ADPribose) polymerase (PARP) in Attrora-A overexpressing cells were substantially reduced after cisplatin or UV treatment. Furthermore, we found that silencing of endogenous Aurora-A kinase with siRNA substantially enhanced sensitivity to cisplatin- or UV-induced apoptosis in human ESCC EC9706 cells. In parallel, overexpression of Aurora-A potently upregulated the expression of Bcl-2. Moreover, the knockdown of Bcl-2 by siRNA abrogated the Aurora-A's effect on inhibiting apoptosis. Taken together, these data provide evidence that Aurora-A overexpression promoting cell proliferation and inhibiting apoptosis, suggesting a novel mechanism that is closely related to malignant phenotype and anti-cancer drugs resistance of ESCC cells. 相似文献
15.
16.
Epigallocatechin-3-gallate induces cell apoptosis of human chondrosarcoma cells through apoptosis signal-regulating kinase 1 pathway 总被引:1,自引:0,他引:1
Yang WH Fong YC Lee CY Jin TR Tzen JT Li TM Tang CH 《Journal of cellular biochemistry》2011,112(6):1601-1611
Chondrosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. (-)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit tumorigenesis and cancer cell growth in animal models. The aim of this study was to elucidate the mechanism of EGCG-induced apoptosis of human chondrosarcoma cells. EGCG induced cell apoptosis in human chondrosarcoma cell lines but not primary chondrocytes. EGCG induced upregulation of Bax and Bak, downregulation of Bcl-2 and Bcl-XL, and dysfunction of mitochondria in chondrosarcoma. We also found that the accumulation of reactive oxygen species (ROS) is a critical mediator in EGCG-induced cell death. EGCG induced apoptosis signal-regulating kinase 1 (ASK1) dephosphorylation and its dissociation from 14-3-3. Treatment of chondrosarcoma cells with EGCG induced p38 and c-jun-NH2-kinase (JNK) phosphorylation. Transfection with ASK1 siRNA or p38 and JNK mutant antagonized the EGCG-induced cell apoptosis. Therefore, EGCG triggered ROS and activated the ASK1-p38/JNK pathway, resulting chondrosarcoma cell death. Importantly, animal studies revealed a dramatic reduction in tumor volume after 24 days of treatment. Thus, EGCG may be a novel anti-cancer agent for the treatment of chondrosarcoma. 相似文献
17.
Iron is essential for maintaining cellular metabolism of most organisms. Iron chelators such as desferrioxamine have been used clinically in the treatment of iron overload diseases. In the present study, we used human colon adenocarcinoma cells as a proliferating cell model to validate that desferrioxamine inhibits cell proliferation and induces apoptosis. Proteomic analysis revealed that proteins involved in cell proliferation, signal transduction, metabolism and protein synthesis were significantly regulated by the availability of iron, rendering a close correlation between cell apoptosis and the disturbance of mitochondrial, signaling and metabolic pathways. These results provide new insights into the mechanisms of cell proliferation inhibition attributed to iron depletion. 相似文献
18.
Munir I Fukunaga K Miyazaki K Okamura H Miyamoto E 《Journal of reproduction and fertility》1999,117(1):49-59
The activation of mitogen-activated protein kinase (MAP kinase) and the regulation of cyclooxygenase 2 (COX-2) were investigated in the human endometrial adenocarcinoma cell line HEC-1B by treatment with platelet-activating factor (PAF) and hCG. Pre-treatment of the cells with both oestradiol and medroxyprogesterone acetate was required for MAP kinase activation and COX-2 expression to respond to PAF and hCG. PAF-induced MAP kinase activation was sensitive to MAP kinase kinase (MEK) inhibitor, PD098059, and phosphatidylinositol-3-OH kinase (PI3K) inhibitor, wortmannin. In contrast, hCG-induced MAP kinase activation was sensitive to PD098059 and protein kinase A inhibitor, H-89, but not to wortmannin. PAF-induced COX-2 expression was insensitive to PD098059 but sensitive to wortmannin, whereas hCG-induced COX-2 expression was sensitive to PD098059 and H-89 but insensitive to wortmannin. 8-(4-chlorophenylthio)-cAMP, a potent cAMP analogue, induced activation of MAP kinase and expression of COX-2. These results indicate that MAP kinase is activated with PAF and hCG in HEC-1B cells. In addition, COX-2 expression is stimulated through the MAP kinase activation pathway with hCG and the wortmannin sensitive pathway with PAF in HEC-1B cells. These results also imply that protein kinase A remains upstream of hCG-induced activation of MAP kinase in HEC-1B cells. 相似文献
19.
George RJ Sturmoski MA Anant S Houchen CW 《Prostaglandins & other lipid mediators》2007,83(1-2):112-120
The anti-apoptotic effect of PGE(2) was examined in Jurkat cells (human T-cell leukemia) by incubation with PGE(2) (5 nM) prior to treatment with the cancer chemotherapeutic agent camptothecin. Apoptosis was evaluated by caspase-3 activity in cell extracts and flow cytometry of propidium iodide-labeled cells. Pre-incubation with PGE(2) reduced camptothecin-induced caspase activity by 30% and apoptosis by 35%, respectively. Pharmacological data demonstrate that the EP4 receptor is responsible for mediating the protection from camptothecin-induced apoptosis. Pre-treatment of the cells with the EP4 antagonist (EP4A) prior to PGE(2) and camptothecin abolished the increased survival effect of PGE(2). Specific inhibition of the downstream of PI3 kinase or AKT/protein kinase but not protein kinase A prevents the observed increase in cell survival elicited by PGE(2). These findings have critical implications regarding the mechanism and potential application of PGE(2) receptor specific inhibition in cancer therapy. 相似文献