首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Besides its principal maximum, the spatial frequency characteristic curve of the complex visual cortical receptive field of curarized cats also has additional maxima and also negative regions, as predicted by the theory of piecewise Fourier analysis. Comparison of responses of the complex receptive field to sinusoidal gratings completely and incompletely contained in the field and comparison of responses to sinusoidal and square-wave gratings indicate that the receptive field, as a spatial frequency filter, has linear properties. The response of the complex receptive field rises with an increase in the number of periods of the sinusoidal grating. Several periods of optimal frequency match the complex field. Receptive fields tuned to a broad band of spatial frequencies were found in neuron columns. The results confirm the view that complex receptive fields are spatial frequency filters and not detectors.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 403–411, September–October, 1979.  相似文献   

2.
在前文建立的二维视网膜神经节细胞含大周边感受野模型基础上 ,结合生理实验结果模拟了神经节细胞的方位选择性特性。文中采用椭圆感受野的观点解释了方位选择性的成因。并通过中心区以外区域对中心区方位选择性的复杂调制组合 ,展示了感受野不同亚单元对方位选择性的影响作用 ;指出方位选择性的成因是感受野椭圆亚单元的存在;感受野复杂的方位选择性是由于中心和周边在不同刺激条件下竞争的不同结果造成的;同时指出对椭圆感受野 ,倍频反应也会有相应的方位选择性。  相似文献   

3.
Variability of response latency of neurons in the mouse inferior colliculus of (Mus musculus) to signals of notch noise and of noise band with regular varying of the notch/band center frequencies, have been studied. Plots of latency and spike count versus notch/band center frequency were constructed (latency functions and spike count functions). Spectral notch/noise band motion crossing boundaries of excitatory areas in the neurons frequency receptive field could produce latency function shifts (and appropriate to this spike count function shifts). Direction-dependent latency function and spike count function shifts were mostly seen for primary-like and V-shape neurons. The most interesting feature of directional sensitivity of inhibitory-dominated neurons was the selective shortening of latency and selective synchronization of the initial spikes (with appropriate to this spike count rise). The dynamic properties of inhibitory-dominated neurons can be explained on the basis of their selective sensitivity to position of spectral contrast in frequency receptive field, connected with disinhibition, and of the character of distribution of excitatory and inhibitory inputs. Manifestation of motion effects was influenced by spectral shape of noise signal and notch width.  相似文献   

4.
The responses to visual stimuli of simple cortical cells show linear spatial summation within and between their receptive field subunits. Complex cortical cells do not show this linearity. We analyzed the simulated responses to drifting sinusoidal grating stimuli of simple and of several types of complex cells. The complex cells, whose responses are seen to be half-wave rectified before pooling, have receptive fields consisting of two or more DOG (difference-of-Gaussians) shaped subunits. In both cases of stimulation by contrast-reversal gratings or drifting gratings, the cells' response as a function of spatial frequency is affected by the subunit distances 2 and the stimulation frequency . Furthermore, an increased number of subunits (a larger receptive field) yields a narrower peak tuning curve with decreased modulation depth for many of the spatial frequencies. The average and the peak response tuning curves are compared for the different receptive field types.  相似文献   

5.
Mehta MR  Quirk MC  Wilson MA 《Neuron》2000,25(3):707-715
We propose a novel parameter, namely, the skewness, or asymmetry, of the shape of a receptive field to characterize two properties of hippocampal place fields. First, a majority of hippocampal receptive fields on linear tracks are negatively skewed, such that during a single pass the firing rate is low as the rat enters the field but high as it exits. Second, while the place fields are symmetric at the beginning of a session, they become highly asymmetric with experience. Further experiments suggest that these results are likely to arise due to synaptic plasticity during behavior. Using a purely feed forward neural network model, we show that following repeated directional activation, NMDA-dependent long-term potentiation/long-term depotentiation (LTP/LTD) could result in an experience-dependent asymmetrization of receptive fields.  相似文献   

6.
Receptive fields of neurons of the rabbit visual cortex selective for stimulus orientation were investigated. These receptive fields were less well differentiated than those of the analogous neurons of the cat visual cortex (large in size and circular in shape). Two mechanisms of selectivity for stimulus orientation were observed: inhibition between on and off zones of the receptive field (sample type) and oriented lateral inhibition within the same zone of the receptive field (complex type). Lateral inhibition within the same zone of the receptive field also took place in unselective neurons; "complex" selective neurons differed from them in the orientation of this inhibition. A combination of both mechanisms was possible in the receptive field of the same neuron. It is suggested that both simple and complex receptive fields are derivatives of unselective receptive fields and that "complex" neurons are not the basis for a higher level of analysis of visual information than in "simple" neurons.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 10, No. 1, pp. 13–21, January–February, 1978.  相似文献   

7.
The most common type of complex receptive field, whose response to the passage of sinusoidal gratings across it consisted of modulated and unmodulated components, was analyzed. The use of a mask to cover half the field, according to the filter theory, led to widening of the transmission band of the field as a spatial frequency filter, due to the appearance or enhancement of the response at lateral low and high frequencies. Modulated components of responses from the left and right halves of the field were out of phase. Analysis of this fact, and also of responses of the field to thin light and dark bars enabled the field structure to be described. It consists of linear and nonlinear subsystems, converging on the output neuron of the complex field. The former is composed of several pairs of on- and off-subfields of the lateral geniculate body. The on- and off-subfields in the pair overlap spatially and converge on the output neuron of the linear subsystem with opposite signs. The nonlinear subsystem is composed of either on- or off-subfields. Other types of complex fields may include different combinations of subsystems. The results indicate that complex fields are spatiotemporal grating filters.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 19–25, January–February, 1982.  相似文献   

8.
We investigated receptive field properties of cat retinal ganglion cells with visual stimuli which were sinusoidal spatial gratings amplitude modulated in time by a sum of sinusoids. Neural responses were analyzed into the Fourier components at the input frequencies and the components at sum and difference frequencies. The first-order frequency response of X cells had a marked spatial phase and spatial frequency dependence which could be explained in terms of linear interactions between center and surround mechanisms in the receptive field. The second-order frequency response of X cells was much smaller than the first-order frequency response at all spatial frequencies. The spatial phase and spatial frequency dependence of the first-order frequency response in Y cells in some ways resembled that of X cells. However, the Y first-order response declined to zero at a much lower spatial frequency than in X cells. Furthermore, the second-order frequency response was larger in Y cells; the second-order frequency components became the dominant part of the response for patterns of high spatial frequency. This implies that the receptive field center and surround mechanisms are physiologically quite different in Y cells from those in X cells, and that the Y cells also receive excitatory drive from an additional nonlinear receptive field mechanism.  相似文献   

9.
10.
The Local Field Potential (LFP) is the analog signal recorded from a microelectrode inserted into cortex, typically in the frequency band of approximately 1 to 200 Hz. Here visual stimuli were flashed on in the receptive fields of primary visual cortical neurons in awake behaving macaques, and both isolated single units (neurons) and the LFP signal were recorded from the same unipolar microelectrode. The fall-off of single unit activity as a visual stimulus was moved from near the center to near the edge of the receptive field paralleled the fall-off of the stimulus-locked (evoked) LFP response. This suggests that the evoked LFP strongly reflects local neuronal activity. However, the evoked LFP could be significant even when the visual stimulus was completely outside the receptive field and the single unit response had fallen to zero, although this phenomenon was variable. Some of the non-local components of the LFP may be related to the slow distributed, or non-retinotopic, LFP signal previously observed in anesthetized animals. The induced (not time-locked to stimulus onset) component of the LFP showed significant increases only for stimuli within the receptive field of the single units. While the LFP primarily reflects local neuronal activity, it can also reflect neuronal activity at more distant sites, although these non-local components are typically more variable, slower, and weaker than the local components.  相似文献   

11.
Characteristic frequencies of neurons in the cat auditory cortex (area AI) whose receptive fields are located in different parts of the basilar membrane of the cochlea were determined in cats anesthetized with pentobarbital. The higher the characteristic frequency of a neuron in area AI, the nearer its receptive field lies to the base of the cochlea. Receptive fields of neurons with a characteristic frequency higher than 4 kHz lie on the first 10 mm of the basilar membrane. Receptive fields of neurons with a characteristic frequency below 4 kHz lie on the remaining 11–12 mm of the membrane. The effect of electrical stimulation of the center of the receptive field of a neuron corresponds to its response to a tone of characteristic frequency. The more the frequency of the acting tone differs from the characteristic frequency, or the further the point of stimulation from the center of the receptive field of the neuron, the less likely is the neuron to respond with an action potential. Neurons with a low characteristic frequency have wider receptive fields than neurons with a high characteristic frequency. Receptive fields of neurons with close characteristic frequencies on the basilar membrane overlap considerably. It was shown by the method of paired stimulation that excitation evoked in neurons in area AI by the action of a tone of a particular frequency is followed by long-lasting inhibition. This inhibition lasts longest and is most effective if a tone of the characteristic frequency is used.  相似文献   

12.
13.
Unit responses to moving strips were investigated. The organization of the inhibitory zones in the receptive fields of the lateral geniculate body and visual cortex of the cat was compared. The response in the receptive field of the lateral geniculate body was inhibited only during simultaneous stimulation of the excitatory and inhibitory zones of the field. Stimulation of the inhibitory zone in the receptive field of the visual cortex was effective for a long time (several hundreds of milliseconds) after stimulation of the excitatory zone. The inhibitory zones of the simple and complex receptive fields of the visual cortex differed significantly. An increase in the width of the strip above the optimal size reduced the inhibitory effect in the complex fields. This was not observed in the simple receptive fields. The functional and structural models of the receptive field of the visual cortex are discussed.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 5, No. 2, pp. 201–209, March–April, 1973.  相似文献   

14.
15.
Inhomogeneous and anisotropic processing stages developed in the visual system during evolution in order to match a (certainly highly complex) biological optimality criterion. As the examples presented in this paper show, scenes viewed can be separated stages such as processing of the central area of the picture field in a wide band fashion, where each detail is percieved and the contrasts are amplified. This requires good illumination as the amplification is small. At the periphery the amplification is higher which favors twilight vision. Especially the sensitivity for moving patterns is highly developed and a band pass prefilter requires only spatially narrow band channels in the course of further processing. Direction specific filter stages make it possible to solve special problems such as the reconstruction of a form from an illuminance distribution.  相似文献   

16.
The information content of receptive fields   总被引:6,自引:0,他引:6  
Adelman TL  Bialek W  Olberg RM 《Neuron》2003,40(4):823-833
  相似文献   

17.
Time amplitude -- frequency characteristics of the I and II types of receptive fields (RF) of lateral geniculate and their dependence on the contrast and spatial parameters of the light stimulus were studied. It is shown that the frequency characteristics of the RF I type depends on the contrast and area of the light stimulus, the higher being the contrast at a small area the smaller are the low frequencies. However at a large area of the stimulus the inhibition of low frequencies is greater at a small contrast. The transmitting band of frequency characteristics of RF II type does not depend on the contrast at a small area of the stimulus, at a large area a fall of low frequencies takes place at high contrasts of the stimulus. Such different behaviour of the receptive fields is explained by the models, which take into account RF spatial characteristics.  相似文献   

18.
Two-dimensional spatial frequency characteristics of receptive fields of 46 neurons in the lateral suprasylvian area of the cat cortex were obtained. These receptive fields possessed orientation anisotropy. Peak frequencies lay in the frequency region below 1.5 cycles/deg. The transmission band width was measured during optimal orientation of test gratings in 21 neurons. It averaged 1.47±0.6 octave. In the remaining neurons the lower boundary frequency was shifted into the region of spatial frequencies below the range used. During nonoptimal orientation of test gratings, inhibition of the discharge was observed in 17 neurons. The inhibitory spatial frequency characteristics of six neurons were of the narrow band type, and averaged 1.1±0.6 octave.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 6, pp. 608–614, November–December, 1982.  相似文献   

19.
The linear receptive field describes a mapping from sensory stimuli to a one-dimensional variable governing a neuron's spike response. However, traditional receptive field estimators such as the spike-triggered average converge slowly and often require large amounts of data. Bayesian methods seek to overcome this problem by biasing estimates towards solutions that are more likely a priori, typically those with small, smooth, or sparse coefficients. Here we introduce a novel Bayesian receptive field estimator designed to incorporate locality, a powerful form of prior information about receptive field structure. The key to our approach is a hierarchical receptive field model that flexibly adapts to localized structure in both spacetime and spatiotemporal frequency, using an inference method known as empirical Bayes. We refer to our method as automatic locality determination (ALD), and show that it can accurately recover various types of smooth, sparse, and localized receptive fields. We apply ALD to neural data from retinal ganglion cells and V1 simple cells, and find it achieves error rates several times lower than standard estimators. Thus, estimates of comparable accuracy can be achieved with substantially less data. Finally, we introduce a computationally efficient Markov Chain Monte Carlo (MCMC) algorithm for fully Bayesian inference under the ALD prior, yielding accurate Bayesian confidence intervals for small or noisy datasets.  相似文献   

20.
Increasingly systematic approaches to quantifying receptive fields in primary visual cortex, combined with inspired ideas about functional circuitry, non-linearities, and visual stimuli, are bringing new interest to classical problems. This includes the distinction and hierarchy between simple and complex cells, the mechanisms underlying the receptive field surround, and debates about optimal stimuli for mapping receptive fields. An important new problem arises from recent observations of stimulus-dependent spatial and temporal summation in primary visual cortex. It appears that the receptive field can no longer be considered unique, and we might have to relinquish this cherished notion as the embodiment of neuronal function in primary visual cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号