首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The human malarial parasite Plasmodium falciparum exports virulence determinants, such as the P. falciparum erythrocyte membrane protein 1 (PfEMP1), beyond its own periplasmatic boundaries to the surface of its host erythrocyte. This is remarkable given that erythrocytes lack a secretory pathway. Here we present evidence for a continuous membrane network of parasite origin in the erythrocyte cytoplasm. Co-localizations with antibodies against PfEMP1, PfExp-1, Pf332 and PfSbpl at the light and electron microscopical level indicate that this membrane network is composed of structures that have been previously described as tubovesicular membrane network (TVM), Maurer's clefts and membrane whorls. This membrane network could also be visualized in vivo by vital staining of infected erythrocytes with the fluorescent dye LysoSensor Green DND-153. At sites where the membrane network abuts the erythrocyte plasma membrane we observed small vesicles of 15-25 nm in size, which seem to bud from and/or fuse with the membrane network and the erythrocyte plasma membrane, respectively. On the basis of our data we hypothesize that this membrane network of parasite origin represents a novel secretory organelle that is involved in the trafficking of PfEMP1 across the erythrocyte cytoplasm.  相似文献   

2.
Properties of cell membrane of human erythrocytes are studied using the mechanistic formalism of membrane transport developed earlier. We estimate that an erythrocyte with a membrane surface of 176 x 10(6)nm2 has about 1900 water-permeable pores with cross-section areas ranging from 0.07 to 0.2 nm2.  相似文献   

3.
Wang JY  Wang LP  Ren QS 《Biophysical chemistry》2007,131(1-3):105-110
Atomic force microscope (AFM) has been used to visualize the morphological change on the surface of erythrocyte membrane before and after oxidation. A smooth surface of intact erythrocyte cell was observed, while treatment by ferrous ion and ascorbate induced hemolysis of intact erythrocytes, generated many holes with average size of 146.6 +/- 33.2 nm in diameter (n=28) on membrane surface as seen by AFM. Ghost membrane and its inside-out vesicles were also used for the experiment. Skeleton structure and protein vesicles could be observed on the surface of an intact erythrocyte membrane before oxidation. Sendai virus induced fusion of inside-out vesicles seemed suppress peroxidation, while no such effect was observed in ghost membrane and erythrocyte systems.  相似文献   

4.
The transverse displacements of the human erythrocyte surface with amplitude 300-400 nm in the frequency range 0.2-30 Hz are recorded on the minimal area erythrocyte rim (approximately 0.5 X 0.5 microns). These local oscillations of the surface are diminished at hypoosmotic erythrocyte swelling, on addition of substances which increase the membrane rigidity (0.01% glutaraldehyde, 0.5 mM 4-hydroxymercuribenzoate, cell membrane stain--0.002% Heliogen Blue) and on discocyte--echinocyte transformation due to addition of 1-2 mM 2,4-dinitrophenol. The amplitude of transverse displacements is reduced by 1.7-2 times on erythrocytes of patients with inherent microspherocytosis. These erythrocytes have inherent defects in spectrin. It is suggested that spectrin is important for rapid local oscillations of the human erythrocyte surface.  相似文献   

5.
A novel dynamin-like GTPase gene, Pfdyn1, was cloned from an asexual stage cDNA library of Plasmodium falciparum Dd2 strain. Pfdyn1 contains a highly conserved N-terminal tripartite GTPase domain, a coiled-coil region, and a C-terminal 129 aa unknown function domain. Like yeast Vps1p, it lacks pleckstrin homology domain and proline-rich region. Western blot analysis showed that Pfdyn1 is a Triton X-100 insoluble protein expressed only in the mature sub-stage. Morphological studies indicated that Pfdyn1 is partly co-localized with PfGRP, a known ER-resident protein, and localizes diffusely with several membrane structures and a 60-100 nm vesicle both inside and on surface of the parasites and also in the cytoplasm of infected erythrocytes. The dsRNA originated by C-terminus fragment of Pfdyn1 inhibits markedly the growth of P. falciparum parasite at the erythrocyte stage. Those data showed that Pfdyn1 is a conservative, membrane related protein and plays an essential role for the survival of Plasmodium parasite.  相似文献   

6.
It is known that aging is characterized by changes in cell metabolism resulting in modification of the structure and function of cell membrane components which is mainly the consequence of reactive oxygen species action. These disturbances are also enhanced by different xenobiotics, e.g. ethanol. Therefore, the aim of this paper is to examine green tea influence on total antioxidant status (TAS) and on composition and electric charge of erythrocyte membrane phospholipids in ethanol intoxicated rats of various ages. Antioxidant abilities of erythrocytes were estimated by measuring TAS. Qualitative and quantitative composition of phospholipids in the membrane was determined by HPLC, while the extent of erythrocytes lipid peroxidation was estimated by HPLC measurement of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) levels. Electrophoresis was used to determine the surface charge density of the rat erythrocyte membrane. It was shown that the process of aging was accompanied by a decrease in TAS and in the total amount of phospholipids as well as by enhancement of lipid peroxidation and increase in surface charge density of erythrocyte membrane. Ethanol administration caused, in term, decrease in TAS and increase in the level of all phospholipids and lipid peroxidation products. Ethanol as well significantly enhanced changes in surface charge density of erythrocyte membrane. The ingestion of green tea partially prevented decrease in erythrocyte antioxidant abilities observed during aging and ethanol intoxication. Moreover, long-term drinking of green tea protects the structure of the erythrocytes membrane disturbed during aging process and/or chronic ethanol intoxication.  相似文献   

7.
Surface proteins from Plasmodium falciparum are important malaria vaccine targets. However, the surface proteins previously identified are highly variant and difficult to study. We used tandem mass spectrometry to characterize the variant antigens (Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1)) expressed on the surface of malaria-infected erythrocytes that bind to chondroitin sulfate A (CSA) in the placenta. Whereas PfEMP1 variants previously implicated as CSA ligands were detected, in unselected parasites four novel variants were detected in CSA-binding or placental parasites but not in unselected parasites. These novel PfEMP1 variants require further study to confirm whether they play a role in placental malaria.  相似文献   

8.
The profound changes in the morphology, antigenicity, and functional properties of the host erythrocyte membrane induced by intraerythrocytic parasites of the human malaria Plasmodium falciparum are poorly understood at the molecular level. We have used mouse mAbs to identify a very large malarial protein (Mr approximately 300,000) that is exported from the parasite and deposited on the cytoplasmic face of the erythrocyte membrane. This protein is denoted P. falciparum erythrocyte membrane protein 2 (Pf EMP 2). The mAbs did not react with the surface of intact infected erythrocytes, nor was Pf EMP 2 accessible to exogenous proteases or lactoperoxidase-catalyzed radioiodination of intact cells. The mAbs also had no effect on in vitro cytoadherence of infected cells to the C32 amelanotic melanoma cell line. These properties distinguish Pf EMP 2 from Pf EMP 1, the cell surface malarial protein of similar size that is associated with the cytoadherent property of P. falciparum-infected erythrocytes. The mAbs did not react with Pf EMP 1. In one strain of parasite there was a significant difference in relative mobility of the 125I-surface-labeled Pf EMP 1 and the biosynthetically labeled Pf EMP 2, further distinguishing these proteins. By cryo-thin-section immunoelectron microscopy we identified organelles involved in the transit of Pf EMP through the erythrocyte cytoplasm to the internal face of the erythrocyte membrane where the protein is associated with electron-dense material under knobs. These results show that the intraerythrocytic malaria parasite has evolved a novel system for transporting malarial proteins beyond its own plasma membrane, through a vacuolar membrane and the host erythrocyte cytoplasm to the erythrocyte membrane, where they become membrane bound and presumably alter the properties of this membrane to the parasite's advantage.  相似文献   

9.
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family of antigenically diverse proteins is expressed on the surface of human erythrocytes infected with the malaria parasite P. falciparum, and mediates cytoadherence to the host vascular endothelium. In this report, we show that export of PfEMP1 is slow and inefficient as it takes several hours to traffic newly synthesized proteins to the erythrocyte membrane. Upon removal by trypsin treatment, the surface-exposed population of PfEMP1 is not replenished during subsequent culture indicating that there is no cycling of PfEMP1 between the erythrocyte surface and an intracellular compartment. The role of Maurer's clefts as an intermediate sorting compartment in trafficking of PfEMP1 was investigated using immunoelectron microscopy and proteolytic digestion of streptolysin O-permeabilized parasitized erythrocytes. We show that PfEMP1 is inserted into the Maurer's cleft membrane with the C-terminal domain exposed to the erythrocyte cytoplasm, whereas the N-terminal domain is buried inside the cleft. Transfer of PfEMP1 to the erythrocyte surface appears to involve electron-lucent extensions of the Maurer's clefts. Thus, we have delineated some important aspects of the unusual trafficking mechanism for delivery of this critical parasite virulence factor to the erythrocyte surface.  相似文献   

10.
Heated human erythrocytes gradually lose their form-maintaining structure as the temperature is increased to 50 degrees C and can behave in some respects as a viscous fluid. We have developed a technique for heating and stressing these cells that is novel, simple and quantitatively precise. We have applied this technique to heated human erythrocytes and have measured instability development in cells. We have employed instability growth theory to calculate a value for an effective surface tension which, in contrast to other methods of membrane surface tension measurement sought to minimize the effects of membrane supporting structural elements. The value obtained for the surface tension of the heated erythrocyte membrane was 0.9 . 10(-6) N/m with a range of variation from 0.4 . 10(-6)N/m to 1.4 . 10(-6) N/m. The methods described may be useful for determining fundamental physical parameters such as internal viscosity and interfacial tension in other systems.  相似文献   

11.
The intracellular development of the erythrocytic stage of the malarial parasite (merozoite) is initiated by the attachment of the parasite to the erythrocyte surface. This paper describes an assay system to investigate Plasmodium falciparum merozoite entry into the host cell and reports on three observations regarding this interaction. (a) Merozoites do not invade human erythrocytes treated with either trypsin or neuraminidase, and both enzymes partially cleave glycophorin A, the major erythrocyte surface sialoglycoprotein. (b) A membrane protein fraction containing glycophorin A will, at low concentrations, inhibit the invasion of isolated merozoites into erythrocytes; no other fractions of membrane proteins have appreciable effects on the reinvasion. (c) Merozoites do not reinvade erythrocytes preincubated with F ab' fragments of antibody prepared against glycophorin A. Together, these three observations imply a role for glycophorin A in the attachment of the malarial parasite to the erythrocyte surface.  相似文献   

12.
It was reported that avidin and streptavidin induce lysis of prebiotinylated red blood cells via the alternative pathway of both homologous and heterologous complement. Both of these proteins have four biotin-binding sites, providing a polyvalent interaction with biotinylated components of the erythrocyte membrane. We have compared the effects of mono- and multipoint avidin attachment on the sensitivity of biotinylated erythrocytes to lysis by the complement system. In the presence of anti-avidin antibody, avidin-bearing biotinylated erythrocytes were rapidly lysed by heterologous serum. This lysis was independent from the mode of avidin attachment, implying that complement activation by the classical pathway triggered by interaction between C1 and avidin-bound antibody on the erythrocyte surface is independent from the avidin's ability of polyvalent (multipoint) binding with biotinylated membrane components. In the absence of anti-avidin antibody, biotinylated erythrocytes bearing polyvalently attached avidin were lysed by homologous complement better than cells bearing avidin, which possesses reduced ability for multipoint binding with biotinylated erythrocyte. Two independent approaches to reduce avidin's ability of multipoint binding were used: decrease in surface density of biotin on the erythrocyte membrane and blockage of biotin-binding sites of avidin. Both methods result in reduced lysis of avidin-bearing erythrocytes as compared with erythrocytes bearing an equal amount of polyvalent-bound avidin. Thus the activation of homologous complement via the alternative pathway depends on avidin's ability to 'cross-link' to the biotinylated components of the erythrocyte membrane.  相似文献   

13.
Despite the well-documented information, there are insufficient reports concerning the effects of salicylate compounds on the structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of acetylsalicylic acid (ASA) and salicylic acid (SA) with cell membranes, human erythrocyte membranes and molecular models were utilized. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of ASA and SA to perturb the multibilayer structures of DMPC and DMPE was evaluated by X-ray diffraction while DMPC unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. Moreover, we took advantage of the capability of differential scanning calorimetry (DSC) to detect the changes in the thermotropic phase behavior of lipid bilayers resulting from ASA and SA interaction with PC and PE molecules. In an attempt to further elucidate their effects on cell membranes, the present work also examined their influence on the morphology of intact human erythrocytes by means of defocusing and scanning electron microscopy, while isolated unsealed human erythrocyte membranes (IUM) were studied by fluorescence spectroscopy. Results indicated that both salicylates interact with human erythrocytes and their molecular models in a concentration-dependent manner perturbing their bilayer structures.  相似文献   

14.
The biostimulating activity of low level laser radiation of various wavelengths and energy doses is widely documented in the literature, but the mechanisms of the intracellular reactions involved are not precisely known. The aim of this paper is to evaluate the influence of low level laser radiation from an multiwave locked system (MLS) of two wavelengths (wavelength = 808 nm in continuous emission and 905 nm in pulsed emission) on the human erythrocyte membrane and on the secondary structure of human serum albumin (HSA). Human erythrocytes membranes and HSA were irradiated with laser light of low intensity with surface energy density ranging from 0.46 to 4.9 J cm?2 and surface energy power density 195 mW cm?2 (1,000 Hz) and 230 mW cm?2 (2,000 Hz). Structural and functional changes in the erythrocyte membrane were characterized by its fluidity, while changes in the protein were monitored by its secondary structure. Dose-dependent changes in erythrocyte membrane fluidity were induced by near-infrared laser radiation. Slight changes in the secondary structure of HSA were also noted. MLS laser radiation influences the structure and function of the human erythrocyte membrane resulting in a change in fluidity.  相似文献   

15.
Human erythrocytes infected with five strains of Plasmodium falciparum and Aotus erythrocytes infected with three strains of P. falciparum were studied by thin-section and freeze-fracture electron microscopy. All strains of P. falciparum we studied induced electron-dense conical knobs, measuring 30-40 nm in height and 90-100 nm in diameter on erythrocyte membranes. Freeze-fracture demonstrated that the knobs were distributed over the membrane of both human and Aotus erythrocytes. A distinct difference was seen between the intramembrane particle (IMP) distribution over the knobs of human and Aotus erythrocyte membranes. There was no change in IMP distribution in infected human erythrocyte membranes, but infected Aotus erythrocytes showed an aggregation of IMP over the P face of the knobs with a clear zone at the base. This difference in IMP distribution was related only to the host species and not to parasite strains. Biochemical analysis demonstrated that a higher proportion of band 3 was bound to the cytoskeleton of uninfected Aotus erythrocytes than uninfected human erythrocytes after Triton X-100 extraction. This may account for the different effects of P. falciparum infection on IMP distribution in the two different cell types.  相似文献   

16.
The distributions of ankyrin, spectrin, band 3, and glycophorin A were examined in Plasmodium falciparum-infected erythrocytes by immunoelectron microscopy to determine whether movement of parasite proteins and membrane vesicles between the parasitophorous vacuole membrane and erythrocyte surface membrane involves internalization of host membrane skeleton proteins. Monospecific rabbit antisera to spectrin, band 3 and ankyrin and a mouse monoclonal antibody to glycophorin A reacted with these erythrocyte proteins in infected and uninfected human erythrocytes by immunoblotting. Cross-reacting malarial proteins were not detected. The rabbit sera also failed to immunoprecipitate [3H]isoleucine labeled malarial proteins from Triton X-100 and sodium dodecyl sulfate (SDS) extracts of infected erythrocytes. These three antibodies as well as the monoclonal antibody to glycophorin A bound to the membrane skeleton of infected and uninfected erythrocytes. The parasitophorous vacuole membrane was devoid of bound antibody, a result indicating that this membrane contains little, if any, of these host membrane proteins. With ring-, trophozoite- and schizont-infected erythrocytes, spectrin, band 3 and glycophorin A were absent from intracellular membranes including Maurer's clefts and other vesicles in the erythrocyte cytoplasm. In contrast, Maurer's clefts were specifically labeled by anti-ankyrin antibody. There was a slight, corresponding decrease in labeling of the membrane skeleton of infected erythrocytes. A second, morphologically distinct population of circular, vesicle-like membranes in the erythrocyte cytoplasm was not labeled with anti-ankyrin antibody. We conclude that membrane movement between the host erythrocyte surface membrane and parasitophorous vacuole membrane involves preferential sorting of ankyrin into a subpopulation of cytoplasmic membranes.  相似文献   

17.
The dynamic and electrokinetic properties of erythrocyte membrane are explored as significant indices involved in the association of diabetes and diabetic cardiovascular disease. Lipid peroxidation studies reveal malondialdehyde concentration to reach a maximum in diabetic cardiovascular patients. Lower fluidity of erythrocyte membrane implies declined ability of erythrocyte to deform in pathogenic state, which is supported by decreased osmotic resistance. Membrane protein profile modification detected by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicates a significant reduction in the quantity of ankyrin protein band 2.1 in diabetic subjects. In addition the reduction in an immunoreactive band against polyclonal anti-ankyrin antibody during Western blot analysis confirms the modification of ankyrin protein in diseased erythrocyte (reported for the first time). The electrokinetic behavior of erythrocyte membrane is monitored by laser Doppler velocimetry mode of the Nano-ZS. Changes in zeta potential values of the red blood cell membrane are consistent with decreased membrane fluidity in diseased erythrocytes (reported for the first time). Membrane potential values of control, diabetic and diabetic cardiovascular erythrocytes are -37.24+/-1.5 mV, -28.44+/-1.34 mV, and -22.21+/-1.21 mV respectively indicating a gradual lowering of zeta potential when erythrocyte membrane undergoes progressive changes - from simple agglomeration to fluid gel formation - and finally to a rigid gel.  相似文献   

18.
The dependence of membrane dynamics on the mole ratio of lecithin to sphingomyelin (L/S) was examined by the fluorescence depolarization of the fluidity probe DPH in membranes isolated from sheep and human erythrocytes. In these membranes L/S is the main variable of lipid composition (0.02 and 1.7, respectively). The sheep erythrocyte membrane, which is rich in sphingomyelin, displays a higher lipid microviscosity than the human erythrocyte membrane in addition to a broad gel/liquid-crystal phase transition in the range of 26–35°C. Single-walled lipid vesicles of high sphingomyelin content, when studied by the same technique, exhibited dynamic characteristics similar to those found in the sheep erythrocyte membrane. Both the apparent microviscosity and the transition temperature decreased with increasing the L/S. Membrane proteins of human and sheep erythrocytes were fluorescently labeled with the sulfhydryl reagent N-dansylaziridine and the emission spectrum was recorded as a function of temperature. In the human erythrocyte membranes a gradual increase in the ratio of emission maxima at 520 and 490 nm was observed between 6 and 40°C. At this temperature range the ratio of the above emission maxima in sheep erythrocyte membranes displayed a break between 20 and 28°C, which partially overlapped the phase transition observed for the lipid core. The effect of the lipid phase transition on membrane proteins for the lipid core. The effect of the lipid phase transition on membrane proteins was further assessed by comparing the activity of the membrane bound phospholipase A2 in the intact and detergent-solubilized sheep erythrocyte membranes. Below 31°C the lipids suppress the enzyme activity by about 90%, whereas above this temperature this suppression is progressively abolished.  相似文献   

19.
The aim of the study was to examine and compare the effects of methemoglobin (metHb) and ferrylhemoglobin (ferrylHb) on the erythrocyte membrane. Kinetic studies of the decay of ferrylhemoglobin (*HbFe(IV)=O denotes ferryl derivative of hemoglobin present 5 min after initiation of the reaction of metHb with H(2)O(2); ferrylHb) showed that autoredecay of this derivative is slower than its decay in the presence of whole erythrocytes and erythrocyte membranes. It provides evidence for interactions between ferrylHb and the erythrocyte membrane. Both hemoglobin derivatives induced small changes in the structure and function of the erythrocyte membrane which were more pronounced for ferrylHb. The amount of ferrylHb bound to erythrocyte membranes increased with incubation time and, after 2 h, was twice that of membrane-bound metHb. The incubation of erythrocytes with metHb or ferrylHb did not influence osmotic fragility and did not initiate peroxidation of membrane lipids in whole erythrocytes as well as in isolated erythrocyte membranes. Membrane acetylcholinesterase activity increased by about 10% after treatment of whole erythrocytes with both metHb and ferrylHb. ESR spectra of membrane-bound maleimide spin label demonstrated minor changes in the conformation of label-binding proteins in ferrylHb-treated erythrocyte membranes. The fluidity of the membrane surface layer decreased slightly after incubation of erythrocytes and isolated erythrocyte membranes with ferrylHb and metHb. In whole erythrocytes, these changes were not stable and disappeared during longer incubation.  相似文献   

20.
Based primarily on studies of human erythrocytes, current theories of the structure and organization of erythrocyte membrane localize spectrin to the membrane cytoplasmic surface. Affinity purified anti-sheep spectrin antibodies were used in indirect immunofluorescence studies of intact erythrocytes from various vertebrate species and inside-out and right-side-out impermeable sheep erythrocyte vesicles. This investigation detected immunologically reactive external and potentially transmembranal determinant(s) of the sheep erythrocyte spectrin "assembly." Parallel studies using anti-sheep and anti-human spectrin antibodies, as well as 125I surface-labelling studies of intact sheep and human erythrocytes, indicated that this particular membrane orientation of spectrin was evident in sheep but not in human erythrocytes. Antisera containing antibodies to the external portion of this spectrin "assembly" demonstrated external fluorescence to a variable degree on some, but not all, vertebrate erythrocytes surveyed, confirming that the sheep erythrocyte was not the only exception. It is suggested that there may be subtle species variability in the intermolecular associations of the spectrin "assembly" with(in) the erythrocyte membrane not requiring alterations of the spectrin molecule itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号