首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a non-labeled electrochemiluminescence (ECL) immunosensor based on CdSe quantum dots (QDs) for the detection of human prealbumin (PAB, antigen). The immunosensor was fabricated by layer by layer coupled with nanoparticle-amplification techniques. After two gold nanoparticle layers were self-assembled onto the gold electrode surface through cysteamine, anti-PAB (antibody) were conjugated with -COOH groups of both the CdSe QDs and cysteine, which were linked to the gold nanoparticle-modified electrode. The principle of ECL detection was that the immunocomplex inhibited the ECL reaction between CdSe QDs and K(2)S(2)O(8), which resulted in the decrease of ECL intensity. On the one hand, the immunocomplex increased the steric hindrance. On the other hand, the immunocomplex maybe inhibit the transfer of K(2)S(2)O(8) to the surface of the CdSe QD-electrode. The PAB concentration was determined in the range of 5.0 x 10(-10) to 1.0 x 10(-6) g mL(-1), and the detection limit was 1.0 x 10(-11) g mL(-1). The developed CdSe QD-based ECL immunosensor provides a rapid, simple, and sensitive immunoassay protocol for protein detection, which could be applied in more bioanalytical systems.  相似文献   

2.

Background

When evaluating the toxicity of engineered nanomaterials (ENMS) it is important to use multiple bioassays based on different mechanisms of action. In this regard we evaluated the use of gene expression and common cytotoxicity measurements using as test materials, two selected nanoparticles with known differences in toxicity, 5 nm mercaptoundecanoic acid (MUA)-capped InP and CdSe quantum dots (QDs). We tested the effects of these QDs at concentrations ranging from 0.5 to 160 µg/mL on cultured normal human bronchial epithelial (NHBE) cells using four common cytotoxicity assays: the dichlorofluorescein assay for reactive oxygen species (ROS), the lactate dehydrogenase assay for membrane viability (LDH), the mitochondrial dehydrogenase assay for mitochondrial function, and the Comet assay for DNA strand breaks.

Results

The cytotoxicity assays showed similar trends when exposed to nanoparticles for 24 h at 80 µg/mL with a threefold increase in ROS with exposure to CdSe QDs compared to an insignificant change in ROS levels after exposure to InP QDs, a twofold increase in the LDH necrosis assay in NHBE cells with exposure to CdSe QDs compared to a 50% decrease for InP QDs, a 60% decrease in the mitochondrial function assay upon exposure to CdSe QDs compared to a minimal increase in the case of InP and significant DNA strand breaks after exposure to CdSe QDs compared to no significant DNA strand breaks with InP. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR) data for cells exposed for 6 h at a concentration of 80 µg/mL were consistent with the cytotoxicity assays showing major differences in DNA damage, DNA repair and mitochondrial function gene regulatory responses to the CdSe and InP QDs. The BRCA2, CYP1A1, CYP1B1, CDK1, SFN and VEGFA genes were observed to be upregulated specifically from increased CdSe exposure and suggests their possible utility as biomarkers for toxicity.

Conclusions

This study can serve as a model for comparing traditional cytotoxicity assays and gene expression measurements and to determine candidate biomarkers for assessing the biocompatibility of ENMs.
  相似文献   

3.
Simultaneous detection of multianalytes associated with a particular cancer is beneficial for disease diagnosis. Here, a facile immunosensing strategy was designed to allow simultaneous electrochemical detection of dual proteins, in a single run. CdSe and PbS water-soluble quantum dots (QDs) were prepared and coated on monodisperse silica nanoparticles as labels for proteins detection. Rabbit immunoglobulin G antigen (IgG) and carcinoembryonic antigen (CEA) were chosen as model proteins for analysis. After a typical sandwich immunoassay, CdSe and PbS QDs labels were introduced onto the Au substrates' surface, which were then dissolved and could be simultaneously monitored by square-wave-voltammetric (SWV) stripping measurements. Under selected conditions, IgG and CEA could be assayed in the ranges of 0.05-40 ng mL(-1) and 0.05-25 ng mL(-1), respectively. The proposed method possessed high sensitivity, good precision, and satisfactory reproducibility and regeneration.  相似文献   

4.
Cell chip was recently developed as a simple and highly sensitive tool for the toxicity assessment of various kinds of chemicals or nano-materials. Here, we report newly discovered potential cytotoxic effects of CdSe/ZnS quantum dots (QDs) on intracellular redox environment of neural cancer cells at very low concentrations which can be only detected by cell chip technology. Green (2.1 nm in diameter) and red (6.3 nm in diameter) QDs capped with cysteamine (CA) or thioglycolic acid (TA) were found to be toxic at 100 μg/mL when assessed by trypan blue and differential pulse voltammetry (DPV). However, in case of concentration-dependent cytotoxicity, toxic effects of TA-capped QDs on human neural cells were only measured by DPV method when conventional MTT assay did not show toxicity of TA-capped QDs at low concentrations (1-10 μg/mL). Red-TA QDs and Green-TA QDs were found to decrease electrochemical signals from cells at 10 μg/mL and 5 μg/mL, respectively, while cell viability decreased at 100 μg/mL and 50 μg/mL when assessed by MTT assay, respectively. The relative decreases of cell viability determined by MTT assay were 15% and 11.9% when cells were treated with 5-50 μg/mL of Red-TA QDs and 5-30 μg/mL of Green-TA QDs, respectively. However, DPV signals decreased 37.5% and 39.2% at the same concentration range, respectively. This means that redox environment of cells is more sensitive than other components and can be easily affected by CdSe/ZnS QDs even at low concentrations. Thus, our proposed neural cell chip can be applied to detect potential cytotoxicity of various kinds of molecular imaging agents simply and accurately.  相似文献   

5.
The use of semiconductor quantum dots (QDs) as fluorescent labels to develop a competitive immunoassay for sensitive detection and quantification of progesterone in cow's milk is described. Colloidal water-soluble CdSe/ZnS QDs are conjugated to an antigen derivative (progesterone-BSA conjugate) and a simple methodology is optimised to determine the antigen concentration in the final bioconjugate. The obtained QD-linked antigens were then employed together with unlabelled anti-progesterone monoclonal antibodies, as the biological recognition elements, in the development of the quantitative QDs-based fluorescent immunoassay for progesterone in bovine milk. After optimization, the developed immunoassay proved to cover a progesterone concentration range from 0.3 to 14.5 ng/mL in cow milk. Milk samples were just diluted 10-fold with deionised water and directly analysed with the proposed immunoassay, without additional sample pre-treatment or analyte extraction. The minimum detectable level (IC(10)) of the developed immunoassay turned out to be 0.1 ng/mL of progesterone in bovine milk. The sensitivity (IC(50)) achieved was 2.2 ng/mL with a reproducibility of 3.5% RSD as obtained from the results of the analysis of the triplicate of same samples but in three different days. Applicability of the proposed methodology was evaluated by analyzing cow's milk samples enriched with known concentrations of progesterone and recoveries better than 90% were achieved.  相似文献   

6.
A critical comparison between Elemental Mass Spectrometry (ICP-MS) and molecular fluorescence, as detection techniques for CdSe/ZnS Quantum Dots (QDs)-based immunoassays is presented here. Using a QDs-based progesterone immunoassay as "model" analytical system the features of both detection modes has been investigated. Minimal changes, compared to the previously developed fluorescent approach, were necessary to build the corresponding inhibition curve for the progesterone immunoassay using ICP-MS detection of cadmium (contained in the QDs core). Adequate agreement between results obtained using both elemental and molecular techniques for the determination of progesterone in cow milk has been obtained. Moreover, results from the comparison showed that fluorescence detection of the QDs is simpler, less time consuming and less expensive, but ICP-MS detection affords alternative and useful information unattainable using luminescence detection. First of all, ICP-MS allowed mass balances to be carried out (all along the sample preparation) providing an internal validation of the immunoassay procedure. Secondly, matrix-independent quantification as provided by ICP-MS enabled a direct determination of progesterone in raw milk without any further sample preparation (dilution) step. As a matter of fact, ICP-MS results showed that the quenching matrix effect suffered on bioconjugated QDs fluorescence emission (e.g. when the immunoassay was carried out directly in whole milk without any dilution) could be unequivocally attributed to nonspecific interactions between the matrix of the whole milk and the QDs surface. Finally, better sensitivity could be obtained with ICP-MS detection, IC(10)=0.028 ng/mL, versus 0.11 ng/mL using conventional fluorimetric detection, just by using lower reagents concentrations.  相似文献   

7.
Water‐soluble CdSe quantum dots (QDs) have been prepared by using L‐cysteine as the stabilizer in an aqueous phase under the optimized conditions. The characteristics and shapes of CdSe QDs have been proposed on the basis of UV‐Vis and fluorescence spectra. A rapid analytical method for electrochemiluminescence (ECL) determination of nitrite has been developed on the basis of the quenching effect on anodic ECL emission of CdSe QDs under the optimum experimental conditions. In a neutral system and at a relatively low potential (+0.960 V), the ECL emission of CdSe QDs could be greatly enhanced by sulfite and could be gradually quenched by nitrite at an indium tin oxide (ITO) electrode. The proposed method may allow the measurement of nitrite ranging from 1 μM to 0.5 mM with a correlation coefficient of 0.9956 (n = 10) and a detection limit of 0.2 μM (3σ), and the relative standard deviation for 10 μM nitrite (n = 9) is 1.72 %. The proposed method could be adopted for the sensitive detection of ECL quenchers by using nitrite as a model molecule. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this work, CdSe quantum dots (QDs) were synthesized by a simple and rapid microwave activated approach using CdSO4, Na2SeO3 as precursors and thioglycolic acid (TGA) as capping agent molecule. A novel photochemical approach was introduced for the growth of CdS QDs and this approach was used to grow a CdS shell around CdSe cores for the formation of a CdSe/CdS core–shell structure. The core–shells were structurally verified using X‐ray diffraction, transmission electron microscopy and FTIR (Fourier‐transform infrared (FTIR)) spectroscopy. The optical properties of the samples were examined by means of UV–Vis and photoluminescence (PL) spectroscopy. It was found that CdS QDs emit a broad band white luminescence between 400 to 700 nm with a peak located at about 510 nm. CdSe QDs emission contained a broad band resulting from trap states between 450 to 800 nm with a peak located at 600 nm. After CdS shell growth, trap states emission was considerably quenched and a near band edge emission was appeared about 480 nm. Optical studies revealed that the core–shell QDs possess strong ultraviolet (UV) ? visible light photocatalytic activity. CdSe/CdS core–shell QDs, showed an enhancement in photodegradation of Methyl orange (MO) compared with CdSe QDs.  相似文献   

9.
An electrochemical immunosensor for the detection of human IgA deficiency in real human blood serum has been developed. The performance of the immunosensor presents a large but sensitive dynamic range that allows the determination of non-deficient IgA levels (>70 μg/mL) as well as of severe IgA deficiencies (0.5-5.0 μg/mL). The assay architecture involves the immobilisation of a coating antibody on an electrode surface using carboxylic-ended bipodal alkane-thiol self-assembled monolayers (SAMs). The long chain bipodal SAM presents intercalated poly(ethylenglycol) groups that confer the immunosensor the ability to retain its optimum performance in very complex matrices and serum with negligible non-specific adsorption phenomena. Amperometric optimisation of the assay resulted in limits of detection of 142 ng/mL in just 30 min total assay time. Real patients' serum samples were analysed using the developed electrochemical immunosensor demonstrating an excellent correlation in terms of sensitivity and reproducibility compared with standard enzyme linked immunosorbent assays (ELISA).  相似文献   

10.
With excellent optical properties, quantum dots (QDs) have been made as attractive molecular probes for labelling cells in biological research. In this study high‐quality CdSe QDs prepared in a paraffin–oleic acid system were used as fluorescent labels in direct and indirect detection of carcinoembryonic antigen (CEA), a cancer marker expressed on the surface of HeLa cells. The primary antibody (Ab) (rabbit anti‐CEA8) and secondary Ab (goat anti‐rabbit IgG) were covalently linked to carboxyl‐functioned CdSe QDs, and both the QDs–antibody and QDs–IgG probes were successfully used to label HeLa cells. The present study demonstrates the practicability of CdSe QDs as an attractive type of fluorescent labels for biological applications such as protein probes and cell imaging. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
CdSe/ZnS Quantum dots (QDs) are possibly released to surface water due to their extensive application. Based on their high reactivity, even small amounts of toxicant QDs will disturb water microbes and pose a risk to aquatic ecology. Here, we evaluated CdSe/ZnS QDs toxicity to Tetrahymena thermophila (T. thermophila), a model organism of the aquatic environment, and performed metabolomics experiments. Before the omics experiment was conducted, QDs were found to induce inhibition of cell proliferation, and reactive oxygen species (ROS) production along with Propidium iodide labeled cell membrane damage indicated oxidative stress stimulation. In addition, mitochondrial ultrastructure alteration of T. thermophila was also confirmed by Transmission Electron Microscope results after 48 h of exposure to QDs. Further results of metabolomics detection showed that 0.1 μg/mL QDs could disturb cell physiological and metabolic metabolism characterized by 18 significant metabolite changes, of which twelve metabolites improved and three decreased significantly compared to the control. Kyoto Encyclopedia of Genes and Genomes analysis showed that these metabolites were involved in the ATP-binding cassette transporter and purine metabolism pathways, both of which respond to ROS-induced cell membrane damage. In addition, purine metabolism weakness might also reflect mitochondrial dysfunction associated with energy metabolism and transport abnormalities. This research provides deep insight into the potential risks of quantum dots in aquatic ecosystems.  相似文献   

12.
Intensely fluorescent, colistin-functionalised CdSe/ZnS QDs (Colis-QDs) nanoparticles, are synthesized and used as sensitive probes for the detection of Escherichia coli, a Gram-negative bacteria. Colistin molecules are attached to the terminal carboxyl of the mercaptoacetic acid-capped QDs in the presence of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as amide bond promoters. The TEM analysis of bacteria treated with Colis-QDs conjugates showed the accumulation of Colis-QDs in the cell wall of E. coli. Under the recommended working conditions, the method provides a detection limit as few as 28 E. coli cells per mL, which is competitive which more elaborate detection systems. The simplicity of the method together with short analysis time (< 15 min, without including preparation and photoactivation of the Colis-QDs conjugate) make the proposed approach useful as quick bacteria screening system.  相似文献   

13.
In this study, a CdSe/ZnS quantum dot (QD)-based immunosensor using a simple optical system for human serum albumin (HSA) detection is developed. Monoclonal anti-HSA (AHSA) immobilized on 3-aminopropyltriethoxysilane (APTES)-modified glass was used to capture HSA specifically. Bovine serum albumin (BSA) was used to block non-specific sites. The solution, containing AHSA-QD complex prepared by mixing biotinylated polyclonal anti-HSA and streptavidin coated QD, was used to conjugate with the HSA molecules captured on AHSA/BSA/APTES-modified glass for the modification of HSA with QD. A simple optical system, comprising a diode laser (405 nm), an optical lens, a 515-nm-long pass filter, and an Si-photodiode, was used to detect fluorescence and convert it to photocurrent. The current intensity was determined by the amount of QD specifically conjugated with HSA, and was therefore HSA-concentration-dependent and could be used to quantify HSA concentration. The detection limit of the pure QD solution was ~3.5×10(-12) M, and the detection limit for the CdSe/ZnS QD-based immunosensor developed in this study was approximately 3.2×10(-5) mg/ml. This small optical biosensing system shows considerable potential for future applications of on-chip liver-function detection.  相似文献   

14.
Ning Liu  Ping Yang 《Luminescence》2014,29(6):566-572
Hybrid SiO2‐coated CdTe/CdSe quantum dots (QDs) were prepared using CdTe/CdSe QDs prepared by hydrothermal synthesis. A CdSe interlayer made CdTe/CdSe cores with unique type II heterostructures. The hybrid SiO2‐coated CdTe/CdSe QDs revealed excellent photoluminescence (PL) properties compared with hybrid SiO2‐coated CdTe QDs. Because of the existence of spatial separations of carriers in the type II CdTe/CdSe core/shell QDs, the hybrid QDs had a relatively extended PL lifetime and high stability in phosphate‐buffered saline buffer solutions. This is ascribed to the unique components and stable surface state of hybrid SiO2‐coated CdTe/CdSe QDs. During the stabilization test in phosphate‐buffered saline buffer solutions, both static and dynamic quenching occurred. The quenching mechanism of the hybrid QDs was not suited with the Stern–Volmer equation. However, the relative stable surface of CdTe/CdSe QDs resulted in lower degradation and relative high PL quantum yields compared with hybrid SiO2‐coated CdTe QDs. As a result, hybrid SiO2‐coated CdTe/CdSe QDs can be used in bioapplications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper describes the combination of electrochemical immunosensor using gold nanoparticles (GNPs)/carbon nanotubes (CNTs) hybrids platform with horseradish peroxidase (HRP)-functionalized gold nanoparticle label for the sensitive detection of human IgG (HIgG) as a model protein. The GNPs/CNTs nanohybrids covered on the glass carbon electrode (GCE) constructed an effective antibody immobilization matrix and made the immobilized biomolecules hold high stability and bioactivity. Enhanced sensitivity was obtained by using bioconjugates featuring HRP labels and secondary antibodies (Ab2) linked to GNPs at high HRP/Ab2 molar ratio. The approach provided a linear response range between 0.125 and 80 ng/mL with a detection limit of 40 pg/mL. The immunosensor showed good precision, acceptable stability and reproducibility and could be used for the detection of HIgG in real samples, which provided a potential alternative tool for the detection of protein in clinical laboratory.  相似文献   

16.
以CdSe量子点为荧光探针,基于荧光猝灭法对碱基尿嘧啶进行了定量检测,考察了缓冲液体系、反应时间、量子点浓度等多种因素的影响. 实验结果表明,在pH 7.4的0.2 mol/L Na2HPO4-NaH2PO4缓冲液中,反应时间为60 min,尿嘧啶浓度为10-6~10-4mol/L范围时,其线性回归方程为F0/F =0.992+3.35×104Q (mol/L),检测限为3.23×10-6 mol/L(即0.36μg/ml). 该方法检测范围宽,灵敏度高,为尿嘧啶的测定提供了新的方法.  相似文献   

17.
Quantum dots (QDs) have long promised to revolutionize fluorescence detection to include even applications requiring simultaneous multi-species detection at single molecule sensitivity. Despite the early promise, the unique optical properties of QDs have not yet been fully exploited in e. g. multiplex single molecule sensitivity applications such as single particle tracking (SPT). In order to fully optimize single molecule multiplex application with QDs, we have in this work performed a comprehensive quantitative investigation of the fluorescence intensities, fluorescence intensity fluctuations, and hydrodynamic radii of eight types of commercially available water soluble QDs. In this study, we show that the fluorescence intensity of CdSe core QDs increases as the emission of the QDs shifts towards the red but that hybrid CdSe/CdTe core QDs are less bright than the furthest red-shifted CdSe QDs. We further show that there is only a small size advantage in using blue-shifted QDs in biological applications because of the additional size of the water-stabilizing surface coat. Extending previous work, we finally also show that parallel four color multicolor (MC)-SPT with QDs is possible at an image acquisition rate of at least 25 Hz. We demonstrate the technique by measuring the lateral dynamics of a lipid, biotin-cap-DPPE, in the cellular plasma membrane of live cells using four different colors of QDs; QD565, QD605, QD655, and QD705 as labels.  相似文献   

18.
The determination of hormone‐binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA‐binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3‐mercaptopropionic acid (MPA) to 4‐amino‐2‐hydroxybenzoic acid (PAS), using 1‐ethyl‐3‐(3‐dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS–CdSe QDs were used to detect SA‐binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS–CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS–CdSe QDs on cytosolic Ca2+ levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS–CdSe QDs had similar effects on the trend in cytosolic‐free Ca2+ concentrations, suggesting that the PAS–CdSe QDs maintained the bioactivity of SA. To summarize, PAS–CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
An immunosensor with rapid and ultrasensitive response for vascular endothelial growth factor (VEGF) has been built up with 4-aminothiophenol (4-ATP) onto the gold surfaces. Quantitative analysis of VEGF was performed by recording the impedance changing of the gold electrode surface by binding of VEGF. The human vascular endothelial growth factor receptor 1 (VEGF-R1, Flt-1) was used as a biorecognition element for the first time in the literature. VEGF-R1 was covalently immobilized via 4-ATP self-assembled monolayer formed on gold thin film covered surface. Construction of the biosensor was carefully characterised by the techniques such as electrochemistry and electrochemical impedance spectroscopy. In order to characterize impedance data, Kramers–Kronig transform was performed on the experimental impedance data. The limit of detection of the immunosensor for qualitative detection was 100 pg/mL while the LOD for quantitative detection could down to 100 pg/mL by using the VEGF-R1 based biosensor. Finally, artificial serum samples spiked with VEGF was analyzed by the proposed immunosensor to investigate useful of the biosensor for early biomarker diagnosis.  相似文献   

20.
The optical detection of DNA or the sensing of low-molecular-weight substrates or proteins by aptamer nucleic acids is a long term challenge in the design of biosensors. Similarly, the detection of the telomerase activity, a versatile biomarker of cancer cells, is important for rapid cancer diagnostics. We implement the luminescence quenching of the CdSe/ZnS quantum dots (QDs) as a versatile process to develop DNA sensors and aptasensors, and to design an analytical platform for the detection of telomerase activity. The formation of nucleic acid duplexes on QDs, or the assembly of aptamer-substrate complexes on the QDs (substrate=cocaine or thrombin) is accompanied by the intercalation of doxorubicin (DB) into the duplex domains of the resulting recognition complexes. The intercalated DB quenches the luminescence of the QDs, thus leading to the detection readout signal. Similarly, the telomerase-induced formation of the telomere chains on the QDs is followed by the hybridization of nucleic-acid units complementary to the telomere repeat units, and the intercalation of DB into the resulting duplex structure. The resulting luminescence quenching of the QDs provides an indicating signal for the activity of telomerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号