首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intestinal helminths induce immune suppressive responses thought to regulate inflammatory diseases including allergies and autoimmune diseases. This study was designed to evaluate whether helminthic infections suppress the natural development of systemic lupus erythematosus (SLE) in NZBWF1 mice. Infection of NZBWF1 SLE-prone mice with two nematodes failed to establish long-lasting settlement. However, the Hymenolepis microstoma (Hm) rodent tapeworm successfully established long-term parasitization of NZBWF1 mice and was used to evaluate the suppressive effects of helminth infection. Ten-month-old NZBWF1 mice developed symptoms including autoantibody generation, proteinuria, glomerular histopathology, and splenomegaly, but mice infected with Hm at 2 months of age did not show any clinical signs. Furthermore, infection with Hm reduced lymphocyte activation and increased regulatory T cells in the spleen and mesenteric lymph nodes. These results indicate that infection with Hm protects NZBWF1 mice from naturally developing SLE and suggest that pathological immunity is attenuated, presumably because of the induction of regulatory T cells.  相似文献   

2.
After their formation in the bone marrow, eosinophils circulate with a short half-life and are distributed throughout the body, especially in mucosal and sub-mucosal regions. Although a small amount of these cells are normally seen in healthy tissue, blood and tissue eosinophilia is a hallmark of helminthic and allergic diseases. The role of eosinophils in the normal physiology of mucosal tissues is not understood, but there is good evidence to demonstrate that these cells protect the host at least against some intestinal helminths, specially those with a lung cycle. In addition, there are now many data that support a role for eosinophils in the pathophysiology of allergic diseases, such as asthma. Because helminthic diseases have been largely controlled in developed countries, there has been much interest in the development of drugs which affect eosinophil migration and/or activation in the tissue and which may, thus, be useful in the treatment of allergic conditions. The understanding of the mechanisms controlling eosinophil trafficking and/or activation are essential in the development of anti-eosinophil-based therapeutic strategies. The present paper reviews aspects of eosinophil biology with emphasis on the role of eosinophils in parasitic infections and allergy, the basic mechanisms underlying the trafficking of eosinophils into tissue and how these can be modulated pharmacologically.  相似文献   

3.
Recent studies in Africa and Asia indicate that different helminthic infections adversely affect the clinical outcome of malaria infections. This suggests that helminths can influence the acquisition of immunity against Plasmodium. Worms could constitute a confounding factor in the assessment of efficacy of malaria-control intervention, including vaccine prototypes in clinical trials. These observations have fundamental and practical consequences; if the deleterious effect of worms on malaria is confirmed, treatment of helminths would offer an affordable, strongly effective and novel means to roll back malaria. With this article, we hope to induce others to conduct similar studies in different regions.  相似文献   

4.
The 'hygiene hypothesis', or lack of microbial and parasite exposure during early life, is postulated as an explanation for the recent increase in autoimmune and allergic diseases in developed countries. The favored mechanism is that microbial and parasite-derived products interact directly with pathogen recognition receptors to subvert proinflammatory signaling via T regulatory cells, thereby inducing anti-inflammatory effects and control of autoimmune disease. Parasites, such as helminths, are considered to have a major role in the induction of immune regulatory mechanisms among children living in developing countries. Invoking Occam's razor, we believe we can select an alternative mechanism to explain the hygiene hypothesis, based on antibody-mediated inhibition of immune responses that may more simply explain the available evidence.  相似文献   

5.
The prevalence of autoimmune diseases is on the rise globally. Currently, autoimmunity presents in over 100 different forms and affects around 9% of the world’s population. Current treatments available for autoimmune diseases are inadequate, expensive, and tend to focus on symptom management rather than cure. Clinical trials have shown that live helminthic therapy can decrease chronic inflammation associated with inflammatory bowel disease and other gastrointestinal autoimmune inflammatory conditions. As an alternative and better controlled approach to live infection, we have identified and characterized two peptides, Acan1 and Nak1, from the excretory/secretory component of parasitic hookworms for their therapeutic activity on experimental colitis. We synthesized Acan1 and Nak1 peptides from the Ancylostoma caninum and Necator americanus hookworms and assessed their structures and protective properties in human cell–based assays and in a mouse model of acute colitis. Acan1 and Nak1 displayed anticolitic properties via significantly reducing weight loss and colon atrophy, edema, ulceration, and necrosis in 2,4,6-trinitrobenzene sulfonic acid–exposed mice. These hookworm peptides prevented mucosal loss of goblet cells and preserved intestinal architecture. Acan1 upregulated genes responsible for the repair and restitution of ulcerated epithelium, whereas Nak1 downregulated genes responsible for epithelial cell migration and apoptotic cell signaling within the colon. These peptides were nontoxic and displayed key immunomodulatory functions in human peripheral blood mononuclear cells by suppressing CD4+ T cell proliferation and inhibiting IL-2 and TNF production. We conclude that Acan1 and Nak1 warrant further development as therapeutics for the treatment of autoimmunity, particularly gastrointestinal inflammatory conditions.  相似文献   

6.
7.
Helminth parasites are masters of immune regulation; a likely prerequisite for long-term survival by circumventing their hosts’ attempt to eradicate them. From a translational perspective, knowledge of immune events as a response to infection with a helminth parasite could be used to reduce the intensity of unwanted inflammatory reactions. Substantial data have accumulated showing that inflammatory reactions that promote a variety of auto-inflammatory diseases are dampened as a consequence of infection with helminth parasites, via either the mobilization of an anti-worm spectrum of immune events or by the direct effect of secretory/excretory bioactive immunomodulatory molecules released from the parasite. However, many issues are outstanding in the definition of the mechanism(s) by which infection with helminth parasites can affect the outcome, positively or negatively, of concomitant disease. We focus on a subgroup of this complex group of metazoan parasites, the cestodes, summarizing studies from rodent models that illustrate if, and by what mechanisms, infection with tapeworms ameliorate or exaggerate disease in their host. The ability of infection with cestodes, or other classes of helminth, to worsen a disease course or confer susceptibility to intracellular pathogens should be carefully considered in the context of ‘helminth therapy’. In addition, poorly characterised cestode extracts can regulate murine and human immunocyte function, yet the impact of these in the context of autoimmune or allergic diseases is poorly understood. Thus, studies with cestodes, as representative helminths, have helped cement the concept that infection with parasitic helminths can inhibit concomitant disease; however, issues relating to long-term effects, potential side-effects, mixed pathogen infections and purification of immunomodulatory molecules from the parasite remain as challenges that need to be addressed in order to achieve the use of helminths as anti-inflammatory agents for human diseases.  相似文献   

8.
Immune-mediated diseases (e.g. inflammatory bowel disease, asthma, multiple sclerosis and autoimmune diabetes) are increasing in prevalence and emerge as populations adopt meticulously hygienic lifestyles. This change in lifestyles precludes exposure to helminths (parasitic worms). Loss of natural helminth exposure removes a previously universal Th2 and regulatory immune biasing imparted by these organisms. Helminths protect animals from developing immune-mediated diseases (colitis, reactive airway disease, encephalitis and diabetes). Clinical trials show that exposure to helminths can reduce disease activity in patients with ulcerative colitis or Crohn's disease. This paper summarises work by multiple groups demonstrating that colonization with helminths alters immune reactivity and protects against disease from dysregulated inflammation.  相似文献   

9.
Two polarized patterns (Th1 and Th2) of cytokines regulate inflammatory responses. Each cytokine pattern inhibits production of the opposing pattern. Lymphocytes from inflamed intestine due to Crohn's disease secrete a Th1 pattern of cytokines. Crohn's disease is most prevalent in highly industrialized countries with temperate climates. It occurs rarely in tropical third world countries with poor sanitation. We propose that exposure to an environmental agent predisposes individuals to Crohn's disease. Parasitic worms (helminths) are common in tropical climates and in populations subject to crowding and poor sanitation. Children are most subject to helminthic colonization. Many helminths live within or migrate through the human gut where they interact with the mucosal immune system. The host mounts a mucosal response that includes Th2 cytokine production limiting helminthic colonization. Helminths and their eggs probably are the most potent stimulators of mucosal Th2 responses. The Th2 response provoked by parasitic worms can modulate immune reactions to unrelated parasitic, bacterial, and viral infections. Many people in developed countries now live in increasingly hygienic environments, avoiding exposure to helminths. Perhaps failure to acquire these parasites and experience mucosal Th2 conditioning predisposes to Crohn's disease, which is an overly active Th1 inflammation.  相似文献   

10.
The use of live helminth infections is currently in clinical trials as a novel approach for the treatment of a range of allergic and autoimmune diseases. This rapid progression from observational studies some 20 years ago to helminth clinical trials can be attributed to huge advances in not just pre-clinical and clinical evidence, pertaining to the efficacy of these parasites in unrelated diseases, but also a greater understanding of the complex immunological mechanisms that underpin these effects. Helminths have exerted significant evolutionary selective pressures on the host immune genome or “immunome”. Studies on helminths were pivotal in a paradigm shift in immunology with recent discoveries of a number of novel immune cell populations. Critically, these new discoveries highlight the need to further understand the underlying mechanism behind the desirable therapeutic effects that helminths offer. With these unknown unknowns there is the distinct possibility that a true, fundamental modus operandi for helminth therapy will arrive long after it has been established in the clinic.  相似文献   

11.
Autoimmune and inflammatory diseases, including type 1 diabetes, multiple sclerosis, inflammatory bowel disease, and rheumatoid arthritis, constitute an important and growing public health burden. However, in many cases our understanding of disease biology is limited and available therapies vary greatly in their efficacy and safety. Animal models of autoimmune and inflammatory diseases have provided valuable tools to researchers investigating their aetiology, pathology, and novel therapeutic strategies. Although such models vary in the degree to which they reflect human autoimmune and inflammatory diseases and caution is required in the extrapolation of animal data to the clinical setting, therapeutic approaches first evaluated in established animal models, including collagen-induced arthritis, experimental autoimmune encephalomyelitis, and the nonobese diabetic mouse, have successfully progressed to clinical investigation and practice. Similarly, these models have proven useful in providing support for basic hypotheses regarding the underlying causes and pathology of autoimmune and inflammatory diseases. Here we review selected murine models of autoimmunity and inflammation and efforts to translate findings from these models into both basic insights into disease biology and novel therapeutic strategies.  相似文献   

12.
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T‐cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti‐inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti‐inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti‐inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro‐inflammatory Th1 and Th17 cells, and indirectly decrease Th cell‐mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.  相似文献   

13.
Modern hygienic lifestyles are associated with the emergence of inflammatory bowel disease (IBD) which now afflicts millions of people in highly-developed countries. Meticulous hygiene interrupts conduits of transmission required for ubiquitous exposure to parasitic worms (helminths). We proposed that loss of exposure to helminths permits development of IBD. Early clinical trials suggested that exposure to helminths such as Trichuris suis or Necator americanus can improve IBD. Over the last several years, processes to “medicinalize” T. suis have been developed and use of this helminth is now being studied in large multi-center clinical trials. Concurrently, we and others have identified some of the immune regulatory mechanisms elicited by helminth exposure that suppress inappropriate intestinal inflammation. These efforts could soon result in new therapies for patients with IBD.  相似文献   

14.
Many diseases are differentially distributed among human populations. Differential selection on genetic variants in ancestral environments that coincidentally predispose to disease can be an underlying cause of these unequal prevalence patterns. Selected genes may be pleiotropic, affecting multiple phenotypes and resulting in more than one disease or trait. Patterns of pleiotropy may be helpful in understanding the underlying causes of an array of conditions in a population. For example, several fibroproliferative diseases are more prevalent and severe in populations of sub-Saharan ancestry. We propose that this disparity is due to selection for an enhanced Th2 response that confers resistance to helminthic infections, and concurrently increases susceptibility to fibrosis due to the profibrotic action of Th2 cytokines. Many studies on selection of Th2-related genes for host resistance to helminths have been reported, but the pleiotropic impact of this selection on the distribution of fibrotic disorders has not been explicitly investigated. We discuss the disproportionate occurrence of fibroproliferative diseases in individuals of African ancestry and provide evidence that adaptation of the immune system has shaped the genetic structure of these human populations in ways that alter the distribution of multiple fibroproliferative diseases.  相似文献   

15.
Edler FC 《Parassitologia》2005,47(3-4):271-278
In the mid nineteenth century, laboratory research in embryology, development, ecology and pathogeny of helminths unexpectedly resulted in a change in the explication of the etiology of some human pathology that was traditionally attributed to environmental factors. The new postulates of the parasitology of helminths put in question the traditional explications as well as the recognized authorities in the fields of clinical medicine, hygiene, and of medical geography, affecting not only the traditional circles where the innovations were discussed, but also the institutions that controlled and validated medical knowledge. From the beginning of the decade of the 1860s, a group of Brazilian medical doctors, initially led by Otto Wucherer, took part in this scientific movement that had an important impact on the area of the domestic and international academic medicine. The causality of known diseases, such as intertropical hypoemia, hematochyluria and elephantiasis, became the focus of intense debate between 1866 and 1892. By the end of this period, the field of helminthic parasitology had available well-established methodological and conceptual criteria and the role of Ankylostomum duodenale and of Wuchereria bancrofti in the production of those diseases was fully accepted.  相似文献   

16.
There are numerous viral proteins known to date to modulate protective responses of their hosts. Representatives of the Poxviridae family have the greatest number of genes coding for proteins, inhibiting inflammatory responses, activities of interferons, regulating immune reactions and other protective mechanisms of macroorganisms, among viruses. This review regards poxviral immunomodulatory proteins--namely, complement-binding proteins, inhibitors of serine proteases, chemokine- and TNF-binding proteins --that were shown to be efficient therapeutics in various animal models of inflammatory and autoimmune diseases. The prospects of their usage in clinical practice for treating human inflammatory and autoimmune disorders are discussed.  相似文献   

17.
Among the potential outcomes of an aberrantly functioning immune system are allergic disease and autoimmunity. Although it has been assumed that the underlying mechanisms mediating these conditions are completely different, recent evidence shows that mast cells provide a common link. Mast cells reside in most tissues, are particularly prevalent at sites of Ag entry, and act as sentinel cells of the immune system. They express many inflammatory mediators that affect both innate and adaptive cellular function. They contribute to pathologic allergic inflammation but also serve an important protective role in bacterial and parasite infections. Given the proinflammatory nature of autoimmune responses, it is not surprising that studies using murine models of autoimmunity clearly implicate mast cells in the initiation and/or progression of autoimmune disease. In this review, we discuss the defined and hypothesized mechanisms of mast cell influence on autoimmune diseases, including their surprising and newly discovered role as anti-inflammatory cells.  相似文献   

18.
In the developed world, declining prevalence of parasitic infections correlates with increased incidence of allergic and autoimmune disorders. Current treatments for these chronic inflammatory conditions have little to no effect on their prevalence and are referred to as “controllers” rather than cures. There has been limited success in therapeutically targeting allergic and autoimmune pathways, leaving an unmet need for development of effective anti-inflammatories. We discuss the benefit of hookworm infections and the parasite’s ability to condition the immune system to prevent allergic asthma and inflammatory bowel diseases. We then examine the immunomodulatory properties of selected hookworm-derived proteins in these two models of inflammation. While hookworm protein therapy has yet to be fully exploited, the identification of these proteins and the mechanisms by which they skew the immune system will provide new avenues for controlling and optimally reversing key pathological processes important in allergic and inflammatory bowel diseases.  相似文献   

19.
The chemokine receptor CCR5 came into worldwide prominence a decade ago when it was identified as one of the major coreceptors for HIV infectivity. However, subsequent studies suggested an important modulatory role for CCR5 in the inflammatory response. Specifically, CCR5 has been reported to directly regulate T cell function in autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, and type 1 diabetes. Moreover, T cell-mediated immune responses are proposed to be critical in the pathogenesis of autoimmune and viral liver diseases, and recent clinical and experimental studies have also implicated CCR5 in the pathogenesis of autoimmune and viral liver diseases. Therefore, in this brief review, we highlight the evidence that supports an important role of CCR5 in the pathophysiology of T cell-mediated liver diseases with specific emphasis on autoimmune and viral liver diseases.  相似文献   

20.
《Trends in parasitology》2023,39(5):345-357
Parasitic helminths are destined to share niches with a variety of microbiota that inevitably influence their interaction with the host. To modulate the microbiome for their benefit and defend against pathogenic isolates, helminths have developed host defense peptides (HDPs) and proteins as integral elements of their immunity. These often exert a relatively nonspecific membranolytic activity toward bacteria, sometimes with limited or no toxicity toward host cells. With a few exceptions, such as nematode cecropin-like peptides and antibacterial factors (ABFs), helminthic HDPs are largely underexplored. This review scrutinizes current knowledge on the repertoire of such peptides in helminths and promotes their research as potential leads for an anti-infective solution to the burgeoning problem of antibiotic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号