首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated factors that affect cumulus-oocyte complex (COC) morphology and oocyte developmental competence in subordinate follicles on different days after follicular wave emergence in beef heifers. In Experiment 1, heifers (n = 13) were assigned at random to COC aspiration during the growing/static (Days 1 to 3) or regressing (Day 5) phase of subordinate follicle development (follicular wave emergence = Day 0). Follicular wave emergence was induced by transvaginal ultrasound-guided follicular ablation, ovaries were collected at slaughter, all follicles > or = 2 mm except the dominant follicle were aspirated, and COC were microscopically evaluated for morphology. There was a greater percentage of COC with expanded cumulus layers on Day 5 (42.4%) than on Days 1 to 3 (2.2%). In Experiment 2, heifers (n = 64) at random stages of the estrous cycle had all follicles > or = 5 mm ablated and 4 d later, 2 doses of PGF were injected 12 h apart; heifers were monitored daily by ultrasonography for ovulation (Day 0 = follicular wave emergence). Heifers were assigned to the following time periods for oocyte collection from subordinate follicles: Days 0 and 1 (growing phase), Days 2, 3 and 4 (static phase), and Days 5 and 6 (regressing phase). Ovaries were individually collected at slaughter, and all follicles > or 2 mm except for the dominant follicle were aspirated. The COC were morphologically evaluated and then matured, fertilized and cultured in vitro. Expanded COC were more frequent during the regressing phase (53.4%) than the growing or static phase (14.4 and 17.8%, respectively; P < 0.05). While the proportions of COC with > or = 4 layers of cumulus cells and denuded oocytes were higher (P < 0.05) in the growing and static phases, the production of morulae was highest (P < 0.05) with COC collected from subordinate follicles during the regressing phase. In Experiment 3, heifers (n = 18) were assigned at random to oocyte collection from subordinate follicles 3 and 4 d (static phase) or 5 and 6 d (regressing phase) after follicular wave emergence. The heifers were monitored ultrasonically for ovulation (Day 0 = follicular wave emergence); COC were collected from all follicles (> or = 5 mm) except for the dominant follicle by transvaginal ultrasound-guided follicle aspiration 3 to 6 d later. Recovered oocytes were stained and examined microscopically to evaluate nuclear maturation. A higher proportion of oocytes collected on Days 5 and 6 showed evidence of nuclear maturation (50%) than on Days 3 and 4 (8.3%; P < 0.05). Results support the hypothesis that COC morphology and oocyte developmental competence change during the growing, static and regressing phases of subordinate follicle development.  相似文献   

2.
The effect of the frequency of an ultrasonic linear transvaginal probe on the collection of bovine oocytes by transvaginal ultrasound-guided follicle aspiration was investigated. Probes with different frequencies (7.5 or 5.0 MHz) were applied to examine the clarity of follicles on the monitor using ovaries of slaughtered cows in Experiment 1. The follicles were visualized on the monitor and divided into small (3- to 5-mm diameter) and large (6- to 10-mm) groups. They were also divided into 2 groups according to the clarity of their outline (clear or obscure). The number of small follicles visualized with a clear outline was greater (P < 0.01) with the 7.5 MHz probe than with the 5.0 MHz probe (9.0 vs 3.2). Oocyte aspiration from live cows was performed using the 7.5 or 5.0 MHz probe in Experiments 2 and 3. The recovered oocytes were divided into 3 categories: cumulus-oocyte-complexes (COCs), denuded oocytes and all others. In Experiment 2, the number of oocytes collected per donor cow was assessed, and in Experiment 3 the number of oocytes per aspirated follicle was examined by aspirating a constant number of follicles per aspiration session. The numbers of oocytes and COCs per donor cow obtained with the 7.5 MHz probe (11.2 and 9.0, respectively) were greater (P < 0.01) than those obtained with the 5.0 MHz probe (4.3 and 3.5). This difference between probes was due to the greater clarity of the follicle images obtained with the 7.5 MHz probe.  相似文献   

3.
We wished to compare cumulus oocyte complex (COC) recovery and follicle development after single and repeated ultrasound-guided transvaginal follicle aspiration (aspiration). Aspirations were performed in Holstein-Friesian heifers every once weekly (every 7 d; n = 12) or twice weekly (every 3 or 4 d; n = 6) starting on Days 3 or 4 of the estrous cycle (estrus = Day 0) and continuing for 4 wk. During each session, all visible follicles > 2 mm were aspirated using an 7.5 MHz transducer to guide an 18 ga x 60 cm single lumen needle and applying 50 mm Hg vacuum which generated 25 mL/min. The COC's harvested from each follicle were counted and classified into 4 categories. Post-aspiration follicle wave emergence was traced by daily ultrasound examinations. A total of 1410 follicles were aspirated during 96 sessions, yielding 632 (45%)oocytes. There was no difference in average COC/follicle recovered between the single vs the repeated aspiration treatment. However, ovaries of heifers subjected to two aspirations per week yielded more follicles (17.2 +/- 5.7 vs 12.4 +/- 6.1; P < 0.01) and COC's (7.7 +/- 4.5 vs 5.4 +/- 3.7; P < 0.01) per session than those subjected to a single aspiration. Ovaries of heifers subjected to twice weekly aspirations at 4-d intervals resulted in a higher recovery rate (51.1 vs 38.6%), yielded more COC's (9.3 +/- 4.7 vs 6.2 +/- 3.8) and a higher number of viable COC's recovered per session (7.6 +/- 3.8 vs 5.2 +/- 3.3) than those aspirated every 3 d, all P < 0.01. Aspiration-induced follicle waves were indicated by an increased number of follicle > or = 4 mm seen within 2 d of the procedure. We conclude that follicle aspiration appears to induce and synchronize follicle waves, and when it is done twice a week it is associated with higher number of harvestable follicles and more oocytes recovered than when done once a week. These results can be attributed to the aspiration of a newly recruited pull of follicles 3 or 4 d after the first aspiration and before the establishment of follicular dominance and regression of subordinate follicles.  相似文献   

4.
Superstimulation in donor cows increases the number of cumulus-oocyte complexes (COC), but when compared to in vivo maturation, in vitro maturation results in only half as many blastocysts after prolonged in vitro culture. The objective of this study was to establish a superstimulation protocol that would produce a maximal number of competent COC for standard in vitro embryo production. During experiment 1, eight cyclic Holstein heifers were superstimulated with four doses of FSH. Half the heifers received an injection of LH 6 h before ovum pick-up (OPU). The COC were collected following OPU either 33 or 48 h following the last FSH injection (coasting period). During experiment 2, six cyclic Holstein heifers were superstimulated with six doses of FSH, and in half the heifers, LH was administered 6 h before OPU. The COC were collected following ultrasound-guided transvaginal aspiration of both ovaries 48 h after the last FSH injection (coasting period). The COC originating from follicles with a diameter of 5 mm or more (n = 180 for experiment 1 and 57 for experiment 2) were subjected to standard in vitro maturation, fertilization, and development. When animals were administered four doses of FSH, 48 h of coasting resulted in significantly more 5- to 10-mm follicles (P < 0.01) than 33 h of coasting. If a 33-h coasting period was used, administration of LH 6 h before OPU resulted in a significant increase in both percentage of blastocysts and embryo production rate at Days 7 and 8 (P < or = 0.05) of in vitro culture. If a 48-h coasting period was used, LH injection did not affect the rates of blastocyst production. When donors were administered six doses of FSH with a 48-h coasting period, the highest results, although not significant (P < 0.08), were obtained when animals received LH 6 h before OPU, with 80% +/- 9% (mean +/- SEM) blastocysts and 0.8 +/- 0.09 embryo produced per COC retrieved per heifer at Day 8 of culture. Never has in vitro technology been so close to producing 100% developmentally competent COC.  相似文献   

5.
Ultrasound-guided follicular aspiration was performed on 29 Holstein-Friesian cows/heifers twice weekly at 3- to 4-d intervals over a period of 2 consecutive estrous cycles (total 42 d). For visualization of the ovaries and guidance of the aspiration needle, a 6.5 MHz fingertip probe on a 62 cm probe carrier was inserted into the vagina. The disposable aspiration needle was connected to a permanent rinse tubing system, thus ensuring minimum death of oocytes in the aspiration processs. After penetration of the vaginal wall, the needle was inserted into a follicle of the rectally fixed ovary. Cumulus oocyte complexes (COC) were aspirated at a pressure of 100 mm Hg. In the first experiment, the effect of an additional gonadotropin treatment 4 d prior to aspiration was investigated in 8 lactating cows. Following FSH-treatment, the number of aspirated follicles was higher (P < 0.05) than in the nontreated animals (10.6 +/- 0.7 vs 8.9 +/- 0.5). The number of recovered COC (7.0 +/- 0.6 vs 5.8 +/- 0.5), the recovery rate (COC per aspirated follicle) (66.6% vs 65.4%), the percentage of viable COC (56.8% vs 52.1%), the cleavage rate upon in vitro maturation and in vitro fertilization (56.7% vs 59.8%) as well as the rate of morula/blastocyst formation (3.8% vs 2.9%) were similar in both groups. In the second experiment, follicles were aspirated in 4 lactating cows, 6 dry cows, 4 pregnant cows (first 35 d of pregnancy), and 4 heifers. The average number of aspirated follicles and recovered COC was higher (P < 0.05) in the first 2 groups (10.6 +/- 0.6 and 9.3 +/- 0.7 follicles; 7.2 +/- 0.5 and 6.9 +/- 0.7 oocytes) than in trie 2 other treatment groups (7.3 +/- 0.5 and 8.1 +/- 0.5 follicles; 5.0 +/- 0.4 and 5.7 +/- 0.5 oocytes). The percentage of viable COC was higher (P < 0.05; 68.3%) in lactating animals than in all the other groups (49.7, 52.5 and 57.4%, respectively). Similarly, upon in vitro fertilization, cleavage rate was higher (P < 0.05; 63.4%) in lactating cows than in the other groups (43.7, 50.5, 55.1%, respectively). A total of 21.5, 22.7, 11.9 and 13.5%, respectively, in the 4 groups of the in vitro fertilized oocytes reached the morula and blastocyst stages. After transfer of a total of 48 embryos 22 pregnancies (45.8%) were established as detected on Day 65. We conclude that 1) repeated aspiration of viable COC at short intervals is possible, 2) additional FSH-treatment does not increase oocyte yields, and 3) viable blastocysts can be produced from cattle at various reproductive phases irrespective of the reproductive phase.  相似文献   

6.
This study was conducted to determine the use of repeated transvaginal ultrasound-guided cumulus oocyte complex (COC) aspiration on COC recovery rate, in vitro embryo production (IVP) and subsequent pregnancy rates in Holstein Friesian (HF) and Aberdeen Angus (AA) cows (Experiment 1), and in pregnant and non-pregnant Holstein Friesian cows (Experiment 2). Cycling, non-pregnant HF (n=17) and AA (n=32) cows with 40-70 days postpartum, between 3 and 5 years of age were used in the Experiment 1. All cows were submitted to repeated transvaginal ultrasound-guided COC aspiration twice a week for 5-7 weeks. Cumulus ooctye complexes (COC) were in vitro matured, fertilized and cultured for 8 days. An overall of 100 and 350 embryos from HF and AA cows respectively were cryopreserved using a conventional slow freezing (Experiment 1). A total of 81 and 285 frozen-thawed embryos from HF and AA cows respectively were transferred to recipient cows. Pregnancy diagnosis was performed at 60 and 150 days of gestation using transrectal ultrasonography. In Experiment 2, cycling non-pregnant (n=9) and pregnant (n=8) HF cows were submitted to repeated ultrasound-guided COC aspiration and COC were in vitro matured, fertilized and cultured as in Experiment 1, except that embryos were cryopreserved but not thawed and transferred as described for Experiment 1. The results of this study indicate that COC recovery rate and blastocyts production are affected by the breed of the donor cow. The quality of blastocyts produced from both breed did not differ in terms of pregnancy and calving rates (Experiment 1). The physiologic state of pregnancy did not affect COC recovery rate and blastocysts production per donor/session (Experiment 2). The use of ultrasound-guided COC aspiration and IVP could be a powerful technique to improve the genetic of beef and dairy cattle managed under pasture-based conditions management in the southern Chile.  相似文献   

7.
To understand the causes for poor response to superovulation in mature cows of high genetic potential, endocrine and follicular events during and after superovulation were compared in heifers (<2 yr old) yielding large numbers of embryos and cows (9 to 13 yr old) known to be poor embryo donors. Follicular development was monitored by daily ultrasonography. Blood samples were taken 2 to 3 times a day for the measurements of P4, E2, FSH and LH by RIA. Intensive blood collections at 15-min intervals for 6 h were also performed during preovulatory and luteal phases. The number of embryos produced in the heifers (15.2 +/- 2; mean +/- SEM) and the cows (0.6 +/- 0.4), was similar to the number of ovulatory follicles derived from ultrasonographic observations in the heifers (16.2 +/- 3.7), but not in the cows (7.8 +/- 2.8). Contrary to that observations in heifers, there was no increase in the number of 4- to 5-mm follicles in cows during superovulation. The number of larger follicles (>5 mm) increased during superovulation in both cattle groups, but it was significantly lower in cows than in heifers. During superovulation, the maximal E2 concentration was greater (P < 0.0001) in heifers than in cows. One cow showed delayed luteolysis during superovulation, while another had abnormally high FSH (>10 ng/ml) and LH (>3 ng/ml) concentrations following superovulation. All the cows had a postovulatory FSH rise which was not detected in the heifers. The results showed that attempts to improve superovulatory response in mature genetically valuable cows are hampered by a number of reproductive disorders that are not predictable from the study of the unstimulated cycle.  相似文献   

8.
Ultrasound-guided transvaginal follicle aspiration has been described as a noninvasive and repeatable procedure for oocyte collection in several species, but its use has not been described for any of the members of the family, Camelidae. A study was designed to determine the feasibility of an ultrasound-guided transvaginal approach for oocyte collection in llamas. Fifteen non-pregnant, adult female llamas (10 non-stimulated and 5 superstimulated) were examined by transrectal ultrasonography with a 7.5-MHz linear-array transducer to determine the number and diameter of follicles available for aspiration. After caudal epidural anesthesia was induced, the 7.5-MHz linear-array transducer was fastened to a long rigid handle and inserted intravaginally. The free hand was placed into the rectum to manipulate the ovaries, one at a time, in position against the vaginal wall over the face of the transducer. A 20-gauge, 55-cm-long, single-lumen needle was advanced through the vaginal fornix and into follicles > or = 3 mm in diameter. Follicular contents were aspirated using a regulated vacuum pump (flow rate = 33 mL/min; approximately 150 mm Hg) into a tube containing 3 mL of phosphate buffered saline and 0.2% BSA. Fluid was filtered (75 microm mesh), and oocytes were located and morphologically evaluated using a stereomicroscope. Overall, 134 follicles were aspirated, and 76 oocytes were collected (collection rate = 57%). Thirty-two oocytes (42%) were surrounded by multiple layers of compacted granulosa cells and had homogenous dark ooplasm; 13 oocytes (17%) were surrounded by the corona radiata layer only and had heavily granulated ooplasm; 9 oocytes (12%) were denuded and had homogenous dark ooplasm; and 22 oocytes (29%) were denuded and displayed signs of ooplasm degeneration. The ultrastructure of llama oocytes was similar to that of cattle except for conspicuous accumulation of large lipid droplets in the cytoplasm. Twenty-four hours after follicle aspiration, the ovaries were examined by transrectal ultrasonography and intrafollicular hematomas were detected in 3 llamas (9 of 48 follicles aspirated). Results demonstrate the potential utility of a transvaginal ultrasound-guided technique for oocyte collection and in vitro embryo production in llamas. Oocytes of llamas bear an ultrustructural resemblance to those of cattle, but are distinguished by a predominance of cytoplasmic lipid.  相似文献   

9.
Early pregnancy diagnosis by transrectal ultrasonography in dairy cattle   总被引:1,自引:0,他引:1  
The objective of the present study was to determine differences in time of detection of pregnancy between heifers and cows and the interval after insemination at which the maximum sensitivity and negative predictive value of transrectal ultrasonography were obtained. One-thousand-four-hundred transrectal ultrasonographies (TRUS-1; 1,079 in cows and 321 in heifers) were performed using a 5-MHz linear-array transducer. The cattle were randomly assigned to have TRUS performed once between days 24 and 30 (estrus=day 0) in cows or between days 21 and 27 in heifers. Every TRUS diagnosis was subsequently compared with a second TRUS diagnosis (TRUS-2), performed 3-8 days later, after day 30 (range 31-38) for cows and after day 27 (range 28-35) for heifers. The sensitivity and specificity between cows and heifers for the common days of TRUS (from 24 to 27) were compared. In cows, sensitivity increased gradually from 74.5% at day 24 to 100% at day 29 (P<0.01). Specificity increased from days 24-25 and reached a plateau of 96.6% on day 26 (P<0.01). In heifers, sensitivity increased from 50% at day 21 to 100% at day 26 (P<0.01). Specificity increased from 87.5% at day 21 and remained steady at 94% starting on day 23 (P>0.05). The sensitivity for cows and heifers was 89.2 and 96.8%, respectively (P<0.05) and the specificity was 93.0 and 93.4% (P>0.05). In this study, heifers were diagnosed pregnant earlier than cows, and the maximum sensitivity and negative predictive value were obtained 3 days earlier in heifers than cows (days 26 and 29, respectively).  相似文献   

10.
Recent advances in image technology, including significant gains in spatial resolution, have made realtime sequential ovarian evaluations possible in small rodents, allowing longitudinal (continued) studies of the ovarian cycle and reducing the required number of experimental animals. The aim of this study was to evaluate exogenous stimulated follicular growth in mice using high-resolution ultrasound technology. Female mice (n = 15) received a 5 IU intraperitoneal injection of equine chorionic gonadotropin (eCG) and 48 h later a 5 IU injection of human chorionic gonadotropin (hCG), and were allowed to mate thereafter. In experiment 1, animals (n = 7) were evaluated every 6 h, from 3 to 51 h after eCG injection, with an ultrasound biomicroscopy (UBM) equipped with a realtime 45 MHz microvisualization probe (RMV 707b). The ovaries were identified and follicular population quantified, and follicles were classified according to the diameter as small (≤449 μm) or large (≥450 μm). A significant change in the distribution of follicle population according to category was observed only 45 h after eCG injection (P < 0.05). In experiment 2, animals (n = 8) were evaluated every 2 h, from 2 h to 10 h after hCG treatment. The largest follicles reached a maximum size (596.7 ± 106.0 μm) 5.8 ± 2.3 h after hCG injection. As expected, the population of large follicles decreased thereafter, indicating the progress of ovulations, but large follicles were still detected late after treatment (10.1 ± 1.1 h). In conclusion, UBM can be used to evaluate follicle dynamics in superstimulated mice (C57BL/6 and BALB/c); significant changes in follicle distribution only occur at later stages after eCG stimulation; and hCG-induced ovulations may not occur synchronously in mice.  相似文献   

11.
In a study of 4 cyclic dry cows (Trial I) and 6 cyclic puberal heifers (Trial II), unilateral ovariectomy increased the number of ovulatory follicles, did not alter the hormone profile, cycle length or the number of follicular waves. Ovarian follicular development in all 4 cows was monitored daily using transrectal ultrasonography until the day of ovulation, during which period daily blood samples were also taken from the tail vein for determination of plasma FSH, LH and P4 concentrations. Unilateral ovariectomy was performed on the day after ovulation and ovarian activity was again monitored daily (ultrasonography and blood sampling for FSH, LH and P4) for 2 consecutive cycles (8 cycles in all). Estrus in all 6 heifers was synchronized using 2 injections of PGF2 alpha given 12 d apart. Similarly, ovarian activity in the 6 puberal heifers was monitored daily using ultrasonography and blood sampling for 1 complete control cycle. Following estrus and ovulation the left ovary was removed in all the animals, and thereafter 1 complete cycle was followed. Mean cycle length, FSH, LH and P4 concentrations before and after unilateral ovariectomy were compared using paired sample t-test. The results show that unilateral ovariectomy neither altered the cycle length nor the number of follicular waves in the cows, but it increased the number of ovulatory follicles (2 follicles developed and ovulated in 6 of the 8 cycles). The mean diameter of the largest follicle was 16.1 +/- 0.9 mm and the second largest 12.5 +/- 0.9 mm. No significant (P > 0.05) differences were observed in FSH (0.72 +/- 0.09 vs 0.71 +/- 0.07), LH (0.42 +/- 0.1 vs 0.37 +/- 0.07) and P4 (2.8 +/- 0.6 vs 2.6 +/- 0.4) levels before and after unilateral ovariectomy. Of the 6 heifers, 5 had 2 waves and 1 heifer had 3 waves of follicular growth during the control cycle, and this pattern did not change after the procedure. Mean cycle length (20.7 +/- 0.9 vs 21 +/- 0.9) did not differ before and after unilateral ovariectomy, and 4 of the 6 heifers ovulated twin follicles following ovariectomy. The mean diameter of the largest follicle was 14.5 +/- 0.7 mm and second largest measured 12.1 +/- 0.8 mm. No significant (P > 0.05) differences were observed in FSH (0.16 +/- 0.09 vs 0.21 +/- 0.07), LH (0.11 +/- 0.1 vs 0.15 +/- 0.07) and P4 levels (3.6 +/- 0.26 vs 3.8 +/- 0.29) before and after unilateral ovariectomy. Based on these results, we conclude that unilateral ovariectomy is an ideal method for obtaining twin ovulations in cows and heifers.  相似文献   

12.
It is well documented that incidence of fertility problems is high in lactating cows but not in heifers of the same genetic merit. Understanding the metabolic and molecular differences between fertile heifers and relatively infertile lactating cows will help us understand the pathogenesis of infertility in dairy cows. Follicular waves in lactating cows (30–50 days in milk; n = 12) and heifers (n = 10) were synchronized by ultrasound-guided follicle ablation. Follicular fluid and granulosa cells of the dominant follicle were collected by ultrasound-guided aspiration along with blood sampling on Day 6 after synchronization. Dominant and subordinate follicles were larger in lactating cows than in heifers. Metabolic stress in lactating cows was evidenced by lower glucose and higher ß-hydroxy butyric acid compared with heifers. Insulin-like growth factor 1 signaling was reduced in the dominant follicle in lactating cows through reduced insulin-like growth factor 1 concentrations in plasma and follicular fluid of the dominant follicle, and reduced expression of pregnancy-associated plasma protein A (PAPPA) in their granulosa cells. We also found increased levels of total bile acids in the follicular fluid of the dominant follicle of lactating cows compared with heifers. Granulosa cells of the dominant follicle had higher expression of SLC10A2 and GPBAR1 (bile acid transporter and receptor, respectively) in lactating cows. These novel data are indicative of increased bile acid signaling within the dominant follicles of lactating cows compared with heifers. Overall, we demonstrate in the present study the metabolic, endocrine, and molecular differences within the microenvironment of the dominant follicles in lactating cows and heifers. These differences in follicular microenvironment may contribute toward abnormal ovarian function in lactating dairy cows.  相似文献   

13.
The aim of this study was to examine the effect of sex-sorted semen on the number and quality of embryos recovered from superovulated heifers and cows on commercial dairy farm conditions in Finland. The data consist of 1487 commercial embryo collections performed on 633 and 854 animals of Holstein and Finnish Ayrshire breeds, respectively. Superovulation was induced by eight intramuscular injections of follicle-stimulating hormone, at 12-hour intervals over 4 days, involving declining doses beginning on 9 to 12 days after the onset of standing estrus. The donors were inseminated at 9 to 15–hour intervals beginning 12 hours after the onset of estrus with 2 + 2 (+1) doses of sex-sorted frozen-thawed semen (N = 218) into the uterine horns or with 1 + 1 (+1) doses of conventional frozen-thawed semen (N = 1269) into the uterine corpus. Most conventional semen (222 bulls) straws contained 15 million sperm (total number 30–45 million per donor). Sex-sorted semen (61 bulls) straws contained 2 million sperm (total number 8–14 million per donor). Mean number of transferable embryos in recoveries from cows bred with sex-sorted semen was 4.9, which is significantly lower than 9.1 transferable embryos recovered when using conventional semen (P ≤ 0.001). In heifers, no significant difference was detected between mean number of transferable embryos in recoveries using sex-sorted semen and conventional semen (6.1 and 7.2, respectively). The number of unfertilized ova was higher when using sex-sorted semen than when using conventional semen in heifers (P < 0.01) and in cows (P < 0.05), and the number of degenerated embryos in cows (P < 0.01), but not in heifers. It was concluded that the insemination protocol used seemed to be adequate for heifers. In superovulated cows, an optimal protocol for using sex-sorted semen remains to be found.  相似文献   

14.
Follicle diameter deviation is defined as the beginning of the differential change in growth rates between the largest and next largest follicles subsequent to wave emergence and is considered a key component of follicle selection. Follicle selection has been extensively studied in European breeds of cattle (Bos taurus) but has not been critically studied in Zebu breeds (Bos indicus). The objectives of the present study were to determine and compare the morphological characteristics of deviation associated with the first post-ovulatory wave (Wave 1) of the estrous cycle in Nelore heifers (n=8) and nonlactating cows (n=11). Beginning on the day of ovulation (day 0), the three largest follicles (F1-F3, respectively) were individually tracked every 12 h for 6d using transrectal ultrasonography. In individual animals, deviation was determined graphically using visual inspection of the diameter profiles of F1, F2 and sometimes F3 (observed deviation) and mathematically using segmented regression analysis of the diameter differences between F1 and F2 or sometimes F3 (calculated deviation). Mean day of emergence of Wave 1 when F1 reached >3 mm (approximately 1 d after ovulation) and growth rate of F1 during deviation (approximately 1.4 mm/d) were not significantly different between heifers and cows. The results of determining the beginning of deviation within heifers and cows using the observed and calculated methods were not significantly different. Averaged over both methods, diameter deviation occurred 2.8 d after ovulation when F1 reached 5.7 mm in heifers, and 2.4 d after ovulation when F1 reached 6.1 mm in cows. In conclusion, the emergence of Wave 1 and growth rates and diameters of the future dominant follicles at the beginning of deviation were similar in Nelore heifers and nonlactating cows, regardless of the methods used to determine deviation. Relative to Holstein cattle, emergence of Wave 1 appeared to occur about 1 d later and diameter of the future dominant follicle at the beginning of deviation was about 2 mm smaller in Nelore.  相似文献   

15.
Ultrasound-guided transvaginal oocyte collection in prepubertal calves   总被引:1,自引:0,他引:1  
The present study was designed to develop a technique for oocyte collection using an ultrasound-guided transvaginal approach in prepubertal calves too small to accommodate manual transrectal manipulation. A commercially available, 5 MHz, convex-array ultrasound transducer designed for intravaginal use in women was custom-modified for use in calves. In Experiment 1, calves 10 to 16 wk old (n = 10) were restrained in the standing position in an adjustable squeeze chute with regional anesthesia. In Experiment 2, the follicle aspiration procedure was performed in 6 wk-old calves (n = 20) in dorsal recumbency after tranquilization and caudal epidural anesthesia. Ovarian superstimulation was induced in half of the calves using 750 IU eCG (Experiment 1) or 200 mg Folltropin (Experiment 2). Consistent visualization of both ovaries using the transvaginal approach was accomplished after considerable practice. Two methods of ovarian immobilization were attempted, but both interfered with the ultrasound image and were consequently abandoned. The inability to immobilize the ovary resulted in attempts to spear the intended follicle "free-hand." The contents of follicles >or= 6 mm in diameter were aspirated, filtered, and oocytes were located using a stereomicroscope. Although ovarian superstimulation did not resolve the problem of ovary movement, the number of follicles of adequate size to aspirate was dramatically increased. Extremely sharp needles were found to be very important in the free-hand technique. A total of 232 follicles was aspirated, and 100 oocytes were collected (43%). In summary, a transvaginal ultrasound-guided technique for oocyte collection was developed for young calves in a standing position (10 to 16 wk of age) and dorsal recumbency (6 wk of age). Results demonstrate the potential utility of this approach for deriving oocytes from young calves.  相似文献   

16.
This study was designed to evaluate in suckling early pregnant beef cows with and without eCG-pre-stimulation: (i) the influence of day gestation (from 40 to 101 days) and the consecutive eCG treatments on the follicular growth induced by means of ultrasound-guided transvaginal follicle ablation (FA; all follicles ≥ 5 mm) and the number and quality oocytes recovered by ovum pick-up (OPU) and (ii) the possible effects of repeated hormonal stimulation and FA/OPU on pregnancy outcome. Twelve suckling early pregnant Angus cows (40 days post fixed-time artificial insemination) were randomly assigned to each of two groups (n=6 group(-1)). Group 1 treatments included: FA (Day 0), eCG (1600 IU; Day 1) and OPU (Day 5). Group 2: as cited Group 1 with no eCG treatment. In both groups, OPU was repeated five times (Days 45, 59, 73, 87 and 101 of gestation). The numbers (mean ± SEM) of class II (5-9 mm; 4.3 ± 0.9) and class III (≥10 mm; 2.5 ± 0.4) follicles visualized per cow per OPU session in eCG-treated cows were greater (P<0.05) than for non-treated cows (0.9 ± 0.1 and 0.9 ± 0.1, respectively). In contrast, the number (mean ± SEM) of class I (<5mm) follicles per cow per OPU session was lower for cows with eCG treatment (2.8 ± 0.4) than for non-treated cows (5.7 ± 0.5). The mean number of aspirated follicles was not significantly different (P<0.05) between eCG-treated cows and non-treated cows at 45 and 59 days of pregnancy. However, the mean number of aspirated follicles was greater (P=0.03) in eCG-treated cows than non-treated cows from 73 day of pregnancy onwards. The numbers (mean ± SEM) of recovered oocytes and viable oocytes/cow/session were greater (P<0.05) for eCG-treated cows (2.2 ± 0.2 and 1.6 ± 0.4, respectively) than for non-treated cows (1.0 ± 0.2 and 0.9 ± 0.2, respectively). No donor pregnancies were lost either during or following OPU procedure. We can conclude that (1) eCG-treated pregnant suckled cows can be a source of oocytes for IVF at least to 100 days of gestation and (2) repeated FA/eCG treatment/OPU procedures did not affect the pregnancy outcome.  相似文献   

17.
Ovaries of heifers were examined daily by transrectal ultrasonography for one interovulatory interval before initiation of immunizations (control cycle, n = 14), and again after the fifth immunization with a sham-vaccine (Freund's adjuvant only; n = 7) or a recombinant porcine follistatin-vaccine (1 mg per vaccination; n = 7) to study the effect of follistatin on follicle dynamics. After the fifth immunization, 4 heifers had a follistatin antibody titer of > or = 1:3200, while the remaining 3 heifers had a titer of only 1:400. At wave emergence, the total number of follicles and the number of small follicles (3 to 5 mm) were higher (P < 0.05) in the follistatin group than in the control and sham groups. In addition, high-titer heifers had a greater (P < 0.05) number of follicles (total and small) per day than low-titer heifers. Plasma concentration of FSH remained unchanged after sham- or follistatin-immunization. Sham- and follistatin-vaccinated heifers were then given half the standard superovulatory dose of Folltropin (200 mg of FSH) 14 d after the sixth immunization. More ovulations were detected in follistatin- (10.9 +/- 2.4) than sham- (5.0 +/- 0.8) vaccinated heifers (P < 0.05). Moreover, heifers with a high titer had more ovulations (P < 0.02) than heifers with a low titer (15.0 +/- 2.5 vs 5.3 +/- 1.2). The number of ova-embryos classified as fertilized:unfertilized and transferable:discarded, and quality of the embryos were similar between sham and follistatin groups. By 80 d after the last immunization, when antibody titers were undetectable in the follistatin group, there was no difference in superovulatory response between sham (6.7 +/- 1.6) and follistatin (7.6 +/- 1.6) groups. In summary, follistatin immunization was associated with an increase in the number of small follicles at the time of wave emergence and a greater response to superovulatory treatment. The results suggest that effects of follistatin on follicular dynamics were not mediated through changes in pituitary secretion of FSH.  相似文献   

18.
The aims of the present study were to compare (1) Holstein-Friesian heifers versus early postpartum lactating cows, and (2) different age categories of crossbred beef heifers versus cows, in terms of oocyte yield, morphological quality and developmental competence. Four experiments were designed to test the associated hypotheses. In Experiment 1, ovum pick up was carried out twice weekly for a period of 5 weeks on Holstein-Friesian heifers (n = 8) and early postpartum cows (n = 8). Oocytes were submitted to in vitro maturation (IVM), fertilization and culture. Significantly more follicles were punctured on the ovaries of heifers than cows (10.4 versus 7.8, P < 0.001). This was reflected in a significantly higher number of total oocytes (4.7 versus 2.8, P < 0.001) and grade 1-2 oocytes recovered/animal from heifers than from cows (3.0 versus 1.8, P < 0.05). There was no significant difference in the percentage of oocytes cleaving after fertilization, or in the percentage reaching the blastocyst stage between heifers and cows. In Experiment 2, oocytes were obtained by manual aspiration from the ovaries of slaughtered crossbred beef heifers (under 30 months, n = 1241) and cows (over 4 years old, n = 1125), and processed in vitro as above. No significant difference was observed between the two groups in terms of the number of aspirated follicles or oocytes recovered. A significantly higher proportion (P < 0.01) of cow oocytes than heifer oocytes reached the blastocyst stage (Day 8: 46.5% versus 33.4%). In Experiment 3, ovaries were separated according to age of heifer into three groups: (1) 12-18 months, (2) 19-24 months and (3) 25-30 months, and compared with cow oocytes. There was no significant difference in the blastocyst yield between the different age groups of heifers. Irrespective of heifer age, the blastocyst yield on Day 8 was significantly lower than that from cow oocytes (35.0, 35.2, 36.5 and 48.3%, respectively, P < 0.05). In Experiment 4, a significantly higher proportion (P < 0.001) of presumptive zygotes derived from abattoir-derived cow oocytes reached the blastocyst stage following culture in vivo in the ewe oviduct than those derived from heifer oocytes (Day 8: 53.1% versus 25.2% for cow and heifer oocytes, respectively). In conclusion, the origin of the oocyte has a significant impact on its subsequent developmental potential. These results would suggest that in an in vitro production system, cow oocytes should be preferentially used over those from heifers in order to maximize blastocyst development.  相似文献   

19.
The present study aimed to evaluate the efficacy of different inducers of new follicular wave emergence (FWE) and ovulation in fixed-time artificial insemination (FTAI) synchronization protocols using norgestomet ear implants (NORG) in Bos indicus cattle. In Experiment 1, the synchronization of FWE was evaluated when two different estradiol esters in different doses [2mg estradiol benzoate (EB), 2.5mg EV or 5mg estradiol valerate (EV)] were administered with NORG implant insertion in B. indicus cattle (estrous cyclic heifers and cows with suckling calves; n=10 per treatment). After estradiol treatment, ovarian ultrasonic exams were performed once daily to detect the interval between treatment and FWE. There were significant treatment-by-animal category interaction (P=0.05) on the interval from the estradiol treatment to FWE. An earlier (P<0.0001) and less variable (P=0.02) interval from estradiol treatment to FWE was observed in heifers treated with EB (2.5±0.2; mean±SE) than in those treated with 2.5mg EV (4.2±0.3) or 5mg EV (6.1±0.6). Cows treated with 5mg EV (4.0±0.5) had longer (P=0.05) interval than cows receiving EB (2.5±0.2), however, there was an intermediate interval in those cows treated with 2.5mg EV (3.1±0.4). In Experiment 2, the number of uses of the NORG implant (new; n=305 or previously used once; n=314) and three different ovulation induction hormones [0.5mg estradiol cypionate (EC) at implant removal (n=205), 1mg EB given 24h after implant removal (n=219), or 100μg gonadorelin (GnRH) given at FTAI (n=195)] were evaluated in Nelore heifers (2×3 factorial design). Similar pregnancy per AI (P/AI; 30 days after FTAI; P>0.05) were achieved using each of the three ovulation induction hormones (EB=40.6%; EC=48.3%, or GnRH=48.7%) and with a new (47.2%) or once-used NORG implant (44.3%). In Experiment 3, the effect of different ovulation induction hormones for FTAI [1mg EC at NORG implant removal (n=228), 10μg buserelin acetate at FTAI (GnRH; n=212) or both treatments (EC+GnRH; n=215)] on P/AI was evaluated in suckled beef cows treated with a once-used NORG implant and EB to synchronize the FWE. Similar P/AI (P=0.71) were obtained using GnRH (50.9%), EC (51.8%) or both treatments (54.9%) as ovulation induction hormones. Therefore, both doses of EV (2.5 or 5.0mg) with NORG implant delayed and increased the variation of the day of new FWE compared with EB in B. indicus cattle. These effects were more pronounced in B. indicus heifers than cows. Synchronization protocols for FTAI with either a new or once-used NORG implant with EB at insertion to induce a new FWE and either the use of EB, EC or GnRH as ovulation induction hormones may be successful in B. indicus heifers. Also, when a once-used NORG implant was used, either the administration of EC, GnRH or both as ovulation inducers resulted in similar P/AI in suckled B. indicus cows, showing no additive effect of the combination of both ovulation induction hormones.  相似文献   

20.
The objectives were to investigate relationships among concentrations of nitric oxide (NO), estradiol 17 beta (E2), and progesterone (P4) in follicular fluids (FF), and quality of cumulus oocyte complexes (COCs) with respect to perifollicular blood flow (FBF). In Experiment I, follicles (138) were classified according to the presence or absence of FBF (assessed with transvaginal Doppler ultrasonography) and diameter of follicles (small, 2-4 mm; medium, 5-8 mm; and large, ≥9 mm). Concentrations of NO in FF did not differ significantly among these size categories. However, NO concentrations in FF with FBF (54.4 ± 7.4 μmol/l) were higher (P<0.05) than in those without FBF (36.6 ± 4.1 μmol/l). There was a positive correlation (r=0.30, P<0.05) between NO concentrations and the E2:P4 in FF. Rate of E2 active (E2:P4 ≥ 1) follicles were numerically 1.2 (0.8-1.8) times higher in follicles with FBF (38.1%) compared to those without FBF (25.0%). Moreover, rates of E2 active follicles were 6.1 (0.7-55.2) and 1.3 (0.1-17.3) times higher (P<0.06) in large (43.3%) and medium (14.3%) compared to small follicles (11.1%), respectively. In Experiment II, quality of COCs from 2 to 8 mm follicles, obtained by transvaginal ovum pick up (OPU), was investigated with respect to FBF. Odds ratio to obtain higher quality COCs from follicles with FBF (47.1%) was 3.3 (1.1-9.6) fold higher (P<0.05) compared to those from follicles without FBF (14.6%). In conclusion, E2:P4, and NO concentrations in FF, as well as FBF, could be used to determine the functionality of ovarian follicles in cows. Moreover, determination of FBF could be useful to predict quality of COCs in cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号