首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In search of potential therapeutics for tuberculosis, we describe herein synthesis and biological evaluation of some substituted 4-arylthiazol-2-amino derivatives as modified analogues of the antiprotozoal drug Nitazoxanide (NTZ), which has recently been reported as potent inhibitor of Mtb H(37)Rv (Mtb MIC=52.12 μM) with an excellent ability to evade resistance. Among the synthesized derivatives, the two compounds 7a (MIC=15.28 μM) and 7c (MIC=17.03 μM) have exhibited about three times better Mtb growth inhibitory activity over NTZ and are free from any cytotoxicity (Vero CC(50) of 244 and 300 μM respectively). These two compounds represent promising leads for further optimization.  相似文献   

2.
We have recently reported that expression in yeast cells of P-glycoprotein (P-gp) encoded by the mouse multidrug resistance mdr3 gene (Mdr3) can complement a null ste6 mutation (M. Raymond, P. Gros, M. Whiteway, and D. Y. Thomas, Science 256:232-234, 1992). Here we show that Mdr3 behaves as a fully functional drug transporter in this heterologous expression system. Photolabelling experiments indicate that Mdr3 synthesized in yeast cells binds the drug analog [125I]iodoaryl azidoprazosin, this binding being competed for by vinblastine and tetraphenylphosphonium bromide, two known multidrug resistance drugs. Spheroplasts expressing wild-type Mdr3 (Ser-939) exhibit an ATP-dependent and verapamil-sensitive decreased accumulation of [3H]vinblastine as compared with spheroplasts expressing a mutant form of Mdr3 with impaired transport activity (Phe-939). Expression of Mdr3 in yeast cells can confer resistance to growth inhibition by the antifungal and immunosuppressive agent FK520, suggesting that this compound is a substrate for P-gp in yeast cells. Replacement of Ser-939 in Mdr3 by a series of amino acid substitutions is shown to modulate both the level of cellular resistance to FK520 and the mating efficiency of yeast mdr3 transformants. The effects of these mutations on the function of Mdr3 in yeast cells are similar to those observed in mammalian cells with respect to drug resistance and transport, indicating that transport of a-factor and FK520 in yeast cells is mechanistically similar to drug transport in mammalian cells. The ability of P-gp to confer cellular resistance to FK520 in yeast cells establishes a dominant phenotype that can be assayed for the positive selection of intragenic revertants of P-gp inactive mutants, an important tool for the structure-function analysis of mammalian P-gp in yeast cells.  相似文献   

3.
A novel series of triazol-N-ethyl-tetrahydroisoquinoline based compounds were designed and synthesized via click chemistry. Most of the synthesized compounds showed P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal activities. Among them, compound 7 with little cytotoxicity towards GES-1 cells (IC50 >80 μM) and K562/A02 cells (IC50 >80 μM) exhibited more potency than verapamil (VRP) on increasing anticancer drug accumulation in K562/A02 cells. Moreover, compound 7 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 7 in reversing MDR revealed that it could remarkably increase the intracellular accumulation of both rhodamine-123 (Rh123) and adriamycin (ADM) in K562/A02 cells as well as inhibit their efflux from the cells. These results suggested that compound 7 showed more potency than the classical P-gp inhibitor VRP under the same conditions, which may be a promising P-gp-mediated MDR modulator for further development.  相似文献   

4.
In the present investigation, a series of 1,5-dimethyl-2-phenyl-4-{[(5-aryl-1,3,4-oxadiazol-2-yl)methyl]amino}-1,2-dihydro-3H-pyrazol-3-one were subjected to molecular properties prediction, drug-likeness by Molinspiration (Molinspiration, 2008) and MolSoft (MolSoft, 2007) software, lipophilicity and solubility parameters using ALOGPS 2.1 program. The compounds followed the Lipinski ‘Rule of five’ were synthesized for antimicrobial and antitubercular screening as oral bioavailable drugs/leads. Maximum drug-likeness model score (0.95) was found for compound, 4a. All the synthesized compounds were characterized by IR, NMR and mass spectral analysis followed by antimicrobial and antimycobacterial screening. Among the title compounds, compound 4d showed pronounced activity against Mycobacterium tuberculosis H37Rv and isoniazid resistant M. tuberculosis (INHR-TB) with minimum inhibitory concentrations (MICs) 0.78 μM and 1.52 μM, respectively. The compound, 4a showed maximum activity against all bacterial strains with MIC 4–8 μg/mL comparable to standard drug ciprofloxacin, while the compounds, 4e and 4k showed maximum antifungal activity with MIC 8–16 μg/mL less active than standard drug fluconazole.  相似文献   

5.
The P-glycoprotein (P-gp, ABCB1) drug pump protects us from toxic compounds and confers multidrug resistance. Each of the two homologous halves of P-gp is composed of a transmembrane domain (TMD) with six TM segments followed by a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Crystal structures show drug pumps in the open and closed conformations, where the drug-binding pocket and NBDs are open or closed at the cytoplasmic side, respectively. Although it has been postulated that drug substrates enter the drug-binding pocket in the open conformation, it is unknown if they can enter in the closed conformation. To determine this, we introduced cysteines into regions of TM3 (residues 175-178) and TM9 (residues 820-822) that extend into the cytoplasm and are 4 Å and 20 Å apart in the closed and open conformations, respectively. The 12 double cysteine mutants were then cross-linked with a short cross-linker, M1M (4 Å) at 0 °C to reduce thermal motion in the protein. Only mutant L175C/N820C was cross-linked. Cross-linking was not increased in the presence of ATP or drug substrates. Cross-linking increased its basal ATPase activity about 3-fold. Activity could be increased further by drug substrates such as verapamil and rhodamine B. These results suggest that P-gp in the membrane is in the closed conformation that has a high affinity for drug substrates.  相似文献   

6.
Chloride channel-3 (ClC-3), a member of the ClC family of voltage-gated Cl channels, is involved in the resistance of tumor cells to chemotherapeutic drugs. Here, we report a new mechanism for ClC-3 in mediating multidrug resistance (MDR). ClC-3 was highly expressed in the P-glycoprotein (P-gp)-dependent human lung adenocarcinoma cell line (A549)/paclitaxel (PTX) and the human breast carcinoma cell line (MCF-7)/doxorubicin (DOX) resistant cells. Changes in the ClC-3 expression resulted in the development of drug resistance in formerly drug-sensitive A549 or MCF-7 cells, and drug sensitivity in formerly drug-resistant A549/Taxol and MCF-7/DOX cells. Double transgenic MMTV-PyMT/CLCN3 mice with spontaneous mammary cancer and ClC-3 overexpression demonstrated drug resistance to PTX and DOX. ClC-3 expression upregulated the expression of MDR1 messenger RNA and P-gp by activating the nuclear factor-κB (NF-κB)-signaling pathway. These data suggest that ClC-3 expression in cancer cells induces MDR by upregulating NF-κB-signaling-dependent P-gp expression involving another new mechanism for ClC-3 in the development of drug resistance of cancers.  相似文献   

7.
Adenosine triphosphate (ATP)-binding cassette (ABC) transporters play a key role in the development of multidrug resistance (MDR) in cancer cells. P-glycoprotein (P-gp) and multidrug resistance-associated protein 1 (MRP1) are important proteins in this superfamily which are widely expressed on the membranes of multidrug resistance (MDR) cancer cells. Besides, upregulation of cellular autophagic responses is considered a contributing factor for MDR in cancer cells. We designed a liposome system co-encapsulating a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and a typical autophagy inhibitior (chloroquine phosphate, CQ) at a weight ratio of 1:2 and investigated its drug resistance reversal mechanism. MTT assay showed that the IC50 of DOX/CQ co-encapsulated liposome in DOX-resistant human breast cancer cells (MCF7/ADR) was 4.7?±?0.2?μM, 5.7-fold less than that of free DOX (26.9?±?1.9 μM), whereas it was 19.5-fold in doxorubicin-resistant human acute myelocytic leukemia cancer cells (HL60/ADR) (DOX/CQ co-encapsulated liposome 1.2?±?0.1?μM, free DOX 23.4?±?2.8?μM). The cellular uptake of DOX increased upon addition of free CQ, indicating that CQ may interact with P-gp and MRP1; however, the expressions of P-gp and MRP1 remained unchanged. In contrast, the expression of the autophagy-related protein LC3-II increased remarkably. Therefore, the mechanism of MDR reversal may be closely related to autophagic inhibition. Evaluation of anti-tumor activity was achieved in an MCF-7/ADR multicellular tumor spheroid model and transgenic zebrafish model. DOX/CQ co-encapsulated liposome exerted a better anti-tumor effect in both models than that of liposomal DOX or DOX alone. These findings suggest that encapsulating CQ with DOX in liposomes significantly improves the sensitivity of DOX in DOX-resistant cancer cells.  相似文献   

8.
In present study, a series of novel 1,3,4-oxadiazole derivatives have been designed, synthesized and purified. All of these compounds are reported for the first time, the chemical structures of these compounds were confirmed by means of (1)H NMR, ESI-MS and elemental analyses. Besides, we evaluated their immunosuppressive activity. Most of these synthesized compounds were proved to have potent immunosuppressive activity and low toxicity. Among them, the bioassay results demonstrated that compounds 5c, 5n, 5p, 5o, 6f and 6g exhibited immunosuppressive activities with IC(50) concentration range from 1.25μM to 7.60 μM against the T cells, and the IC(50) of positive control (csa) is 2.12 μM. Moreover, all the title compounds were assayed for PI3K/AKT signaling pathway inhibition using the ELISA assay. We examined the compounds with potent inhibitory activities against IL-1, IL-6 and IL-10 released in ConA-simulated mouse lymph node cells. The results showed compounds 5o and 6f displayed the most potential biological activity against T cells (IC(50)=1.25 μM and 4.75 μM for T cells). The preliminary mechanism of compound 5o inhibition effects was also detected by flow cytometry (FCM). The results of apoptosis and ELISA assay demonstrated that the immunosuppressive activity of compounds 5o and 6f against T cells may be mediated by the inhibition of PI3Kγ/AKT signaling pathway. Molecular docking was performed to position compounds 5o and 6f into PI3Kγ binding site in order to indicate the potential target.  相似文献   

9.
P-glycoprotein (P-gp) is one of the cell membrane pumps which mediate the efflux of molecules such as anticancer drugs to the extracellular matrix of tumor cells. P_gp is a member of the ATP-binding cassette (ABC) transporter family that is implicated in cancer multidrug resistance (MDR). Since MDR is a contributor to cancer chemotherapy failure, modulation of efflux pumps is a viable therapeutic strategy. In this study, new synthetic 1,4 dihydropiridine (DHP) derivatives containing thiophenyl substitution were tested as inhibitors of P-gp. Efflux assay was conducted to evaluate the intracellular accumulation of Rhodamine123 (Rh123) as a pump substrate. MTT assay, cell cycle analysis and in silico methods were also examined. Flow cytometric analysis revealed that synthetic DHP derivatives (15 µM) increased intracellular concentration of the substrate by 2–3 folds compared with verapamil as a standard P-gp inhibitor. MTT assay on EPG85-257P and its drug-resistant EPG85-257RDB cell line revealed antitumor effects (30–45%) for new DHP derivatives at 15 µM following 72 h incubation. However, MTT test on normal cell line showed negligible toxic effects. Finally combination of synthetic derivatives with doxorubicin showed that these compounds decrease IC50 of doxorubicin in resistant cell lines from 9 to 1.5 µM. Sub-G1 peak-related apoptotic cells showed a stronger effect of synthetic compounds at 5 µM compared with verapamil. Molecular dynamic results showed a high binding affinity between DHP derivative and protein at drug binding site. Findings of these biological tests indicated the antitumor activity and P-gp inhibitory effects of new 1,4-DHP derivatives.  相似文献   

10.
Twenty-five seco-4-methyl-DCK derivatives were designed, synthesized and evaluated for chemoreversal activity when combined with paclitaxel or vincristine in two drug-resistant cancer cell lines (A2780/T and KB-V) respectively. Most of the new compounds displayed moderate to significant MDR reversal activities in the P-gp overexpressing A2780/T and KB-V cells. Especially, compounds 7o and 7y showed the most potent chemosensitization activities with more than 496 and 735 reversal ratios at a concentration of 10?μM. Unexpectedly the newly synthesized compounds did not show chemosensitization activities observed in a non-P-gp overexpressing cisplatin resistant human ovarian cancer cell line (A2780/CDDP), implying that the MDR reversal effects might be associated with P-gp overexpression. Moreover, these compounds did not exhibit significant antiproliferative activities against nontumorigenic cell lines (HUVEC, HOSEC and T29) compared to the positive control verapamil at the tested concentration, which suggested better safety than verapamil. The pharmacological actions of the compounds will be studied further to explore their merit for development as novel candidates to overcome P-gp mediated MDR cancer.  相似文献   

11.
A series of substituted dibenzo[c,e]azepine-5-ones (7a-h) were synthesized and evaluated as P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) reversal agents. The most potent compound 7h could significantly and selectively enhance the chemo-sensitivity of drug-resistant K562/A02 cells to the cytotoxic effect of adriamycin (ADR) in a dose-dependent manner. Further studies indicated that 7h could markedly increase intracellular accumulation of both rhodamine 123 and ADR in K562/A02 cells and inhibit their efflux from the cells. And 7h had little effect on the levels of P-gp mRNA and protein in K562/A02 cells. These results suggest that the anti-MDR effect of 7h might be attributed to the inhibition of drug efflux function of P-gp, leading to the increased drug accumulation in K562/A02 cells, and thus the compound could be served as a lead for developing P-gp-mediated MDR reversal agents.  相似文献   

12.

Background

The discovery of diketoacid-containing derivatives as inhibitors of HIV-1 Integrase (IN) (IN inhibitors, IINs) has played a major role in validating this enzyme as an important target for antiretroviral therapy. Since the in vivo efficacy depends on access of these drugs to intracellular sites where HIV-1 replicates, we determined whether the IINs are recognized by the multidrug transporter MDR1-P-glycoprotein (P-gp) thereby reducing their intracellular accumulation. To address the effect of IINs on drug transport, nine quinolonyl diketo acid (DKA) derivatives active on the HIV-1 IN strand transfer (ST) step and with EC50 ranging from 1.83 to >50 μm in cell-based assays were tested for their in vitro interaction with P-gp in the CEM-MDR cell system. IINs were investigated for the inhibition and induction of the P-gp function and expression as well as for multidrug resistance (MDR) reversing ability.

Results

The HIV-1 IINs act as genuine P-gp substrates by inhibiting doxorubicin efflux and inducing P-gp functional conformation changes as evaluated by the modulation of UIC2 mAb epitope. Further, IINs chemosensitize MDR cells to vinblastine and induce P-gp expression in drug sensitive revertants of CEM-MDR cells.

Conclusion

To our knowledge, this is the first demonstration that HIV-1 IINs are P-gp substrates. This biological property may influence the absorption, distribution and elimination of these novels anti HIV-1 compounds.  相似文献   

13.
A series of spirochromenocarbazole tethered 1,2,3-triazoles were synthesized via click chemistry based one-pot, five component reaction between N-propargyl isatins, malononitrile, 4-hydroxycarbazole, aralkyl halides and sodium azide using cellulose supported CuI nanoparticles (Cell-CuI NPs) as the heterogeneous catalyst. Antiproliferative activity of all the synthesized compounds was investigated against panel of cancer cell lines such as MCF-7, MDA-MB-231, HeLa, PANC-1, A-549, and THP-1. Many of the synthesized compounds exhibited good anti-proliferative activity against breast (MCF-7 and MDA-MB-231) and cervical (HeLa) cancer cells with IC50 values less than 10 μM. In case of MCF-7 cells, among the nine compounds that showed good anti-proliferative activity, compounds 6f and 6j were found to be highly potent (IC50 = 2.13 μM and 4.80 μM, respectively). In case of MDA-MB-231, three compounds (6k, 6j and 6s) showed antiproliferative activity amongst which 6k was the most potent one (IC50 = 3.78 μM). On the other hand, in cervical cancer HeLa cells, compounds 6b, 6g, 6s and 6u showed excellent antiproliferative activity (IC50 = 4.05, 3.54, 3.83, 3.35 μM, respectively). All the compounds were found to be nontoxic to the human umbilical vein endothelial cells (HUVECs). AO and EtBr staining and fluorescence microscopy studies of the active compounds (IC50 < 5 μM) suggested that these compounds induce cell death by apoptosis.  相似文献   

14.
In an attempt to find clinically useful modulators of multidrug resistance (MDR), a series of 19 N(10)-substituted-2-methoxyacridone analogues has been synthesized. 2-Methoxyacridone and its derivatives (1-19) were synthesized. Compound 1 was prepared by the Ullmann condensation of o-chlorobenzoic acid and p-anisidine followed by cyclization using polyphosphoric acid. This compound undergoes N-alkylation in the presence of phase transfer catalyst (PTC). Stirring of 2-methoxy acridone with 1-bromo-3-chloropropane or 1-bromo-4-chlorobutane in a two-phase system consisting of organic phase (tetrahydrofuran) and 6N potassium hydroxide in the presence of tetrabutylammonium bromide leads to the formation of compounds 2 and 11 in good yield. N-(omega-Chloroalkyl) analogues were found to undergo iodide catalyzed nucleophilic substitution reaction with various secondary amines. Products were characterized by UV, IR, 1H and 13C NMR, mass-spectral data and elemental analysis. The lipophilicity expressed in log(10) P and pK(a) of compounds have been determined. All compounds were examined for their ability to increase the uptake of vinblastine (VLB) in MDR KBCh(R)-8-5 cells and the results showed that the compounds 7, 10, 12, and 15-19 at 100 microM caused a 1.05- to 1.7-fold greater accumulation of vinblastine than did a similar concentration of the standard modulator, verapamil (VRP). However, the effects on VLB uptake were specific because these derivatives had little effect in the parental drug sensitive line KB-3-1. Steady state accumulation of VLB, a substrate for P-glycoprotein (P-gp) mediated efflux, was studied in the MDR cell line KBCh(R)-8-5 in the presence and absence of novel MDR modulators. Results of the efflux experiment showed that VRP and each of the modulators (1-19) significantly inhibited the efflux of VLB, suggesting that they may be competitors for P-gp. From among the compounds examined, 14 except 1, 2, 4, 8, and 11, exhibited greater efflux inhibiting activity than VRP. All the 19 compounds effectively compete with [(3)H] azidopine for binding to P-gp, pointed out this transport membrane protein as their likely site of action. Cytotoxicity has been determined and the IC(50) values lie in the range 8.00-18.50 microM for propyl and 4-15 microM for butyl derivatives against KBCh(R)-8-5 cells suggesting that the antiproliferative activity increases as chain length increases from 3 to 4 carbons at N(10)-position. Compounds at IC(10) were evaluated for their efficacy to modulate the cytotoxicity of VLB in KBCh(R)-8-5 cells and found that the modulators enhanced the cytotoxicity of VLB by 5- to 35-fold. Modulators 12, 14-16, and 19 like VRP, were able to completely reverse the 24-fold resistance of KBCh(R)-8-5 cells to VLB. Examination of the relationship between lipophilicity and antagonism of MDR showed a reasonable correlation suggesting that hydrophobicity is one of the determinants of potency for anti-MDR activity of 2-methoxyacridones.  相似文献   

15.
Cytotoxic activity-guided fractionation studies on Glycyrrhiza echinata roots led to the isolation of eight compounds ( 1 – 8 ). Chemical structures of the isolates were identified by NMR and MS analysis. Among the tested molecules, retrochalcones namely echinatin ( 3 ) (IC50=23.45–41.83 μM), licochalcone B ( 4 ) (IC50=36.04–39.53 μM) and tetrahydroxylmethoxychalcone ( 5 ) (IC50=7.09–80.81 μM) were the most active ones against PC3, MCF7 and HepG2 cells. Moreover, 5 exhibited selectivity on prostate cancer cells (SI: 5.19). Hoechst staining and Annexin V/PI binding assays as well as cell cycle analysis on the compounds 3 (23 μM) and 5 (5 and 7 μM) demonstrated that these retrochalcones induced apoptosis and significantly suppressed cell cycle in G1 and G2/M phases. Furthermore, 3 and 5 showed antimigratory effects on PC3 cells by wound healing assay. The results indicated that tested retrochalcones most particularly 5 could be potential anticancer drug candidates that prevent proliferation and migration of cancer cells.  相似文献   

16.
BACKGROUND: Anthracycline resistance is known to be mediated by P-glycoprotein (P-gp) or multidrug-resistance related protein (MRP) as well as intracellular sequestration of drugs. METHODS: The resistance phenotype of doxorubicin-selected MCF-7(DXR) human breast adenocarcinoma cell line was characterized by cellular and nuclear daunorubicin efflux, P-gp and MRP expression and apoptosis induction. Daunorubicin sequestration was investigated through organelle markers (lysosomes, endoplasmic reticulum and Golgi apparatus) and daunorubicin co-localization by dual-color image analysis fluorescence microscopy using high numerical aperture objective lenses to achieve the smallest field depth and the best lateral resolution. Signal to noise and specificity ratios were optimized for daunorubicin and organelle fluorescent probes labeling. RESULTS: An original image analysis procedure was developed to investigate daunorubicin and organelles co-localization. The reliability of the image analysis was controlled through chromatic shift and intensity linearity measurement using calibrated microbeads. The main contribution (65%) of Golgi vesicles in daunorubicin sequestration was demonstrated. Although no rational relationship could be established between daunorubicin sequestration and apoptosis induction, no apoptosis was observed in MCF-7(DXR) cells. CONCLUSIONS: In addition to P-glycoprotein mediated drug efflux and without MRP overexpression, MCF-7(DXR) daunorubicin resistance phenotype involves drug sequestration within intracellular vesicles identified as Golgi vesicles and resistance to apoptosis induction.  相似文献   

17.
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 μM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 μM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 μM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 μM) and MRP2 induction by GNT (only at 10 μM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.  相似文献   

18.
Overexpression of P-glycoprotein (P-gp) is one of the major obstacles to successful cancer chemotherapy. In this study, we examined the ability of 4-chloro-N-(3-((E)-3-(4-hydroxy-3-methoxyphenyl)acryloyl)phenyl)benzamide (C-4) to reverse multidrug resistance (MDR) in P-gp expressing KBV20C cells. Treatment of KBV20C cells with C-4 led to a dramatic increase in paclitaxel- or vincristine-induced cytotoxicity without any cytotoxicity by itself. In parallel, C-4 treatment caused an increase in apoptotic cell death by paclitaxel or vincristine. Furthermore, C-4 treatment significantly increases in intracellular accumulation of fluorescent P-gp substrate rhodamine 123, indicating that C-4 treatment leads to reversal of the MDR phenotype resulting from an increased accumulation of anticancer drugs by inhibiting drug efflux function of P-gp. This notion is further supported by the observation that C-4 treatment potentiates paclitaxel-induced G(2)/M arrest of the cell cycle. In addition, the drug efflux function of P-gp was reversibly inhibited by C-4 treatment, while the expression level of P-gp was not affected. Collectively, our results describe the potential of C-4 to reverse the P-gp-mediated MDR phenotype through reversible inhibition of P-gp function, which may make it an attractive new agent for the chemosensitization of cancer cells.  相似文献   

19.
P-glycoprotein (P-gp) antagonists inhibit ceramide metabolism at the juncture of glycosylation. The purpose of this study was to test whether targeting P-gp would be a viable alternative to targeting glucosylceramide synthase (GCS) for enhancing ceramide cytotoxicity. A2780 wild-type, and multidrug-resistant 2780AD and NCI/ADR-RES human ovarian cancer cell lines and the cell-permeable ceramide analog, C6-ceramide (C6-cer), were employed. Compared to P-gp-poor A2780 cells, P-gp-rich 2780AD cells converted 3.7-fold more C6-cer to nontoxic C6-glucosylceramide (C6-GC), whereas cell-free GCS activities were equal. 2780AD cells displayed resistance to C6-cer (10 μM) that was reversed by inclusion of the P-gp antagonist tamoxifen (5 μM) but not by inclusion of a GCS inhibitor. Co-administration of C6-cer and P-gp antagonists was also effective in NCI/ADR-RES cells. For example, C6-cer, VX-710 (Biricodar), and cyclosporin A (cyc A) exposure resulted in viabilities of ~ 90% of control; however, C6-cer/VX-710 and C6-cer/cyc A additions were synergistic and resulted in viabilities of 22% and 17%, respectively. Further, whereas C6-ceramide and cyc A imparted 1.5- and 0-fold increases in caspase 3/7 activity, the combination produced a 3.5-fold increase. Although the upstream elements of cell death have not been elucidated, the novel C6-ceramide/P-gp antagonist combination merits further study and assessment of clinical translational potential.  相似文献   

20.
P-glycoprotein (P-gp; ABCB1) is an ABC drug pump that protects us from toxic compounds. It is clinically important because it confers multidrug resistance. The homologous halves of P-gp each contain a transmembrane (TM) domain (TMD) with 6 TM segments followed by a nucleotide-binding domain (NBD). The drug- and ATP-binding sites reside at the interface between the TMDs and NBDs, respectively. Each NBD is connected to the TMDs by a transmission interface involving a pair of intracellular loops (ICLs) that form ball-and-socket joints. P-gp is different from CFTR (ABCC7) in that deleting NBD2 causes misprocessing of only P-gp. Therefore, NBD2 might be critical for stabilizing ICLs 2 and 3 that form a tetrahelix bundle at the NBD2 interface. Here we report that the NBD1 and NBD2 transmission interfaces in P-gp are asymmetric. Point mutations to 25 of 60 ICL2/ICL3 residues at the NBD2 transmission interface severely reduced P-gp assembly while changes to the equivalent residues in ICL1/ICL4 at the NBD1 interface had little effect. The hydrophobic nature at the transmission interfaces was also different. Mutation of Phe-1086 or Tyr-1087 to arginine at the NBD2 socket blocked activity or assembly while the equivalent mutations at the NBD1 socket had only modest effects. The results suggest that the NBD transmission interfaces are asymmetric. In contrast to the ICL2/3-NBD2 interface, the ICL1/4-NBD1 transmission interface is more hydrophilic and insensitive to mutations. Therefore the ICL2/3-NBD2 transmission interface forms a precise hydrophobic connection that acts as a linchpin for assembly and trafficking of P-gp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号