首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(2+)-sensitive mutants of the yeast Saccharomyces cerevisiae showing a Pet- phenotype (cls7-cls11) have lesions in a system for maintaining intracellular Ca2+ homeostasis (Ohya, Y., Ohsumi, Y., and Anraku, Y. (1986) J. Gen. Microbiol. 132, 979-988). Genetic and biochemical studies have demonstrated that these Pet- cls mutants are related to defects in vacuolar membrane H(+)-ATPase. CLS7 and CLS8 were found to be identical with the structural genes encoding subunit c (VMA3) and subunit a (VMA1), respectively, of the enzyme. In addition, these five mutants all had vma defects; no vacuolar membrane ATPase activity was detected in the cls cells, and the cls mutants showed a loss of ability to acidify the vacuole in vivo. Measurements of the cytosolic free Ca2+ concentration [( Ca2+]i) in individual cells showed that the average [Ca2+]i in wild-type cells was 150 +/- 80 nM, whereas that in five Pet- cls cells was 900 +/- 100 nM. These data are consistent with the observation that vacuolar membrane vesicles prepared from the Pet- cls cells have lost ATP-dependent Ca2+ uptake activities. The cls defects of vacuolar membrane H(+)-ATPase resulted in pleiotropic effects on several cellular activities, including Ca2+ homeostasis, glycerol metabolism, and phospholipid metabolism. The mutants showed an inositol-dependent phenotype, possibly due to alteration in regulation of phospholipid biosynthesis; the phosphatidylserine decarboxylase activities of the mutants were 15-50% of that of the wild-type cells and were not repressed by the addition of inositol. In contrast to the majority of previously isolated pet mutants (Tzagoloff, A., and Dieckmann, C. L. (1990) Microbiol. Rev. 54, 211-225), the Pet- cls mutants showed no detectable mitochondrial defects. Taking all these findings into account, we suggest that at least six genes, VMA1 (CLS8, subunit a), VMA2 (subunit b), VMA3 (CLS7, subunit c), VMA11 (CLS9), VMA12 (CLS10), and VMA13 (CLS11), are required for expression of the vacuolar membrane H(+)-ATPase activity.  相似文献   

2.
The acidocalcisome is an acidic calcium store in trypanosomatids with a vacuolar-type proton-pumping pyrophosphatase (V-H(+)-PPase) located in its membrane. In this paper, we describe a new method using iodixanol density gradients for purification of the acidocalcisome from Trypanosoma cruzi epimastigotes. Pyrophosphatase assays indicated that the isolated organelle was at least 60-fold purified compared with the large organelle (10,000 x g) fraction. Assays for other organelles generally indicated no enrichment in the acidocalcisome fraction; glycosomes were concentrated 5-fold. Vanadate-sensitive ATP-driven Ca(2+) uptake (Ca(2+)-ATPase) activity was detectable in the isolated acidocalcisome, but ionophore experiments indicated that it was not acidic. However, when pyrophosphate was added, the organelle acidified, and the rate of Ca(2+) uptake increased. Use of the indicator Oxonol VI showed that V-H(+)-PPase activity generated a membrane potential. Use of sulfate or nitrate in place of chloride in the assay buffer did not affect V-H(+)-PPase activity, but there was less activity with gluconate. Organelle acidification was countered by the chloride/proton symport cycloprogidiosin. No vacuolar H(+)-ATPase activity was detectable in isolated acidocalcisomes. However, immunoblots showed the presence of at least a membrane-bound V-H(+)-ATPase subunit, while experiments employing permeabilized epimastigotes suggested that vacuolar H(+)-ATPase and V-H(+)-PPase activities are present in the same Ca(2+)-containing compartment.  相似文献   

3.
In the skin of zebrafish embryo, the vacuolar H(+)-ATPase (V-ATPase, H(+) pump) distributed mainly in the apical membrane of H(+)-pump-rich cells, which pump internal acid out of the embryo and function similarly to acid-secreting intercalated cells in mammalian kidney. In addition to acid excretion, the electrogenic H(+) efflux via the H(+)-ATPases in the gill apical membrane of freshwater fish was proposed to act as a driving force for Na(+) entry through the apical Na(+) channels. However, convincing molecular physiological evidence in vivo for this model is still lacking. In this study, we used morpholino-modified antisense oligonucleotides to knockdown the gene product of H(+)-ATPase subunit A (atp6v1a) and examined the phenotype of the mutants. The H(+)-ATPase knockdown embryos revealed several abnormalities, including suppression of acid-secretion from skin, growth retardation, trunk deformation, and loss of internal Ca(2+) and Na(+). This finding reveals the critical role of H(+)-ATPase in embryonic acid -secretion and ion balance, as well.  相似文献   

4.
We investigated the involvement of carbonic anhydrase (CA) in mediating V-H(+)-ATPase translocation into the basolateral membrane in gills of alkalotic Squalus acanthias. Immunolabeling revealed that CA is localized in the same cells as V-H(+)-ATPase. Blood plasma from dogfish injected with acetazolamide [30 mg/kg at time (t) = 0 and 6 h] and infused with NaHCO(3) for 12 h (1,000 microeq.kg(-1).h(-1)) had significantly higher plasma HCO(3)(-) concentration than fish that were infused with NaHCO(3) alone (28.72 +/- 0.41 vs. 6.57 +/- 2.47 mmol/l, n = 3), whereas blood pH was similar in both treatments (8.03 +/- 0.11 vs. 8.04 +/- 0.11 pH units at t = 12 h). CA inhibition impaired V-H(+)-ATPase translocation into the basolateral membrane, as estimated from immunolabeled gill sections and Western blotting on gill cell membranes (0.24 +/- 0.08 vs. 1.00 +/- 0.28 arbitrary units, n = 3; P < 0.05). We investigated V-H(+)-ATPase translocation during a postfeeding alkalosis ("alkaline tide"). Gill samples were taken 24-26 h after dogfish were fed to satiety in a natural-like feeding regime. Immunolabeled gill sections revealed that V-H(+)-ATPase translocated to the basolateral membrane in the postfed fish. Confirming this result, V-H(+)-ATPase abundance was twofold higher in gill cell membranes of the postfed fish than in fasted fish (n = 4-5; P < 0.05). These results indicate that 1) intracellular H(+) or HCO(3)(-) produced by CA (and not blood pH or HCO(3)(-)) is likely the stimulus that triggers the V-H(+)-ATPase translocation into the basolateral membrane in alkalotic fish and 2) V-H(+)-ATPase translocation is important for enhanced HCO(3)(-) secretion during a naturally occurring postfeeding alkalosis.  相似文献   

5.
植物液泡膜H^ -ATPase在建立跨液泡膜质子梯度、促进液泡Na^ 区域化、提高植物耐盐性方面发挥着重要作用。本实验从盐生植物盐地碱蓬(Suaeda salsa L.)cDNA文库分离到碱蓬叶片液泡膜H^ -ATPase B亚基cDNA克隆。测序表明该基因长达1974bp,开放阅读框有1470bp编码489个氨基酸,含有一个保守的ATP结合位点,其蛋白分子量约为54.29kD。Northern及Western印迹表明盐地碱蓬液泡膜H^ -ATPase B亚基表达明显受NaCl胁迫诱导,并且在NaCl胁迫下,B亚基在转录及翻译水平上与液泡膜H^ -ATPase c亚基存在协同作用。盐胁迫下,盐地碱蓬液泡H^ -ATPase B亚基与c亚基的协同表达增加了液泡H^ -ATPase的数量,从而提高了液泡H^ -ATPase活性,为碱蓬叶片液泡Na^ 区域化提供了动力,最终提高了碱蓬植株的耐盐性。  相似文献   

6.
The asexual development of malaria parasites inside the erythrocyte is accompanied by changes in the composition, structure, and function of the host cell membrane and cytoplasm. The parasite exports a membrane network into the host cytoplasm and several proteins that are inserted into the erythrocyte membrane, although none of these proteins has been shown to have enzymatic activity. We report here that a functional malaria parasite-encoded vacuolar (V)-H(+)-ATPase is exported to the erythrocyte and localized in membranous structures and in the plasma membrane of the infected erythrocyte. This localization was determined by separation of parasite and erythrocyte membranes and determination of enzyme marker activities and by immunofluorescence microscopy assays using antibodies against the B subunit of the malarial V-H(+)-ATPase and erythrocyte (spectrins) and parasite (merozoite surface protein 1) markers. Our results suggest that this pump has a role in the maintenance of the intracellular pH (pH(i)) of the infected erythrocyte. Our results also indicate that although the pH(i) maintained by the V-H(+)-ATPase is important for maximum uptake of small metabolites at equilibrium, it does not appear to affect transport across the erythrocyte membrane and is, therefore, not involved in the previously described phenomenon of increased permeability of infected erythrocytes that is sensitive to chloride channel inhibitors (new permeation pathway). This constitutes the first report of the presence of a functional enzyme of parasite origin in the plasma membrane of its host.  相似文献   

7.
The lung endothelium layer is exposed to continuous CO(2) transit which exposes the endothelium to a substantial acid load that could be detrimental to cell function. The Na(+)/H(+) exchanger and HCO(3)(-)-dependent H(+)-transporting mechanisms regulate intracellular pH (pH(cyt)) in most cells. Cells that cope with high acid loads might require additional primary energy-dependent mechanisms. V-H(+)-ATPases localized at the plasma membranes (pmV-ATPases) have emerged as a novel pH regulatory system. We hypothesized that human lung microvascular endothelial (HLMVE) cells use pmV-ATPases, in addition to Na(+)/H(+) exchanger and HCO(3)(-)-based H(+)-transporting mechanisms, to maintain pH(cyt) homeostasis. Immunocytochemical studies revealed V-H(+)-ATPase at the plasma membrane, in addition to the predicted distribution in vacuolar compartments. Acid-loaded HLMVE cells exhibited proton fluxes in the absence of Na(+) and HCO(3)(-) that were similar to those observed in the presence of either Na(+), or Na(+) and HCO(3)(-). The Na(+)- and HCO(3)(-)-independent pH(cyt) recovery was inhibited by bafilomycin A(1), a V-H(+)-ATPase inhibitor. These studies show a Na(+)- and HCO(3)(-)-independent pH(cyt) regulatory mechanism in HLMVE cells that is mediated by pmV-ATPases.  相似文献   

8.
The root microsomal proteomes of salt-tolerant and salt-sensitive wheat lines under salt stress were analyzed by two-dimensional electrophoresis and mass spectrum. A wheat V-H(+)-ATPase E subunit protein was obtained whose expression was enhanced by salt stress. In silicon cloning identified the full-length cDNA sequences of nine subunits and partial cDNA sequences of two subunits of wheat V-H(+)-ATPase. The expression profiles of these V-H(+)-ATPase subunits in roots and leaves of both salt-tolerant and salt-sensitive wheat lines under salt and abscisic acid (ABA) stress were analyzed. The results indicate that the coordinated enhancement of the expression of V-H(+)-ATPase subunits under salt and ABA stress is an important factor determining improved salt tolerance in wheat. The expression of these subunits was tissue-specific. Overexpression of the E subunit by transgenic Arabidopsis thaliana was able to enhance seed germination, root growth and adult seedling growth under salt stress.  相似文献   

9.
Organelle acidification plays a demonstrable role in intracellular protein processing, transport, and sorting in animal cells. We investigated the relationship between acidification and protein sorting in yeast by treating yeast cells with ammonium chloride and found that this lysosomotropic agent caused the mislocalization of a substantial fraction of the newly synthesized vacuolar (lysosomal) enzyme proteinase A (PrA) to the cell surface. We have also determined that a subset of the vpl mutants, which are deficient in sorting of vacuolar proteins (Rothman, J. H., and T. H. Stevens. 1986. Cell. 47:1041-1051; Rothman, J. H., I. Howald, and T. H. Stevens. EMBO [Eur. Mol. Biol. Organ.] J. In press), failed to accumulate the lysosomotropic fluorescent dye quinacrine within their vacuoles, mimicking the phenotype of wild-type cells treated with ammonium. The acidification defect of vpl3 and vpl6 mutants correlated with a marked deficiency in vacuolar ATPase activity, diminished levels of two immunoreactive subunits of the protontranslocating ATPase (H+-ATPase) in purified vacuolar membranes, and accumulation of the intracellular portion of PrA as the precursor species. Therefore, some of the VPL genes are required for the normal function of the yeast vacuolar H+-ATPase complex and may encode either subunits of the enzyme or components required for its assembly and targeting. Collectively, these findings implicate a critical role for acidification in vacuolar protein sorting and zymogen activation in yeast, and suggest that components of the yeast vacuolar acidification system may be identified by examining mutants defective in sorting of vacuolar proteins.  相似文献   

10.
VMA3, a structure gene of the vacuolar membrane H(+)-ATPase subunit c of Saccharomyces cerevisiae, has been cloned and characterized. The VMA3 gene encodes a hydrophobic polypeptide with 160 amino acids as reported previously by Nelson and Nelson (Nelson, H., and Nelson, N. (1989) FEBS Lett. 247, 147-153). Peptide sequence analysis indicated that the VMA3 gene product lacks N-terminal methionine and does not have a cleavable signal sequence. To investigate functional and structural roles of the subunit c for vacuolar acidification and protein transport to the vacuole, haploid mutants with the disrupted VMA3 gene were constructed. The vma3 mutants can grow in nutrient-enriched medium, but they have completely lost the vacuolar membrane H(+)-ATPase activity and the ability of vacuolar acidification in vivo. The subunit c was found to be indispensable for the assembly of subunits a and b of the H(+)-ATPase complex. The disruption of the VMA3 gene causes yeast cells with considerable lesions in vacuolar biogenesis and protein transport to the vacuole and inhibits endocytosis of lucifer yellow CH completely.  相似文献   

11.
The collection of vacuolar protein sorting mutants (vps mutants) in Saccharomyces cerevisiae comprises of 41 complementation groups. The vacuoles in these mutant strains were examined using immunofluorescence microscopy. Most of the vps mutants were found to possess vacuolar morphologies that differed significantly from wild-type vacuoles. Furthermore, mutants representing independent vps complementation groups were found to share aberrant morphological features. Six distinct classes of vacuolar morphology were observed. Mutants from eight vps complementation groups were defective both for vacuolar segregation from mother cells into developing buds and for acidification of the vacuole. Another group of mutants, represented by 13 complementation groups, accumulated a novel organelle distinct from the vacuole that contained a late-Golgi protein, active vacuolar H(+)-ATPase complex, and soluble vacuolar hydrolases. We suggest that this organelle may represent an exaggerated endosome-like compartment. None of the vps mutants appeared to mislocalize significant amounts of the vacuolar membrane protein alkaline phosphatase. Quantitative immunoprecipitations of the soluble vacuolar hydrolase carboxypeptidase Y (CPY) were performed to determine the extent of the sorting defect in each vps mutant. A good correlation between morphological phenotype and the extent of the CPY sorting defect was observed.  相似文献   

12.
Angiogenesis requires invasion of extracellular matrix (ECM) proteins by endothelial cells and occurs in hypoxic and acidic environments that are not conducive for cell growth and survival. We hypothesize that angiogenic cells must exhibit a unique system to regulate their cytosolic pH in order to cope with these harsh conditions. The plasmalemmal vacuolar type H(+)-ATPase (pmV-ATPase) is used by cells exhibiting an invasive phenotype. Because angiogenesis is impaired in diabetes, we hypothesized that pmV-ATPase is decreased in microvascular endothelial cells from diabetic rats. The in vitro angiogenesis assays demonstrated that endothelial cells were unable to form capillary-like structures in diabetes. The proton fluxes were slower in cells from diabetic than normal model, regardless of the presence or absence of Na(+) and HCO(3) (-) and were suppressed by V-H(+)-ATPase inhibitors. Immunocytochemical data revealed that pmV-ATPases were inconspicuous at the plasma membrane of cells from diabetic whereas in normal cells were prominent. The pmV-ATPase activity was lower in cells from diabetic than normal models. Inhibition of V-H(+)-ATPase suppresses invasion/migration of normal cells, but have minor effects in cells from diabetic models. These novel observations suggest that the angiogenic abnormalities in diabetes involve a decrease in pmV-ATPase in microvascular endothelial cells.  相似文献   

13.
The thioredoxin system, consisting of thioredoxin, thioredoxin reductase and NADPH, has been well established to be critical for the redox regulation of protein function and signalling. To investigate the role of thioredoxin reductase (Trr) in Dictyostelium discoideum, we generated mutant cells that underexpress or overexpress Trr. Trr-underexpressing cells exhibited severe defects in axenic growth and development. Trr-overexpressing (TrrOE) cells formed very tiny plaques on a bacterial lawn and had a lower rate of bacterial uptake. When developed in the dark, TrrOE cells exhibited a slugger phenotype, defined by a prolonged migrating slug stage. Like other slugger mutants, they were hypersensitive to ammonia, which has been known to inhibit culmination by raising the pH of intracellular acidic compartments. Interestingly, TrrOE cells showed defective acidification of intracellular compartments and decreased activity of vacuolar H+-ATPase which functions in the acidification of intracellular compartments. Moreover, biochemical studies revealed that the thioredoxin system can directly reduce the catalytic subunit of vacuolar H+-ATPase whose activity is regulated by reversible disulphide bond formation. Taken together, these results suggest that Dictyostelium Trr may be essential for growth and play a role in regulation of phagocytosis and culmination, possibly through the modulation of vacuolar H+-ATPase activity.  相似文献   

14.
Acidocalcisomes are acidic calcium storage compartments described initially in trypanosomatid and apicomplexan parasites. In this work, we describe organelles with properties similar to acidocalcisomes in the green alga Chlamydomonas reinhardtii. Nigericin and NH(4)Cl released (45)Ca(2+) from preloaded permeabilized cells, suggesting the incorporation of a significant amount of this cation into an acidic compartment. X-ray microanalysis of the electron-dense vacuoles or polyphosphate bodies of C. reinhardtii showed large amounts of phosphorus, magnesium, calcium, and zinc. Immunofluorescence microscopy, using antisera raised against a peptide sequence of the vacuolar type proton pyrophosphatase (H(+)-PPase) of Arabidopsis thaliana which is conserved in the C. reinhardtii enzyme, indicated localization in the plasma membrane, in intracellular vacuoles, and the contractile vacuole where it colocalized with the vacuolar proton ATPase (V-H(+)-ATPase). Purification of the electron-dense vacuoles using iodixanol density gradients indicated a preferential localization of the H(+)-PPase and the V-H(+)-ATPase activities in addition to high concentrations of PP(i) and short and long chain polyphosphate, but lack of markers for mitochondria and chloroplasts. In isolated electron-dense vacuoles, PP(i)-driven proton translocation was stimulated by potassium ions and inhibited by the PP(i) analog aminomethylenediphosphonate. Potassium fluoride, imidodiphosphate, N,N'-dicyclohexylcarbodiimide, and N-ethylmaleimide also inhibited PP(i) hydrolysis in the isolated organelles in a dose-dependent manner. These results indicate that the electron-dense vacuoles of C. reinhardtii are very similar to acidocalcisomes with regard to their chemical composition and the presence of proton pumps. Polyphosphate was also localized to the contractile vacuole by 4',6-diamidino-2-phenylindole staining, suggesting, with the immunochemical data, a link between these organelles and the acidocalcisomes.  相似文献   

15.
Previous studies have suggested that vacuolar H(+)-ATPase activity may play a role in modulating drug transport mechanism in multidrug resistant HL60 cells. In the present study we have used a cDNA of human vacuolar H(+)-ATPase subunit C (SC-H(+)-ATPase) to analyze expression of this gene in HL60 cells isolated for resistance to adriamycin or vincristine. The results demonstrate that development of resistance to either agent results in a major increase in the levels of SC-H(+)-ATPase mRNA. Furthermore in resistant cells which have partially reverted to drug sensitivity there is a parallel reduction in SC-H(+)-ATPase mRNA levels. Southern blot analysis shows that the SC-H(+)-ATPase gene is not amplified in the resistant cells. These results therefore demonstrate a correlation between the development of multidrug resistance and enhanced expression of the SC-H(+)-ATPase gene.  相似文献   

16.
Like numerous other eukaryotic organelles, the vacuole of the yeast Saccharomyces cerevisiae undergoes coordinated cycles of membrane fission and fusion in the course of the cell cycle and in adaptation to environmental conditions. Organelle fission and fusion processes must be balanced to ensure organelle integrity. Coordination of vacuole fission and fusion depends on the interactions of vacuolar SNARE proteins and the dynamin-like GTPase Vps1p. Here, we identify a novel factor that impinges on the fusion-fission equilibrium: the vacuolar H(+)-ATPase (V-ATPase) performs two distinct roles in vacuole fission and fusion. Fusion requires the physical presence of the membrane sector of the vacuolar H(+)-ATPase sector, but not its pump activity. Vacuole fission, in contrast, depends on proton translocation by the V-ATPase. Eliminating proton pumping by the V-ATPase either pharmacologically or by conditional or constitutive V-ATPase mutations blocked salt-induced vacuole fragmentation in vivo. In living cells, fission defects are epistatic to fusion defects. Therefore, mutants lacking the V-ATPase display large single vacuoles instead of multiple smaller vacuoles, the phenotype that is generally seen in mutants having defects only in vacuolar fusion. Its dual involvement in vacuole fission and fusion suggests the V-ATPase as a potential regulator of vacuolar morphology and membrane dynamics.  相似文献   

17.
The localisation of the vacuolar proton pump (V-H+ -ATPase) and the enzyme carbonic anhydrase II (CAII) was investigated in the human eccrine sweat gland employing standard immunohistochemical techniques after antigen retrieval using microwave heat treatment and high pressure. The high-pressure antigen retrieval unmasked the presence of V-H+ -ATPase in the clear cells of the secretory coil, with a distribution similar to that previously observed for CAII. However, the dark cells were unreactive to both antibodies. In addition, heat and high-pressure antigen retrieval demonstrated the presence of CAII in the apical zone of luminal cells of the reabsorptive duct, a location not previously reported. The localisation of V-H+ -ATPase and CAII in the secretory coil clear cells suggests that the formation of HCO3- and H+ by carbonic anhydrase II and the transport of H+ by V-H+ -ATPase may play an role in sweat fluid secretion. Their presence at the apex of the duct cells indicates involvement in ductal ion reabsorption.  相似文献   

18.
Suaeda salsa seedlings grown in Hoagland nutrient solution were treated with different concentrations of NaCl combined with two levels of Ca2+ (0 and 20 mmol/L) to study the effect of Ca2+ nutrition on the growth and activity of leaf tonoplast V-H(+)-ATPase. Increase of Ca2+ concentration in the solution markedly increased the relative growth quantity of S. salsa seedlings and Ca2+ and K+ concentration in the leaf cell sap under NaCl stress. The leaf V-H(+)-ATPase activity was significantly increased with increasing NaCl concentration under high Ca2+ application (20 mmol/L), but little changed under Ca2+ starvation (0 mmol/L). Western blot analysis showed that the leaf V-H(+)-ATPase of S. salsa was at least composed of A, B, D and c subunits, and their protein amounts were not affected by NaCl treatments under Ca2+ starvation (0 mmol/ L) with an exception of 100 mmol/L NaCl, but increased under high Ca2+ application (20 mmol/L). There was a positive correlation between activity of V-H(+)-ATPase and the protein amounts of the subunits. The results suggest that Ca2+ nutrition played an important role in the salt tolerance of S. salsa, and that enhancement of V-H(+)-ATPase activity under salt stress was Ca2(+)-dependent.  相似文献   

19.
The responses of Saccharomyces cerevisiae towards the oxyanions tellurite, selenite and chromate were investigated in order to establish the involvement of the yeast vacuole in their detoxification. Three mutants of S. cerevisiae with defective vacuolar morphology and function were used; mutant JSR180D1 is devoid of any vacuolar-like structure while ScVatB and ScVatC are deficient in specific protein subunits of the vacuolar (V)-H -ATPase. All the mutant strains showed increased sensitivity to tellurite and chromate compared to their parental strains. Such sensitivity of the mutants was associated with increased accumu-lation of tellurium and chromium. These results indicate that accumulation of both tellurium and chromium occurred mainly in the cytosolic compartment of the cell, with detoxification influenced by the presence of a functionally-active vacuole which may play a role in compartmentation as well as regulation of the cytostolic compartment for optimal expression of a detoxification mechanism, e.g. reduction. In contrast, the vacuolar-lacking mutant, JSR180D1, and the defective V-H ATPase mutant ScVatB displayed lower selenium accu-mulation than their parental strains. Additionally, the mutant strain ScVatB displayed a higher tolerance to selenite than the parental strain. This result suggests that accumulation of selenium occurs mainly in the vacuolar compartment of the cell with tolerance depending on the ability of the cytosolic component to reduce selenite to elemental selenium, which might, in turn, be related to activity of the V-H -ATPase. These results are discussed in relation to vacuolar compartmentation and the significance of the vacuolar H -ATPase in cytosolic homeostasis of H both of which may affect the accumulation, reduction, and toler-ance to the tested metal(loids). © Rapid Science 1998  相似文献   

20.
Acidosomes from Dictyostelium. Initial biochemical characterization.   总被引:4,自引:0,他引:4  
The acidosome, a newly described organelle in Dictyostelium discoideum, is rich in vacuolar proton pumps (V-H(+)-ATPases) and is responsible for the acidification of endocytic vacuoles. Purified acidosomes were not significantly contaminated by lysosomes, endosomes, or plasma membranes but contained a small fraction of contractile vacuole markers. The specific activity of the proton pump in these acidosomes reached 30 mumol/min/mg protein, the highest yet reported for any V-H(+)-ATPase. The V-H(+)-ATPase was the predominant protein in acidosomes. Based on gel electrophoresis and densitometry, its 8 polypeptides had the following apparent molecular mass (in kDa) and stoichiometry: 90(1), 68(3), 53(3), 42(1), 37(3), 25(3), 17(6), and 15(1). These values suggested a Mr congruent to 8 x 10(5), consistent with the hydrodynamic properties and electron microscopic image of the purified pump. The 90- and 17-kDa polypeptides were integral, while the others were peripheral; only the 90-kDa subunit was biosynthetically labeled by [3H]glucosamine and 35SO4. The specific content of phosphatidylcholine and phosphatidylserine in the acidosomes was the highest of any subcellular fraction tested, while sterols and sphingolipids were the lowest. Acidosomes had congruent to 10% of the lipid biosynthetically labeled with [3H]glucosamine. This organelle contributed 5% of cellular protein and 15% of the phospholipid in stationary cultures. We conclude that the acidosome in Dictyostelium is a biochemically discrete organelle, produced by the endoplasmic reticulum/Golgi apparatus but distinct from other endomembranes as well as from the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号