首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The water potential (Ψ w ) and the water saturation deficit (δW sat) in leaves of different insertion levels of potted kale plants were simultaneously measured. In non-wilting plantsδW sat gradually decreased andΨ w slightly increased from the upper to the lower leaves. During the wilting of the plants induced by decreasing of soil moistureΨw practically decreased paralelly in all the leaves but the same decrease ofΨ w was connected with the lowest increase ofδW sat in upper leaves and the highest increase ofδW sat in lower leaves. Not only the values ofΨ w andδW sat but also their relationship varied considerably with the leaf insertion levels.  相似文献   

2.
Byly zji??ovány změny osmotického potenciálu (osmotického tlaku) buně?né ??ávy (vylisované z listových pletiv usmrcených p?i 100°C) p?i pasivní vodní bilanci (vadnutí) ?ástí ?epele v závislosti na zvět?ujícím se vodním deficitu (na ztrátě vody). Teoreticky by toti? bylo mo?no p?edpokládat, ?e voda vydaná p?i pasivní vodní bilanci pochází rovnoměrně z ve?keré vody buně?né, tedy také poměrně z podílu, obsa?eného v buně?né ??ávě. V tom p?ípadě by se buně?ná ??áva koncentrovala úměrně vznikajícímu deficitu. V naprosté vět?ině pozorovaných p?ípad? stoupal v?ak osmotický tlak (klesal osmotický potenciál) strměji ne? teoreticky odpovídá sou?asné ztrátě vody. Ze zji?těných rozdíl? mezi zmíněným teoretickým pr?během a mezi nalezenými hodmotami byl vypo?ítán odhad percentuálního podílu ?mobilní” vody v buňce, tj. toho podílu, kterého se v?dy bezprost?edně týkají změny obsahu vody v buňce. Tento podíl ?mobilní” vody byl u dospělých list? kolem 70 a? 80%. Velikost podílu ?mobilní” vody závisela na rychlosti vzniku vodního deficitu: P?i rychlém vadnutí byl u dospělých list? zji?těn men?í podíl ne? p?i vadnutí pomalém. To svěděí o tom, ?e ?mobilní” podíl buně?né vody je vymezován podle vodní bilance buňky dynamickou rovnováhu intracelulárních difusních proud? vody podle gradient? difusního tlaku vody mezi jednotlivými podíly buně?né vody, je? jsou ur?eny r?znou vazbou (?vázaná” voda) i r?znou lokalisací v buňce.  相似文献   

3.
A hypothetical adaptive response of succulent plants to drought-stress is the redistribution of water from old to young leaves. We examined the effects of possible movement of water from old to young leaves in three succulent species, Carpobrotus edulis (weak CAM-inducible), Kalanchoe tubiflora (CAM) and Sedum spectabile (possibly a CAM-cycler or CAM-inducible). Old leaves were removed from plants, and photosynthesis, transpiration, f. wt : d. wt ratios, diurnal acid fluctuations, stomatal conductance and internal CO2 concentrations of the remaining young leaves were measured during drought-stress. Comparison was made with plants retaining old leaves. There was no evidence that water moved from old to young leaves during drought-stress as previously hypothesized. Only in drought-stressed plants of K. tubiflora, were photosynthetic and transpiration rates of young leaves greater on shoots with old leaves removed compared with attached. There was a trend in all species for greater fluctuations in acidity in young leaves on shoots that lacked older leaves. For two of the three species studied, the f. wt : d. wt ratios of young leaves were greater under drought-stress, on shoots with old leaves removed than with them attached. Absence of old leaves may reduce competition for water with young leaves, which consequently have higher water content and greater photosynthetic rates.  相似文献   

4.
5.
6.
The daily carbon balance of individual source leaves of Theobroma cacao L. seedlings was measured at 2- to 3-day intervals during a 19-day period of increasing plant water deficit and during an 8-day period of recovery following rewatering. In each case, responses of stressed seedlings were compared to those of irrigated controls. Leaves of irrigated cacao seedlings assimilated approximately 41 mg carbohydrate dm-2 during 12-h photoperiods, and exported an average of 34 mg carbohydrate dm-2 during 24-h measurement cycles. The rate of carbon export from cacao leaves was sharply reduced as leaf water potential (ψ) declined between -0.8 and -2.0 MPa. Further, the rate of export was closely associated with the net assimilation rate (A), with export capacity being severely reduced as A fell to near zero. Net accumulation of dry matter occurred as long as A remained greater than approximately 20 mg carbohydrate dm-2 over the 12-h photoperiod, but at lower assimilation rates, export exceeded concomitant assimilation. Carbon export continued at the expense of leaf carbon reserves as photoassimilation fell to near zero during periods of severe water stress (ψ < -2.0 MPa). Night respiration rate was independent of plant water status.  相似文献   

7.
8.
In mature and young leaves of sunflower (Helianthus annuus L. cv. Catissol-01) plants grown in the greenhouse, photosynthetic rate, stomatal conductance, and transpiration rate declined during water stress independently of leaf age and recovered after 24-h rehydration. The intercellular CO2 concentration, chlorophyll (Chl) content, and photochemical activity were not affected by water stress. However, non-photochemical quenching increased in mature stressed leaves. Rehydration recovered the levels of non-photochemical quenching and increased the Fv/Fm in young leaves. Drought did not alter the total Chl content. However, the accumulation of proline under drought was dependent on leaf age: higher content of proline was found in young leaves. After 24 h of rehydration the content of proline returned to the same contents as in control plants.  相似文献   

9.
A gasometric method was developed for measuring water deficit in leaves. For a leaf at full turgor the amount of water penetrating into the tissue after removing the air from intercellular spaces by means of a vacuum pump, is equal in volume to the gas removed from the intercellular spaces. In a leaf with a water deficit the amount of the infiltrating water is greater than the removed gas volume by the amount egual to the water deficit. Determination of the volumes of the gas removed and penetrating water enables water deficit, if any, to be calculated. Comparative measurements carried out on five plant species confirmed the correctness of the method suggested. Reduction of the measuring time allowed to eliminate completely the sources of errors associated with the growth of tissue and loss of dry weight during respiration.  相似文献   

10.
The mutual relationship between the water potential and water saturation deficit (w.s.d.) was studied on samples of leaf tissue of fodder cabage. Definite values of water potential were obtained by long-term exposure of plant material to an atmosphere with definite constant pressure of water vapour. The resulting w.s.d. values were determined gravimetrically. Water saturation deficit varies indirectly with the water potential. This dependence was linear for values of water potential from ?4·4 to ?43·9 atm. Since the stabilization of equilibrum of water potential between the leaf tissue and surrounding atmosphere was very slow the relationship between water potential and w.s.d. was influenced by the size of samples and by the length of exposure. Therefore this method was more suitable for relative than for absolute measurement.  相似文献   

11.
Positive linear correlation between the resistance to water transport in liquid phase and water saturation deficit (w.s.d.) in the tissue ofBrassica oleracea andNicotiana tabacum leaves was observed. At the same values of w.s.d. corresponding values of the resistance to water transport were higher when dehydration of the leaf tissue occurred during the experiment and lower when water balance was in equilibrium or resaturation of the leaf tissue occurred.  相似文献   

12.
The effect of plant status on net assimilation and translocation of "C-labeled assimilates in cacao (Theobroma cacao L.) was evaluated. As plant water potential (ψ) decreased from −0.5 to −1.0 MPa, neither net assimilation nor the rate of label translocation out of the l4CO,-fed leaf were affected, but as iji fell between −1.0 and −1.5 MPa, net assimilation decreased sharply and label retention increased greatly. Translocation out of source leaves was strongly correlated with net assimilation (r =−0.93). Translocation velocity, assessed by detection of labeled assimilates in sink leaves, was sensitive to plant water deficit, and it declined linearly (r = 0.97) throughout the range of leaf water potentials observed. The results may be explained by reduction in the velocity of assimilate movement within the sieve elements, reduction in supply of labeled assimilates from source leaves, reduction in sink strength or diversion of assimilates to sites of storage or utilization.  相似文献   

13.
Rates of weight loss and release of nutrients during different phases of decomposition in young water hyacinth leaves were determined under laboratory conditions. The leaves decomposed solely by physical leaching during the initial 4-day phase and later by microbial processes. The largest part of weight loss and nutrient release by physical leaching took place within the first 4 h of incubation and thereafter the decomposition rate declined. Microbial processes decayed leaves at a significantly higher rate than that by physical leaching. The overall decay rate constants were related inversely and the release of nutrients directly to the levels of leaf additions in the lake water. The dissolved inorganic and organic nutrients were released chiefly by abiotic processes during the initial as well as later phases of decay. The release was significantly higher during the initial phase in comparison with that during the later phase. Microbes utilized only a small amount of nutrients that were released during decomposition of water hyacinth leaves. The % release of various elements from the decaying leaves was in the order of K > P > C > Na > N.  相似文献   

14.
The paper deals with the resaturation of water saturation deficit in fourStipa species tested under various ecological conditions. Attention is paid to the relations between the saturation and oversaturation types of curves, on the one hand, and soil moisture on the other. The oversaturation type appears in plants well supplied with soil moisture. The explanation of this phenomenon is discussed.  相似文献   

15.
16.
Fructokinases catalyze the key step of fructose phosphorylation in plants. LeFRK2, the major fructokinase-encoding gene in tomato plants, is abundantly expressed in roots, stems, and fruits. To analyze the role of LeFRK2 in plant development, we analyzed transgenic tomato plants with sense and antisense expression of StFRK, the potato homolog of LeFRK2. Increased fructokinase activity had no effect. However, plants in which LeFRK2 was specifically suppressed, either via antisense suppression or via co-suppression, exhibited growth inhibition and wilting of young leaves at daytime. Grafting experiments indicated that a stem interstock of antisense plants was sufficient to inhibit growth and cause leaf wilting. Stem secondary xylem exhibited particular suppression of LeFRK2 and the area of active xylem, estimated by eosin uptake, was significantly smaller in antisense stem compared to that of wild-type plants. These results suggest that LeFRK2 might be required for proper development of xylem that affected growth and wilting.  相似文献   

17.
The effects of wilting on the fate of proline and on the rates of nonprotein proline formation and utilization have been determined in excised bean leaves. Wilting did not alter the fate of exogenously added 14C-l-proline (2 mm) in either non-starved leaves (from plants previously in the light) or starved leaves (from plants previously in the dark). The fate of proline in nonstarved leaves was protein synthesis and in starved leaves was protein synthesis and oxidation to other compounds.  相似文献   

18.
An expressive effect of temperature on water saturation deficit determined by “leaf-disc extrapolation method” was found. This error may reach about 15 to 40% of measured value with the temperature gradient of 10° between tissuein situ and under conditions of W.S.D. determination.  相似文献   

19.
Linker histone protein variants are expressed in different tissues, at various developmental stages or induced by specific environmental conditions in many plant species. In most cases, the function of these proteins remains unknown. In the work presented here an antisense strategy has been used to study the function of the drought-induced linker histone, H1-S of tomato. Three independent H1-S antisense tomato mutants, selected for their inability to accumulate H1-S in response to water stress, were studied. These mutants have been characterized at the physiological and morphological levels. Histone H1-S antisense transgenic plants developed normally indicating that H1-S does not play an important role in the basal functions of tomato development. No differences were detected in chromatin organization, excluding a structural role for H1-S in chromatin organization. However, differences between the wild-type and antisense plants were observed in leaf anatomy and physiological activities. This analysis indicates that H1-S has more than one function, at different times, in controlling plant water status, highlighting the complexity of the water stress response.  相似文献   

20.
Three closely related growth regulators (G) that are present in some myrtaceous plants were examined for possible anti-transpirant effects. The bioassay material involved cuttings of mung bean and Eucalyptus rupicola. Stomatal resistance was determined by a diffusion porometer. Water loss was equated with water uptake by the cutting over a 24-hour period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号