首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structure of a dipeptide L -leucyl–L -leucine (C12H24N2O3) has been determined. The crystals are monoclinic, space group P21, with a = 5.434(4) Å, b = 15.712(7) Å, c = 11.275(2) Å, β = 100.41(1)°, and Z = 2. The crystals contain one molecule of dimethyl sulfoxide (DMSO) as solvent of crystallization for each dipeptide molecule. The structure has been solved by direct methods and refined to a final R index of 0.059 for 920 reflections (sinθ/λ ? 0.60 Å?1) with I ? 2σ (I). The trans peptide unit shows substantial degree of non-planarity (Δω = 14°). The peptide backbone adopts an extended conformation with torsion angles of ψ1 = 138(1)°, ω1 = 166(1)°, ?2 = ? 149.3(7)°, ψ21 = 164.2(7)°, and ψ22 = ? 15(1)°. For the first leucyl residue, the side-chain conformation is specified by the torsion angles 1χ1 = 176.7(7)°, 1χ21 = 62(1)°, 1χ22 = ? 177.4(8)°; the second leucyl residue adopts a Sterically unfavorable conformation with 2χ1 = 61(1)°, 2χ21 = 97(1)°, and 2χ22 = ?151(1)°. The packing involves head-to-tail interaction of peptide molecules and segregation of polar and nonpolar regions. The DMSO molecule is strongly hydrogen bonded to the terminal NH group. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
The solid‐state conformations of two αγ hybrid peptides Boc‐[Aib‐γ4(R)Ile]4‐OMe 1 and Boc‐[Aib‐γ4(R)Ile]5‐OMe 2 are described. Peptides 1 and 2 adopt C12‐helical conformations in crystals. The structure of octapeptide 1 is stabilized by six intramolecular 4 → 1 hydrogen bonds, forming 12 atom C12 motifs. The structure of peptide 2 reveals the formation of eight successive C12 hydrogen‐bonded turns. Average backbone dihedral angles for αγ C12 helices are peptide 1 , Aib; φ (°) = ?57.2 ± 0.8, ψ (°) = ?44.5 ± 4.7; γ4(R)Ile; φ (°) = ?127.3 ± 7.3, θ1 (°) = 58.5 ± 12.1, θ2 (°) = 67.6 ± 10.1, ψ (°) = ?126.2 ± 16.1; peptide 2 , Aib; φ (°) = ?58.8 ± 5.1, ψ (°) = ?40.3 ± 5.5; ψ4(R)Ile; φ (°) = ?123.9 ± 2.7, θ1 (°) = 53.3 θ 4.9, θ 2 (°) = 61.2 ± 1.6, ψ (°) = ?121.8 ± 5.1. The tendency of γ4‐substituted residues to adopt gauche–gauche conformations about the Cα–Cβ and Cβ–Cγ bonds facilitates helical folding. The αγ C12 helix is a backbone expanded analog of α peptide 310 helix. The hydrogen bond parameters for α peptide 310 and α‐helices are compared with those for αγ hybrid C12 helix. Copyright © 2016 European Peptide Society and John Wiley & Sons.  相似文献   

3.
Bats in hot roosts experience some of the most thermally challenging environments of any endotherms, but little is known about how heat tolerance and evaporative cooling capacity vary among species. We investigated thermoregulation in three sympatric species (Nycteris thebaica, Taphozous mauritianus and Sauromys petrophilus) in a hot, semi-arid environment by measuring body temperature (T b), metabolic rate and evaporative water loss (EWL) at air temperatures (T a) of 10?C42?°C. S. petrophilus was highly heterothermic with no clear thermoneutral zone, and exhibited rapid increases in EWL at high T a to a maximum of 23.7?±?7.4?mg?g?1?h?1 at T a????42?°C, with a concomitant maximum T b of 43.7?±?1.0?°C. T. mauritianus remained largely normothermic at T as below thermoneutrality and increased EWL to 14.7?±?1.3?mg?g?1?h?1 at T a????42?°C, with a maximum T b of 42.9?±?1.6?°C. In N. thebaica, EWL began increasing at lower T a than in either of the other species and reached a maximum of 18.6?±?2.1?mg?g?1?h?1 at T a?=?39.4?°C, with comparatively high maximum T b values of 45.0?±?0.9?°C. Under the conditions of our study, N. thebaica was considerably less heat tolerant than the other two species. Among seven species of bats for which data on T b as well as roost temperatures in comparison to outside T a are available, we found limited evidence for a correlation between overall heat tolerance and the extent to which roosts are buffered from high T a.  相似文献   

4.
In this work different aspects of the glucose-fructose enzymatic isomerization, using immobilized glucose isomerase, are studied and quantified. Reaction temperatures range from 40?°C to 60?°C. Intra-particle effective diffusivities (D e), determined after uptake experiments, are between 1.20?×?10?6?cm2/s, at 40?°C, and 2.52?×?10?6?cm2/s, at 60?°C. The estimated energy of activation for diffusion (E aD) is 7.71?kcal/mol. No significant adsorption of the sugars on the support gel matrix is observed. Crushed particles (φ = 150–350?μ) are used during kinetic experiments. For this range of particle diameters, inherent kinetics is approached. A reversible Michaelis–Menten rate equation is fitted to the data, providing the following parameters at pH = 7.0: k 0 = 2.15?×?10?6?g/IU/s; E a/R = 8998?K. Glucose (K G) and fructose (K F) affinity constants are essentially the same, ranging from 0.190?M, at 40?°C to 0.305?M, at 60?°C. The thermodynamic equilibrium constant is determined for the three temperatures, and the heat of reaction, estimated from a Van't Hoff plot, is ΔH = 1682?cal/mol. Independent experiments, where the reaction occurs in the presence of significant intra-particle mass transfer resistance, are used as validation tests.  相似文献   

5.
To evaluate the nutrient removal capabilities of two red macroalgae, apical blades were cultured in the lab for 4?weeks at either 6, 10, or 17°C and nitrate at either 30 or 300?μM, typical of the seasonal range of conditions at a land-based Atlantic halibut farm. Stocking density was 2.0?g?L?1, irradiance 125?μmol?photons?m?2?s?1, photoperiod 16:8 (L:D), and nitrogen to phosphorus ratio 10:1. For both species, the highest growth rate was at 300?μM NO 3 ? with Palmaria palmata growing fastest at 6°C, 5.8%?day?1, and Chondrus crispus growing best at 17°C, 5.5%?day?1. Nitrogen and carbon removal by P. palmata was inversely related to temperature, the highest rate at 6°C and 300?μM NO 3 ? of 0.47?mg N and 6.3?mg C per gram dry weight per day. In contrast, C. crispus removal of N was independent of temperature, with mean removal of 0.49?mgN?gDW?1?day?1 at 300?μM NO 3 ? . The highest carbon removal by C. crispus was 4.4?mgC?gDW?1?day?1 at 10°C and 300?μM nitrate, though not significantly different from either 6 or 17°C and 300?μM nitrate. Tissue carbon:nitrogen ratios were >20 in both species at 30?μM nitrate, and all temperatures indicating nitrogen limitation in these treatments. Phycoerythrin content of P. palmata was independent of temperature, with means of 23.6?mg?gFW?1 at 300?μM nitrate. In C. crispus, phycoerythrin was different only between 6°C and 17°C at 300?μM nitrate, with the highest phycoerythrin content of 12.6?mg?gFW?1 at 17°C. Morphological changes were observed in P. palmata at high NO 3 ? concentration as curling of the fronds, whilst C. crispus exhibited the formation of bladelets as an effect of high temperature.  相似文献   

6.
Microalgae growing within brine channels (85 psu salinity) of the surface ice layers of Antarctic pack ice showed considerable photosynthetic tolerance to the extreme environmental condition. Brine microalgae exposed to temperatures above ?5°C and at irradiances up to 350 μmol photons·m?2·s?1 showed no photosynthetic damage or limitations. Photosynthesis was limited (but not photoinhibited) when brine microalgae were exposed to ?10°C, provided the irradiance remained under 50 μmol photons·m?2·s?1. The highest level of photosynthetic activity (maximum relative electron transport rate [rETRmax]) in brine microalgae growing within the surface layer of sea ice was at approximately 18 μmol electrons·m?2·s?1, which occurred at ?1.8°C. Effective quantum yield of PSII and rETRmax of the halotolerant brine microalgae exhibited a temperature‐dependent pattern, where both parameters were higher at ?1.8°C and lower at ?10°C. Relative ETRmax at temperatures above ?5°C were stable across a wide range of irradiance.  相似文献   

7.
To obtain general rules of peptide design using α,β-dehydro-residues, a sequence with two consecutive ΔPhe-residues, Boc-L -Val-ΔPhe–ΔPhe- L -Ala-OCH3, was synthesized by azlactone method in solution phase. The peptide was crystallized from its solution in an acetone/water mixture (70:30) in space group P61 with a=b=14.912(3) Å, c= 25.548(5) Å, V=4912.0(6) Å3. The structure was determined by direct methods and refined by a full matrix least-squares procedure to an R value of 0.079 for 2891 observed [I?3σ(I)] reflections. The backbone torsion angles ?1=?54(1)°, ψ1= 129(1)°, ω1=?177(1)°, ?2 =57(1)°, ψ2=15(1)°, ω2 =?170(1)°, ?3=80(1)°, ψ3 =7(2)°, ω3=?177(1)°, ?4 =?108(1)° and ψT4=?34 (1)° suggest that the peptide adopts a folded conformation with two overlapping β-turns of types II and III′. These turns are stabilized by two intramolecular hydrogen bonds between the CO of the Boc group and the NH of ΔPhe3 and the CO of Val1 and the NH of Ala4. The torsion angles of ΔPhe2 and ΔPhe3 side chains are similar and indicate that the two ΔPhe residues are essentially planar. The folded molecules form head-to- tail intermolecular hydrogen bonds giving rise to continuous helical columns which run parallel to the c-axis. This structure established the formation of two β-turns of types II and III′ respectively for sequences containing two consecutive ΔPhe residues at (i+2) and (i+3) positions with a branched β-carbon residue at one end of the tetrapeptide.  相似文献   

8.
In order to obtain information about the conformational characteristics at the nearestneighbor level in the 2′-O-methylated region of t-RNA, as well as in the bizarre 5′-terminus of eucaryotic mRNA, a detailed nuclear magnetic resonance study of 2′-O-methyl-cytidylyl-(3′ → 5′)-cytidine (CmpC) was conducted. Proton spectra were recorded at 270 MHz in the Fourier mode in D2O solutions, 0.01M, pD 7.3 in the temperature range 5–80°C. Complete accurate sets of nmr parameters were derived for each of the nucleotidyl units by a combination of homo-nuclear decouplings and simulation iteration methods. The data were translated into conformational parameters using procedures developed in earlier studies from these laboratories. It is shown that the ribofuranose ring exists at a 2E ? 3E equilibrium with clear preference [(75–80)%] for the 3E mode. The C(4′)-C(5′) and C(5′)-O(5′) bonds form a stable conformational network with outspoken preference for conformers in which Ψ1, Ψ2 ? 60° and ?2 ? 180°. The orientation of the 3′-phosphate and 2′-O-methyl groups is such that ?1′ ? 210° and ?″ ? 60°. The phosphodiester bonds are flexible and shift trends for base, H(1′), and H(5″) suggest the existence of a conformational blend of right-handed stack (g?g?), left-handed stack (g+g+), and unstacked arrays (tg? and tg+). Elevation of temperature perturbs the 2E ? 3E equilibrium accompanied with modest depopulation of ψ1, ψ2 ? 60° and ?2 ? 180° conformers. The major effect of elevation of temperature is in the increase of unstacked arrays at the expense of g?g? and g+g+ conformers. The shift trend of Cmp-H(3′) with temperature shows that torsional variation about O(3′)-P is facilitated by increase in temperature and the preferred rotamer about O(3′)-P in the unstacked form is t (ω1′ = 180°). A detailed comparison of the aqueous solution conformations of CpC and CmpC reveals that 2′-O-methylation causes: (i) a reduction in the magnitude of χ1; (ii) an increase in the population of 3E pucker at the 3′-nucleotidyl unit; and (iii) modest perturbations in the O(3′)-P and P-O(5′) bond conformations. Comparison of the aqueous solution conformations of AmpA and CmpC makes clear that the conformational properties of pyrimidine-pyrimidine and purine-purine dimers which carry a 2′-O-methylated 3′-nucleotidyl unit are significantly different.  相似文献   

9.
It is important to quantify and understand the consequences of elevated temperature and carbon dioxide (CO2) on reproductive processes and yield to develop suitable agronomic or genetic management for future climates. The objectives of this research work were (a) to quantify the effects of elevated temperature and CO2 on photosynthesis, pollen production, pollen viability, seed‐set, seed number, seeds per pod, seed size, seed yield and dry matter production of kidney bean and (b) to determine if deleterious effects of high temperature on reproductive processes and yield could be compensated by enhanced photosynthesis at elevated CO2 levels. Red kidney bean cv. Montcalm was grown in controlled environments at day/night temperatures ranging from 28/18 to 40/30 °C under ambient (350 µmol mol?1) or elevated (700 µmol mol?1) CO2 levels. There were strong negative relations between temperature over a range of 28/18–40/30 °C and seed‐set (slope, ? 6.5% °C?1) and seed number per pod (? 0.34 °C?1) under both ambient and elevated CO2 levels. Exposure to temperature > 28/18 °C also reduced photosynthesis (? 0.3 and ? 0.9 µmol m?2 s?1 °C?1), seed number (? 2.3 and ? 3.3 °C?1) and seed yield (? 1.1 and ? 1.5 g plant?1 °C?1), at both the CO2 levels (ambient and elevated, respectively). Reduced seed‐set and seed number at high temperatures was primarily owing to decreased pollen production and pollen viability. Elevated CO2 did not affect seed size but temperature > 31/21 °C linearly reduced seed size by 0.07 g °C?1. Elevated CO2 increased photosynthesis and seed yield by approximately 50 and 24%, respectively. There was no beneficial interaction of CO2 and temperature, and CO2 enrichment did not offset the negative effects of high temperatures on reproductive processes and yield. In conclusion, even with beneficial effects of CO2 enrichment, yield losses owing to high temperature (> 34/24 °C) are likely to occur, particularly if high temperatures coincide with sensitive stages of reproductive development.  相似文献   

10.
A very low-angle light-scattering photometer is described with respect to optical features, scattering cell, correction factors, and absolute calibration in the angular range 2°–35°. An improved microfiltration apparatus was used to obtain essentially dust-free aqueous solutions for very low-angle light scattering. The instrument was calibrated with silicotungstic acid, an absolute molecular-weight standard, and the calibration was confirmed with the use of several secondary standards. Very low-angle light-scattering measurements were made to determine the weight-average molecular weight M?r and z-average radius of gyration Rg,z of a commerical preparation of calf-thymus DNA. Microfiltration of the solutions allowed measurements down to 6°. The value M?r = 20.0 × 106 obtained by extrapolating 6°–9° data to 0° is more than three times that from 30°–75° data (6.38 × 106) but ~20% smaller than that from 10–35° data (23.7 × 106). The experimental errors in M?r and Rg,z are estimated to be ±8% and ±14%, respectively. Combined 6°–75° data from two photometers fit well a theoretical scattering curve for a model wormlike coil of the same M?r as the DNA sample.  相似文献   

11.
The oxidation enthalpy of reduced flavin mononucleotide at pH 7.0 in 0.2 m phosphate buffer has been studied by determining the heat associated with the reaction: FMNH2 + 2 Fe(CN)?36 ? FMN + 2 Fe(CN)?46 + 2 H+. (a) (The quinone, semiquinone, and hydroquinone forms of FMN are represented as FMN, FMNH, and FMNH2, respectively.) Calorimetric experiments were performed in a flow microcalorimeter which was modified to prevent sample contamination by oxygen. The enthalpy observed for reaction (a), after correction for dilution and buffer effects, was ?39.2 ± 0.4 kcal (mole FMNH2)?1 at 25 °C. The potential difference, ΔE′, developed by reaction (a) was determined potentiometrically and corresponded to a free energy change, ΔG′, of ?30.3 kcal (mole FMNH2)?1. The resulting entropy change, ΔS′, was thus calculated to be ?29.8 e.u. Reaction (a) was also studied at temperatures of 7 °C and 35.5 °C. ΔCp′ for the reaction was calculated as ?155 ± 18 cal deg?1 (mole FMNH2)?1 at 20 °C. ΔH′ for the reaction (b), FMNH2 ? FMN + H2, (b) was calculated as +14.2 ± 0.7 kcal mole?1 at 25 °C, relative to the enthalpy of the hydrogen electrode being identically equal to zero at all values of pH and temperature. The free energy at pH 7.0 for reaction (b), calculated from the potential was found to be ?9.7 kcal mole?1, which resulted in an entropy for reaction (b) of 80.2 e.u. A thermal titration of reaction (a) was used to calculate the thermodynamic parameters for the formation of semiquinone dimer according to the reaction FMNH2 + FMN ? (·FMNH)2. (c) The free energy, enthalpy, and entropy changes for reaction (c) were estimated to be ?6.1 kcal mole?1, ?7 kcal mole?1, and ?3 e.u., respectively.  相似文献   

12.
Empirical energy calculations on cyclo-Gly-X with X- Phe, Tyr, Val, and Leu as a function of the side-chain torsion angles χ indicate that the conformation of minimum energy are characterized by χ1 = 60°, χ2 = 90° for Phe and Try, χ1 = ?60° for Val and χ1 = ?60°, χ2 = 180° and χ1 = 60° and χ2 = 150° for Leu. The minimum energy conformation of cyclo-Gly-Phe and cyclo-Gly-Val have the side chains of Phe and Val stacked over the poperazinedione ring as suggested by NMR and found for cyclo-Gly-Tyr crystal structure. In contrast, the Leu side chain is expected to exist in an extended or a quasi-folded form.  相似文献   

13.
The kinetics of the photoreduction of C-550, the photooxidation of cytochrome b559 and the fluorescence yield changes during irradiation of chloroplasts at ?196 °C were measured and compared. The photoreduction of C-550 proceeded more rapidly than the photooxidation of cytochrome b559 and the fluorescence yield increase followed the cytochrome b559 oxidation. These results suggest that fluorescence yield under these conditions indicates the dark reduction of the primary electron donor to Photosystem II, P680+, by cytochrome b559 rather than the photoreduction of the primary electron acceptor.The photoreduction of C-550 showed little if any temperature dependence over the range of ?196 to ?100 °C. The amount of cytochrome b559 photooxidized was sensitive to temperature decreasing from the maximal change at temperatures between ?196 to ?160 °C to no change at ?100 °C. To the extent that the reaction occurred at temperatures between ?160 and ?100 °C the rate was largely independent of temperature. The rate of the fluorescence increase was dependent on temperature over this range being 3–4 times more rapid at ?100 than at ?160 °C. At ?100 °C the light-induced fluorescence increase and the photoreduction of C-550 show similar kinetics. The temperature dependence of the fluorescence induction curve is attributed to the temperature dependence of the dark reduction of P680+.The intensity dependence of the photoreduction of C-550 and of the photooxidation of cytochrome b559 are linear at low intensities (below 200 μW/cm2) but fall off at higher intensities. The failure of reciprocity in the photoreduction of C-550 at the higher intensities is not explained by the simple model proposed for the Photosystem II reaction centers.  相似文献   

14.
The crystal structure of the nonapeptide Boc-D -Phe-Aib-Aib-Aib-Aib-Gly-Leu-Aib-AibOMe (I), which is an analogue of the N-terminal sequence of antiamoebins and emerimicins, establishes a completely 310-helical conformation with seven successive intramolecular 4 → 1 hydrogen bonds. The average, ?, ψ values for residues 1–8 are ?59° and ?32°, respectively. Crystal parameters are C47H77N9O12, space group P1, a = 10.636(4) Å, b = 11.239(4) Å, c = 12.227(6) Å, α = 101.17(4)°, β = 97.22(4)°, γ = 89.80(3)°, Z = 1, R = 5.95% for 3018 data with |F0| > 3α(F), resolution 0.93 Å. The use of the torsion angle κ = C(i ? 1)N(i)Cα(i)Cβ(i), where κ = 68° for D -Phe and κ = 164° for L -Leu, confirms the opposite configurations of these residues. The ?, ψ values of ?62° and ?32° at D -Phe are unusual, since this region is characteristic of residues with L configurations. Peptide I possesses only two chiral residues of opposing configuration. The observed right-handed 310-helical structure suggests that helix sense has probably been determined by the stereo-chemical preferences of the Leu residue. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
In this work, the interaction of chlortetracycline with bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking. Results indicated that chlortetracycline quenches BSA fluorescence mainly by a static quenching mechanism. The quenching constants (KSV) were obtained as 5.64 × 104, 4.49 × 104/, and 3.44 × 104/ M?1 at 283, 295, and 307 K, respectively. The thermodynamic parameters of enthalpy change Δ H°, entropy change Δ S°, and free energy change Δ G° were ?5.12 × 104/ J mol?1, ?97.6 J mol?1 K?1, and ?2.24 × 104/ J mol?1 (295 K), respectively. The association constant (KA) and the number of binding sites (n) were 9.41 × 103/ M?1 and 0.86, respectively. The analysis results suggested that the interaction was spontaneous, and van der Waals force and hydrogen‐bonding interactions played key roles in the reaction process. In addition, CD spectra proved secondary structure alteration of BSA in the presence of chlortetracycline. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:331–336, 2012; View this article online at wileyonlinelibrary.com . DOI 10:1002/jbt.21424  相似文献   

16.
Ventilation was measured directly in the hagfish, Myxine glutinosa L., by means of an electro-magnetic blood flowmeter. Ventilatory flow and frequency increased from 0.86 ± 0.27 ml·min?, and 18.2 ± 5.1·min?, respectively, at 7°C to 1.70 ± 0.20 ml·min?, and 70.1 ± 9.5·min? at 15 ·C.Standard oxygen consumption,V?O2, was measured in non-buried hagfish. V?O2 was 0.57 ± 0.17μl O2·g?1·min?1 at 7°C, and 0.85 ± 0.12μl O2·g?1·min?1 at 15°C.  相似文献   

17.
By means of differential scanning calorimetry, effects of systematic series of Group I and VII ions on the phase state of model multibilayer dimyristoylphosphatidylcholine (di(14:0)PC) membranes have been studied at a lipid/ion molar ratio of 3/1. The sign-changing correlations between the ionic radii of cations and temperature shifts of di(14:0)PC phase transition were obtained. For cosmotropic Li+ and Na+, the observed shifts were positive (LiCl: ΔT m = 0.6°C; ΔT p = 1.9°C), whereas chaotropic K+ and Rb+ presence resulted in negative shifts (RbCl: ΔT m = ?0.3°C; ΔT p = ?2.5°C). The anions (Cl?, Br?, I?) showed a similar effect increasing with the ion chaotropicity. An essentially weaker effect of Cs+ as compared to other alkali metal ions (CsCl: ΔT m ≈ 0°C; ΔT p = ?0.1°C) can be one of the reasons of its accumulation in living organisms. Generalization of all available data allowed us to specify some important factors of lipid-ion interactions that should be taken into account in further investigations in this field.  相似文献   

18.
2-Deoxy-β-d-arabino-hexopyranose, C6H12O5, is orthorhombic, P212121, with cell dimensions at ?150° [20°], a = 6.484(2) [6.510(3)], b = 10.364(2) [10.427(4)], c = 11.134(3) [11.153(5)] Å, V = 748.2 [757.1] Å3, Z = 4, Dx = 1.457 [1.440], and Dm = [1.455] g.cm?3. The intensities of 1269 reflections were measured by using MoKα radiation. The structure was solved by direct methods, and refined by full-matrix least-squares, with anisotropic, thermal parameters for the carbon and oxygen atoms, and isotropic parameters for the hydrogen atoms. The pyranose has the 4C1(d) conformation, with puckering parameters Q = 0.563 Å, θ = 3.9°, and ? = 350.3°. The departure from ideality is very small, and less than that in β-d-glucopyranose, Q = 0.584 Å and θ = 6.9°. The β-glycosidic, CO bond is short, 1.383(4) Å, and the OCOH torsion angle is ?87°, consistent with the anomeric effect. The hydrogen-bonding scheme consists of infinite chains, with side chains terminating at a ring-oxygen atom.  相似文献   

19.
THERE are conflicting opinions concerning the mechanisms of freezing protection and survival in adult insects1, 2 generally resulting from a lack of consideration of pre-experimental conditions (that is, temperature exposure) or inappropriate analytical procedures. The ground beetle, Pterostichus brevicornis, has a circumpolar distribution with populations in some glacial refugia. Here it aggregates and overwinters in decayed stumps in the Fairbanks locale while ambient temperatures lower than ?40° C have been recorded. Lower lethal temperatures (LD50) for winter acclimatized forms are near ?87° C3 and limited survival has been recorded after brief exposures to ?196° C (liquid N2).  相似文献   

20.
P Manavalan  F A Momany 《Biopolymers》1980,19(11):1943-1973
Empirical conformational energy calculations have been carried out for N-methyl derivatives of alanine and phenylalanine dipeptide models and N-methyl-substituted active analogs of three biologically active peptides, namely thyrotropin-releasing hormone (TRH), enkephalin (ENK), and luteinizing hormone-releasing hormone (LHRH). The isoenergetic contour maps and the local dipeptide minima obtained, when the peptide bond (ω) preceding the N-methylated residue is in the trans configuration show that (1) N-methylation constricts the conformational freedom of both the ith and (i + 1)th residues; (2), the lowest energy position for both residues occurs around ? = ?135° ± 5° and ψ = 75° ± 5°, and (3) the αL conformational state is the second lowest energy state for the (i + 1)th residue, whereas for the ith residue the C5 (extended) conformation is second lowest in energy. When the peptide bond (ωi) is in the cis configuration the ith residue is energetically forbidden in the range ? = 0° to 180° and ψ = ?180° to +180°. Conformations of low energy for ωi = 0° are found to be similar to those obtained for the trans peptide bond. In all the model systems (irrespective of cis or trans), the αR conformational state is energetically very high. Significant deviations from planarity are found for the peptide bond when the amide hydrogen is replaced by a methyl group. Two low-energy conformers are found for [(N-Me)His2]TRH. These conformers differ only in the ? and ψ values at the (N-Me)His2 residue. Among the different low-energy conformers found for each of the ENK analogs [D -Ala2,(N-Me)Phe4, Met5]ENK amide and [D -Ala2,(N-Me)Met5]ENK amide, one low-energy conformer was found to be common for both analogs with respect to the side-chain orientations. The stability of the low-energy structures is discussed in the light of the activity of other analogs. Two low-energy conformers were found for [(N-Me)Leu7]LHRH. These conformations differ in the types of bend around the positions 6 and 7 of LHRH. One bend type is eliminated when the active analog [D -Ala6,(M-Me)Leu7]LHRH is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号