首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V práci jsem zji?tovala, zda podmínky kultívace ?as ovlivńují ?espira?ní metabolismus. Rasy Chlorella pyrenoidosa (82), Scenedesmus obliquus (125) a Euglena gracilis (259) byly pěstovány ve t?epané a stojaté kultu?e. T?epáním kultur je podstatně ovlivněn respira?ní metabolismus ?as. T?épané kultury mají na rozdíl od stojatých sní?enou spot?ebu O2 a vět?inou odli?né RQ. Je mo?né, ?e zji?těné rozdíly jsou podmíněny zrychleným vývojem a stárnutím t?epaných kultur. Je tedy t?epání jako zp?sob kultivace významným faktorem, který je nutno respektovat p?i pěstování experimentálního materiálu. Namě?ené hodnoty respira?ního kvocientu okolo 1,3 svěd?í pro to, ?e anaerobní glykolytické pochody mohou probíhat i za dokonalého p?ístupu vzduchu do media. Kultura Scenedesmus obliquus (125) má pravděpodobně málo p?izp?sobivý metabolismus a na změny prost?edí nereaguje tak citlivě jako Euglena gracilis nebo Chlorella pyrenoidosa.  相似文献   

2.
Natriumfluorid, monojodacetát a malonát brzdí, pop?ípadě stimulují, dýchání ko?en? p?enice pěstované 2 a? 10 dní v roztoku humátu sodného (100 mg/l) silněji, ne? dýchání ko?en? rostlin pěstovaných ve vodě. Obdobně p?sobí natriumfluorid na dýchání list?. Poměr radioaktivit C14O2 uvolněného z glukosy zna?ené v poloze 1 nebo 6 (C6/C1) je pr?kazně zvý?en u ko?en?, nikoli v?ak u list?. Změna tohoto poměru je doprovázena zmen?ením celkové radioaktivity C14O2 uvolněného ko?eny rostlin ovlivněnými humátem z glukesy specificky i totálně zna?ené. Endogenní respirace (QO2) ko?en? je p?sobením humátu zesílena o 5–30 %, intensita respirace list? z?stává na stejné úrovni. R?st ko?en? do délky je v prost?edí s humátem intensivněj?í o 20–80 %, r?st list? o 5–15%. Uvedená zji?tění vedou k závěru, ?e v ko?enech rostlin pěstovaných v roztoku humátu vzr?stá podíl glykolysy v respira?ním metabolismu.  相似文献   

3.
P?i pěstování rostlin kuku?ice ve sterilních kulturách je t?eba obilky desinfi-kovat, aby se zniěily zárodky mikroorganism?. To sni?uje jejich klí?ivost, zpozdí r?st a tvorbu chlorofylu během prvních několika týdn? vyvoje klí?ních rost-linek. Nejde o specfflcké inhibice, nýbr? o vývojové opo?dění neprojevující se ani v poměru dlou?ivého r?stu a hromadění su?iny. Opo?dění je nejvě t?í p?i po-u?ití roztoku sublimáta nebo ethanolu. Vhodněj?í je desinfekce roztokem chlor-aminu. Změny vyvolané t?íhodinovým namá?ením jsou vyrovnány během cca 3 tydn?, bězně u?ívaná sedmihodinová desinfekce vyvolává kromě silného sní-zeni klí?ivosti (témě? ? 50 %) déle trvající, av?ak nezásadní změny. Chloramin neovlivnil tvorbu pohlavních organ?, intensità fotosynthesy byla úměrná mno?ství chlorofylu. Desinfekce chloraminem lze tedy u?ít, ani? by se rostliny podstatně li?ily od těch, které byly vypěstovány ze suchých obilek.  相似文献   

4.
V souvislosti s d?ívěj?imi údaji (Lu?tinec a Krektjle 1959, Lu?tinec, Krekule a PokornÁ 1960) o silném inhibi?ním ú?inku fluoridu na dychání rostlin pěstovaných v roztoku kyseliny giberelové byl pomocí specificky zna?ené glukosy a respira?ních inhibitor? zji?tován vztah krátko- i dlouhodobého p?sobení kyseliny giberelové k poměru mezi podíly glykolytického a pentosofosfátového odbourání v respiraci list? p?enice. V souhlase s výsledky Fanga a spol. (1960) byIo zji?těno, ?e kyselina giberelová v koncentracích 2 a? 80 mg/l neovlivńuje během několikahodinového p?sobení na roz?ezané listy p?enice poměr radioaktivit14CO2 uvolněného z glukosy-6-14C a -1-14C (C6/C1) ani nemění v koncentraci 10 mg/l stupeń inhibice dýchání fluoridem, monojodacetátem a malonátem a spot?ebu kyslíku. Výdej14CO2 z glukosy-l-14C a -6-14C kyselina giberelová sni?uje v lineární závislosti na pou?itých koncentracích. U rostlin pěstovaných v roztoku kyseliny giberelové (10–20 mg/l) se rychleji sni?uje poměr C6C1 i absolutní hodnoty radioaktivity během několika dní od vyklí?ení, ne? u rostlin pěstovaných ve vodě. To svěd?í o rychlej?ím zvět?ování podílu pentosového cyklu v respiraci pokusných rostlin. Fluorid brzdí p?i stejném nebo men?ím obsahu ve tkáni dýchání list? rostlin pěstovaných v roztoku kyseliny giberelové silněji ne? dýchání rostlin pěstovaných ve vodě, zatimco ûcinek monojodacetátu a malonátu je u stejně starých rostlin (4 dny) obou variant stejný. O mo?ných p?í?inách tohoto jevu bylo diskutováno.  相似文献   

5.
Auto?i sledovali sou?asně intensitu dýchání a intensitu fotosynthesy u list? cukrovky, neoddělených od rostliny. Několik hodin p?ed pokusem asimilovaly listy radioaktivní14CO2, na?e? byly umístěny do normální listové komory k pr? tokovému gazometrickému stanovení intensity fotosynthesy podle změny koncentrace CO2 v procházejícím vzduchu. Sou?asně s gazometrickým stanovením fotosynthesy mě?ili auto?i specifickou aktivitu kysli?níku uhli?itého ve vzduchu, který pro?el asimila?ní komorou. Podle hodnot specifické aktivity CO2, kterou vylu?uje list v temnotě, je mo?no vypo?ítat intensitu dýchání v mg CO2. Bylo zji?těno, ?e listy cukrovky vylu?ují na světle radioaktivní CO2, a to jak první tak i druhý den po asimilaci zna?eného CO2. P?i silném p?eh?ivání list? v komo?e, kdy gazometrickou metodou bylo zji?těno ji? jen dýchání, radiometricky byl stanoven výdej14CO2, odpovídající vy??í intensitě dýchaní. Auto?i vysvětlují tuto skute?nost tím, ?e i p?i p?eh?ívaní list? probíha sou?asně s dýchaním fotosyntheticka asimilace kysli?níku uhli?itého, av?ak pasivní bilance CO2 ve výměně plyn? vede ke zji?těnédýchaní, které je v podstatě rozdílem mezi intensitou piné fotosynthesy a plného dýchaní. Produkce kysli?níku uhli?itého celými listy cukrovky na světle není za normalních podmínek vý?ivy výjime?ným zjevem.  相似文献   

6.
P?i prohlí?ení svého bohatého materiálu mixoploidních ko?enových vrchol? nalezl jsem ko?eny, které, jak se zdálo, se zbavovaly polyploidních sektor? tím, ?e se roz?těpily v ?ást diploidní a polyploidní. Od?těpení polyploidních provazc? jsou sice dosti ?astá, ale v p?ípadech zde popsaných vytvá?í diploidní sektor nový ko?enový vrchol, polyploidní zastaví pozvolna sv?j r?st, kde?to nově rozli?ený vrchol roste dále. Také to je ur?itý zp?sob samo?i?tění a diploidisace mixoploidního vrcholu. P?edpokladem ov?em je ?e se vrchol skládal p?vodně asi z poloviny nebo více z buněk diploidních, ve druhé ?ásti polyploidních. Potom dojde ve vrcholovém meristému diploidní ?ásti k diferenciaci samostatného diploidního vrcholu, kde?to polyploidní vrcholová ?ást pozvolna nebo náhle dělení svých buněk zastaví, po nějakou dobu se prodlu?uje a kone?ně je roztrhána a odum?e. Mohl jsem některé p?ípravy k samo?těpení v poměrně raných stadiích pozorovat.  相似文献   

7.
Ve fotoperiodických pokusech s jarní p?enicí Niva jsme sledovali pr?běh fotoperiodické citlivosti a umístění období fotoperiodieké reakce v ontogenesi rostlin. Nepoda?ilo se nám u této dlouhodenní rostliny najít takové období, během něho? by zkrácený den v?bec neměl vliv na rychlost vývoje. Některé údaje v?ak nazna?ují, ?e m??eme vymezit období zvý?ené fotoperiodieké citlivosti, které by odpovídalo období fotoperiodieké reakce u krátkodenních rostlin. Výsledky nasvěd?ují rovně? tomu, ?e toto období nekon?í náhle, nýbr? postupně p?echází v následující období, kdy délka dne p?sobí na rychlost vývoje ji? jen prost?ednietvím fotosynthesy. Tento vliv je dob?e; patrný p?i pou?ití takových indikátor? jako je vývoj vzrostného vrcholu a metání. Existenci p?echodného období na konci období zvý?ené fotoperiodieké citlivosti a jeho souvislosti s fází vzrostného vrcholu od zakládání klísk? do zakládání ty?inek je t?eba ově?it dlouhodobím pokusem v p?ísně regulovatelních podmínkách. Z metodik sledování pr?běhu fotoperiodieké citlivosti se u na?eho pokusného materiálu nejlépe osvěd?ilo metání, které poskytlo k?ivky s ur?itými, více nebo méně z?etelnými zloniy, a také sledování abnormit (p?i klasickém uspo?ádání pokusu), které indikují naru?ení vztahu mezi r?stem a vývojem. Orienta?ní údaje poskytlo rovně? mě?ení délky rostlin u klasického uspo?ádáni pokusu. Nejméně spolehlivé byly v na?ich pokusech analysy vývojového stavu vzrostného vrcholu.  相似文献   

8.
Po?adí intensity, s jakou prodýchávají pylové lá?ky testované cukry z 0,3 M roztok?, je sacharosa> glukosa> invertní cukr> fruktosa. Stejné po?adí je zaehováno na cukr-agarových mediích s výjimkou prvých dvou hodin inkubace, během kterých jsou sacharosa, glukosa a fruktosa prodýchávány témě? stejnou rychlostí. Během této doby se v prost?edí fruktosy, stejně jako v kontrole bez cukru, nevytvo?ily pylové lá?ky, zatím za p?itomnosti sacharosy dosahovaly délky a? 450 µ. Jestli?e byla pou?ita pro radioaktivní cukry jako nosi? sacharosa, byla fruktosa-14C prodýchávána a? 12krát, glukosa-14C a? 6krât intensivnëji neá sacharosa-14C. Za pou?ití nosi?e sacharosa+glukosa ?i sacharosa+fruktosa (molárni poměry 1:1), prodýchávaji pylové lácky sacharosu-14C pomaleji ne? p?íslu?ny monosaeharid a rovně? pomaleji ne? z prost?edí samotnéé sacharosy. Jestli?e byla nosi?em sacharosy-14C glukosa nebo fruktosa, byla (v některých ?asových úsecíeh pokusu) produkce14CO2 pylovými láckami několik desítek procent mohutněj?í ne? za pou?ití nosi?e sacharosového. Z prost?edí invertního cukru je p?ednostně prodýchäväna fruktosa. Je tedy kapacita pylových enzymových systém? za?leňujících sledované cukry do jejich dýchacích cest pro fruktosu>glukosu> sacharosu, co? je opa?né po?adí ne? platí pro intensitu r?stového ú?inku těchto cukr? a ne? jaké bylo zji?těno pro rychlost jejich prodýchávání, jestli?e nebyly navzájem kombinovány. Ve specifickém r?stovém efektu sacharosy nem??e tedy být primárním faktorem ani rychlost její absorpce, ani intensita jejího prodýcháváni. Rychlá utilisace samotné sacharosy je následkem intensivněj?ího r?stu v jejím prost?edí. Získané výsledky dále ukazují, ?e sacharosa je vyu?ívána p?edev?ím cestou její inverse, p?i ?em? je p?ednostně prodýchávána fruktosová slo?ka.  相似文献   

9.
Dekapitované klíění rostliny lnu a hrachu, nat?ené pastou s trijodbenzoovou kyselinou bud nad dělohami nebo pod nimi, jeví zvlá?tě na epikotylních pahýlech rozdílné morfogenetické změny v souvislosti, s rozdílnými korela?ními vlivy jejich epigeických, resp. hypogeických děloh, je? primárně rozhodují o rozdílné dominanci jejich pupenových základ?. V nejraněj?ím období klí?ení lze prvního internodia lnu, oby?ejně velmi krátkého, a ?apík? děloh hrachu u?ít k d?kazu antagonismu mezi kyselinou trijodbenzoovou a indolyloctovou. První internodium lnu se prodlou?ilo p?sobením trijodbenzoové kyseliny na semena, i kdy? zrála na rostlině, a ?apíky děloh hrachu, zadr?ené v r?stu má?ením semen v roztoku kyseliny trijodbenzoové, se zvět?ily p?sobením kyseliny indolyloctové zvněj?ku. Tato kyselina naopak ru?í morfogenetické ú?inky trijodbenzoové kyseliny na semena lnu.  相似文献   

10.
Roku 1900 uve?ejnil jsem p?edbě?nou zprávu o ?krobových zrnech pohyblivých vlivem tí ?e v rostlinných buňkách, které mo?no pova?ovat ze georeceptory analogické statocystám ? ivo?ich?. Roku 1901 vy?la moje definitivní práce o tomto p?edmětu. V ní popsal jsem nápadnou cytologickou reakci, která se p?i geotropickém podrá?dění objevuje v kolumele ko?enových ? epi?ek uvnit? buněk obsahujících p?esýpavý ?krob. Tato reakce, kterou jsem pova?oval za symptom, ?e na tyto buňky tí?e p?sobí a ?e je mo?no pova?ovat je za georeceptory, nebyla témě? v?bec později zkoumána a byla zapomenuta. Teprve r. 1962 uve?ejnil o ní nové nálezy AUDITS na základě elektronového výzkumu statocyt? v ko?enových ?epi?kách. Autor uve?ejňuje první mikrofotografie této cytologické georeakce a popisuje nové pokusy, které ?iní pravděpodobným jeho názor, ?e je vybavena tlakem ?krobových zrn na poko?ní vrstvi?ku plasmatickou ve statocytech. Upozorňuje také, ?e nejen specificky tě??í, ný br? i specificky leh?í statolity mohou fungovat jako tělíska vybavující georeakci.  相似文献   

11.
Je uveden vývoj květních pupen? jabloní od jejich vzniku na branchyblastech a? do doby krátce p?ed vykvetením. Celé období vývoje je mo?né rozdělit do ?ty? hlavních fází: I. fáze je vegetativní, v ní? vznikají na vzrostném vrcholu primordia krycích ?upin. II. fáze zahrnuje morfologiekou diferenciaci vzrostného vrcholu, p?i ní? se vytvá?ejí primordia květ?. III. fáze zahrnuje vznik kvě tních orgán?. IV. fáze je kvetení.  相似文献   

12.
Byl sledován vliv CO2 na plasmatické struktury ko?enového vlá?ení p?enice a je?mene a epidermálních buněk cibule. Výsledky byly hodnoceny na ?ivém materiálu pomocí fázového kontrastu. Ko?enové vlá?ení je?mene a epidermis cibule reagují na krátkodobý pobyt v atmosfé?e CO2 zastavením proudění plasmy, prodlu?ováním mitochondrií a zakulacením plastid?. Déle trvající vliv CO2 zp?sobuje fragmentaci mitochondrií. V této fázi se buňky nejrychleji vzpamatovávají ze ?oku zp?sobeného pobytem v CO2. P?íli? dlouhé ovlivňování rostlin atmosférou CO2 ú?inkuje letálně. Ko?enové vlá?ení p?enice, které má vět?inou zrnité mitochondrie, reagovalo ji? na 40minutový pobyt v CO2 zakulacením v?ech plasmatických partikulí. Tato pozorování se shodují s výsledky získanými na trvalých preparátech v práci p?ede?lé a vedou k domněnce, ?e fragmentací mitochondrií se buňka p?izp?sobuje ztí?eným podmínkám pro dýchání.  相似文献   

13.
U r?zně starých list? v listové r??ici 90 a? 110 denních rostlin Nicotiana sanderae hort. byly sledovány rozdály v intensitě ?isté fotosynthesy a v obsahu chlorofylu (a + b). Ke stanovení intensity fotosynthesy bylo pou?ito dvou odli?ných metod, a to váhového stanovení p?ír?stku su?iny podle Barto?e, KubÍna a ?et-lÍka (1960) a gazometrického stanovení infra?erveným analyzátorem CO2. Nejvy??í intensitu fotosynthesy i nejvy??í obsah chlorofylu (vzhledem k plo?e listové) mají mladé, ale ji? dob?e rozvinuté listy, tj. t?etí a? ?tvrté od vrcholu (prvním listem se rozumí list o plo?e asi 20 cm2). Tyto listy nazýváme ?fotosyntheticky dospělými“. Listy nejmlad?í a zejména pak listy star?í mají intensitu fotosynthesy i obsah chlorofylu ni??í; u nejstar?ích list? je intensita fotosynthesy prakticky nulová. Intensita fotosynthesy i obsah chlorofylu se během vývoje mění: jejich momentální rozdíly u list? v genetické spirále jsou z?ejmě shodné s jejich změnami v ontogenesi listu. Pokles intensity fotosynthesy p?i stárnutí list? je rychlej?í ne? pokles obsahu chlorofylu. P?i ur?itém obsahu chlorofylu (tj. asi 2,25 a? 2,45 mg/dm2) klesá intensita ?isté fotosynthesy k nule. Intensita fotosynthesy je v lineárním vztahu k mno?ství chlorofylu (p?i p?epo?tu na plo?nou jednotku), a to nezávisle na poloze listu v genetické spirále. Obě pou?ité metody ke stanovení intensity fotosynthesy poskytly obdobné výsledky.  相似文献   

14.
Zkou?eli jsme vliv některých inhibitor? glykolýzy a dýchání na odbourávání volných glycid? a na mno?ství zplodin kva?ení ve vegeta?ních vrcholech p?enice,Triticum aestivum L., kultivar Chlumecká 12. Analýzy jsme prováděli ve 3 etapách organogeneze v 2. (vegetativní období), 3. (období fotoperiodické indukee) a 4. (po?átek zakládání květních orgán?) etapě organogenese. Izolované vegeta?ní vrcholy byly inkubovány ur?itou dobu v roztocích inhibitor? ve fosfátcitrátovém ústoji. Volné glycidy jsme stanovili metodou nátla?kové chromatografie a zplodiny kva?ení modifikovanou jodoformovou reakcí. DNP a azid zpomalily v pou?itých koncentracích odbourávání glycid? ve v?ech zkou?ených etapách organogeneze. Kyselina monojodoctová, NaFa Na-malonát měly tentý? ú?inek jen ve 3. a 4. etapě. V 2. etapě se odbourávání glycid? ú?inkem těchto inhibitor? urychlilo. Vlivem DNP se zmen?ilo mno?ství zplodin kva?ení ve v?ech etapách organogeneze. Mno?ství těchto látek nebylo ovlivněno malonátem a toté? platí pro kyselinu monojodoctovou a NaF ve 3. a 4. etapě organogeneze a pro azid ve 2. etapě. Azid ve 3. a 4. etapě někdy vedl ke zvý?ení mno?ství zplodin kva?ení, kyselina monojodoctová a Na-fluorid zp?sobily jejich pokles ve 2. etapě. Výsledky diskutujeme z hlediska mo?ného vysvětlení p?sobení jednotlivých inhibitor?. Vět?ina inhibitor? měla jiný ú?inek ve 2. etapě organogeneze ne? v dal?ích etapách. To se shoduje s d?ívěj?ím zji?těním, ?e u vegeta?ních vrchol? je v pr?běhu 3. etapy organogeneze nahrazeno kva?ení aerobními oxydázovými systémy.  相似文献   

15.
V práci je popsán detoxinka?ní ú?inek humusových kyselin a blí?e studována jeho povahaListy vod’iho moru (Anacharis canadensis [MICHX.] PLANCH), vlo?eny do roztoku agropyrenu izolovaného z oddenk? pýru plazivého (Agropyron repens [L.] P. BEAUV.), odumírají po ?ase, jeho? délka je zavislá na koncentraci jedu. P?ídavek některyeh humusovych frakcí tuto dobu více nebo méně prodlu?uje. Pokus s fulvokyselinami ukázal, ?e toto ochranné p?sobení se projeví i tehdy, jsou-li listy vodního moru v roztoku této f?akce p?edem adaptovány a p?sobí-li agropyren dodate?ně. Ochranná schopnost fulvokyselin nespo?ívá tedy pouze v mimobuně?ném chemickém nebo fyzikálně chemickém otupení biologické ú?innosti agropyrenu, nýbr? i ve zvý?ení biologické odolnosti buňky ú?inkem této humusové frakce.  相似文献   

16.
V práci byl sledován vliv p?edplodin lnu, ?ita, máku a ho??ice na následné plodiny tého? nebo jiného druhu p?i bezprost?edním vysévání po sobě a p?i vysévání v r?zně dlouhých ?asových intervalech s odstupňovanou délkou odpo?ívání zeminy. Pokusy byly prováděny v nádobách naplněných kompostovou zeminou, které byly umístěny na pokusné zahradě. Byl hodnocen r?st p?edplodiny a následné plodiny stanovením su?iny nadzemních ?ástí a ko?en?. Během r?stu následných rostlin byly odebírány vzorky zemin, v nich? byl stanoven obsah fyziologicky p?istupného dusíku, fostoru a draslíku. V?echny ?ty?i pou?ité p?edplodiny p?sobily pr?kazné změny v r?stu následných rostlin. Len a mák pěstované jako p?edplodiny p?sobily na následné rostliny lnu a cukrovky prost?ednictvím p?dních autopatických ?i allelopatických faktor?. Ú?inek ?ita jako p?edplodiny na ?ito a ho??ice na je?men byl méně výrazný. Z výsledk? se nedá v posledních dvou p?ípadech p?ímo usuzovat na p?ítomnost autopatických nebo allelopatických faktor?. P?i bezprost?ední kultivaci následných rostlin v zemině po p?edplodině bez odpo?ívání byla zji?těna jen inhibice r?stu. Pokusy s odstupňovanou délkou odpo?ívání zeminy dávají mo?nost zachytit celou ?kálu r?stových změn následných rostlin od inhibice ke stimulaci. Ú?inek p?edplodiny na následnou plodinu se zna?ně měnil s délkou odpo?ívání zeminy po p?edplodině. Změny r?stu následných rostlin nekorelovaly—kromě pokusu s ?item a ?áste?ně s ho??icí—se změnami v obsahu sledovaných ?ivin, ani s mno?stvím narostlé p?edplodiny.  相似文献   

17.
Pri studiu charakteru vzájemného vztahu mezi porfyriny obsahujícími ?elezo a ho??ík jsme uva?ovali o katalytické aktivitě Fe-porfyrin? a o mo?nosti jejich ú?asti p?i tvorbě chlorofyl? v listech a ko?enech rostlin. Byly sledovány změny v obsahu barviv list? v souvislosti s metabolismem ?eleza v rostlině (?innost enzym? obsahujících ?elezo, synthesa protohematinu), a to hlavně: I. p?i aplikaci r?zných slou?enin p?sobících na jednotlivé slo?ky oxydore-dukěních systém? a obsah barviv v rostlině; 2. p?i změnách metabolismu p?sobením změněných podmínek minerální vý?ivy; 3. p?i srovnávání zvlá?tností metabolismu pestrolistých rostlin. Domníváme se, ?e ve v?ech p?ípadech je proces tvorby chlorofyl? p?ímo vázán na pochody vyu?ití ?eleza rostlinou, jak v listech, tak v ko?enech. Jsou uvedeny údaje o synthese protohematinu v isolovaných ko?enech některých rostlin, aktivitě Fe-porfyrinových enzym? v nich a tvorbě chlorofyl? p?i osvětlení ko?en?. Diskutuje se o významu synthesy Fe- a Mg-porfyrin? v ko?enech pro metabolismus celé rostliny. Uva?uje se o vzájemné souvislosti mezi pochody hromadění a vyu?ívání energie v buňce a o rovnováze mezi pochody synthesy a odbourávání pigment? v plastidech.  相似文献   

18.
Na ozimé p?enici odr. Hodonínská holice byla studována otázka vlivu fotoperiodického re?imu na pr?běh jarovisace. Polní pokusy ukázaly, ?e krátký den urychluje vývoj, p?sobí-li v dobé jarovisace. Krátký den aplikovaný po jarovisaci ve v?ech p?ípadech vývoj prodlu?oval. P?i umělém osvětlení nízké intensity a v podmínkách jarovisa?ních teplot probíhá jarovisace vět?inou rychleji na dlouhém dni. Jarovisace v temnotě se uskute?ňuje pouze po p?idání glycid?. P?edpokládám, ?e i u zelených rostlin je nahromadění ur?itého mno?ství ergastického materiálu, zejména glycid?, jednou z podmínek pr?běhu jarovisace. Tohoto nahromadění m??e být dosa?eno jednou prodlou?ením osvětlení (v podmínkách optimálních jarovisaěních teplot a p?i umélém osvétlení poměrně nízké intensity), jindy, v polních podmínkách, krátkým dnem vyvolávajícím specifickou, fotoperiodicky kontrolovanou r?stovou reakci inhibující r?st.  相似文献   

19.
U rostliny krátkého dne Chenopodium rubrum L. se dá kvetení indukovat íty?mi 16hodinovými cykly tmy ji? 5 dní po vyklí?ení. Aplikace CCC v koncentraci 2.10-3mvpr?běhu indukce kvetení zadr?uje a toté? piatí pro GA3 i tehdy, je-li podáván ve velmi nízkých koncentracích (0,1 a? 0,01 mg/l). Av?ak sou?asná aplikace obou těchto látek v uvedených koncentracích vede k úplné reversi inhibice. Po p?enesení rostlin z média, obsahujícího CCC, na ?istý ?ivný roztok, inhibi?ní ú?inek CCC rychle zmizí a p?echází v slabou stimulaci. Na?e výsledky ukazují, ?e giberelin se zú?astňuje proces? kvetení i u rostliny krátkého dne.  相似文献   

20.
Kinetin a 6-benzylaminopurin byly aplikovány u jabloně (Malus silvestris, MILL.) s cílem regulace r?stu a metabolizmu pupen?. Jednorázová dávka 20 μg a? 200 μg kininu p?ekonala inhibi?ní ú?inek plodu na r?st pupen?. Ni??í dávky mají za následek sílení pupen?, vy??í dávky pror?stání pupen? ve větévky. Pomocí radiofosfátu bylo zji?t?o, ?e inhibi?ní vliv plod? se projevuje zejména v podstatném ení?ení inkorporace radiofosfátu do frakce volnýeknukleotid?hlavně v meristematických pletivech. Dále je podstatně sní?ena rychlost biosynthesy nukleoproteid? a fosfolipid? v pupenech plodící jabloně ve srovnání s pupeny jabloně, která je v daném roce bez plod?. Kininy zp?sobují změnu metabolizmu pupen? sousedících s plody (jak meristém? tak i ?upin) a inkorporace radiofosfátu je pak po sedmidenním p?sobení velmi podobná inkorporaci v pupenech jabloně, která je bez plod?. Synthetisovali jsme radioaktivní 6-benzylammopurin-9-C14 a metodou radio-autografie jsme zjistili, ?e se lokalisuje v blízkosti místa podání, a to p?evá?ně v primární k??e a floemu. K apikálnímu konci je transportován v malé mí?e, směrem k basálnímu konci výhonu ve vět?í mí?e (z?ernání Rtg filmu ve vzdále-nosti několika cm od místa podání). Po del?í době byla z pokusného materiálu isolována dal?í radioaktivní látka, která se od podaného 6-benzylaminopurinu li?í svým Rf p?i papírové chromatografii. Zkoumáním této látky se zabý váme v dal?í práci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号