首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Byla studována transpirace listových ?epelí zavla?ovaných a nezavla?ovaných rostlin jarní p?enice v závislosti k obsahu a k r?stovým změnám pokusných rostlin v pr?běhu jejich vývoje. Pou?ité závlahy stimulovaly r?st a nepatrně zpomalily vývoj pokusných rostlin. Zvy?ovaly v rostlinném těle p?edev?ím obsah vody a méně ji? su?inu. Kvantitativní a kvalitativní vlastnosti obsahu vody v rostlině ovlivňovaly nejen transpiraci, nýbr? i vznik nových a odumírání starých orgán? a tkání, p?edev?ím ?epelí listových. Transpirace u zavla?ovaných rostlin byla výrazné vy??í ne? u rostlin nezavla?ovaných. Pr?měrné hodnoty transpirace u jednotlivých ?epelí listových byly z?etolně odli?né a pro ka?dou ?epel listovou charakteristické. Z hlediska statického bylo mo?no některé vztahy a heterogenitu jednotlivých ?epelí listových na tém?e stéblu vyjád?it a v podstatě i vysvětlit “Zalenského zákonem”. Týkalo se to zejména pr?měrných hodnot r?stových charakteristik a studovaných rys? vodního provozu. Naproti tomu z hlediska dynamického bylo mo?no jednotlivé ?epele listové rozdělit podle změn transpirace do dvou skupin. Do prvé skupiny pat?í ?epel prvého a? t?etího listu, do druhé skupiny pak ?epel ?tvrtého a? ?estého listu a klas. Regula?ní schopnosti jednotlivých ?epelí listových v hospoda?ení s vodou vynikají v období odno?ování, sloupkování a mlé?né zralosti. V těchto vývojových fázích byla vysvětlena také nápadná sní?ení transpirace rostlin, která jsou zp?sobena v prvé ?adě vnit?ními a nikoliv jen vněj?ími faktory.  相似文献   

2.
Dýchání pylu jabloně v r?znych cukerných substrátech a otázka významu saeharosy pro r?st pylových lá?ek Intensita dýchání klí?ícího pylu jabloně, sledovaná podle spot?eby O2, je podstatně odli?ná v roztocíoh sacharosy, glukosy, invertu a fruktosy. Nejvy??í je v prost?edí sacharosy, nejni??í v roztoku fruktosy. Sacharo?a se jako medium ?i substrát pro dýchání pylu nedá zcela nahradit glukosou, fruktosou ?i invertním cukrem nejen v po?áte?ních fázích klí?ení, nýbr? ani během pozděj?ího r?stu lá?ek. Spotěba O2 pylovými lá?kami se v roztoku sacharosy, stejně jako jejich r?st, za?íná sni?ovat p?ibli?ně po 6 hodinách od vysetí pylu. Jestlize se po 5 hodiná ch kultivace vymění kultiva?ní roztok ?erstvým roztokem sacharosy, pak se během dal?ích 4 hodin intensita dýchání prakticky nemění. Z uvedených skute?ností vyplývá, ?e rychlá inverse sacharosy pylovými lá?kami je hlavní p?í?inou zpomalování jejich r?stu a dychání v sacharosovém prost?edí.  相似文献   

3.
P?i vývoji listu p?enice se zmen?uje stupeň inhibice dýchání fluoridem, monojodacetátem a malonátem a poměr mezi radioaktivitami14CO2 uvolněného z glukosy-6-14C a glukosy-l-14C (C6/C1), co? svěd?í o zvět?ování podílu pentosovího cyklu v celkové respiraci. Tato změna v?ak neni zp?sobena absolutním zvět?ením aktivity pentosového eyklu u star?ích list?, nýbr? p?edev?ím poklesem aktivity glykolytického systému. Naproti tomu u list? oddělených od obilky se pri sní?ení vlhkosti atmosféry méní poměr mezi dýchacími cestami v d?sledku aktivace pentosového cyklu. Na základě disproporce mezi procentem glykolytického podílu respirace vypo?tenym ze sní?ení poměru C6/C1 p?i inhibici dýchání fluoridem a procentem inhibice dý chání fluoridem bylo diskutováno o mo?ných p?íoinách vysokých poměr? C6/C1 u mladých list?, u nich? byly v některých p?ípadech zji?těny hodnoty těchto poměr? dokonce vy??í ne? jedna.  相似文献   

4.
Modelové zachycení r?stových porměr? u vy??ích rostlin p?edpokládá mo?nost ozna?ení celého pletiva odvozeného z jedné ur?ité buňky. Za takové ozna?ení lze pova?ovat nap?. ?odmí?ení” (Entmischung) heterogenních plastid? z jedné buňky, polyploidizaci jednotlivých buněk a z nich' odvozených pletiv, stejně jako indukei mutací nap?. pomocí Roentgenova zá?ení. Jestli?e v posledně uvedeném p?ípadě mutuje, ?ekněme, jedna iniciála L II, pak vykazuje ur?itá ?ást sporogenních pletiv tuté? mutaci Za p?edpokladu, ?e neprobíhá eliminace buněk, odpovídá tato ?ást v pr?měru poměru mutované iniciály L H k po?tu zbylých iniciál L II, uplatňujících se na dal?ím vývoji. Model, odvozený z této skute?nosti a z dal?ích p?edpoklad?, uvedených v textu této práce, podává p?edev?im informaci o o?ekávané ?etnosti mutací a ?těpných poměrech v samosprá?eném potomstvu mutovaných rostlin. Ze srovnání se zji?těnými daty vyplývá, ?e pro vyjád?ení těchto poměr? u odno?í je?mene vysta?í relativně jednoduchý model. Jeho základem je p?edpoklad, ?e iniciály p?e?ívají jedna na druhé stochasticky nezávisle a náhodně, a zároveň náhodně mutují. P?itom není nutno u zkoumaných postranních odno?í uva?ovat eliminaci p?vodních iniciál. U hrachu jsou tyto poměry komplikovaněj?í jak ve vztahu k rozdělení ?etnosti mutací, tak ve vztabu k ?těpným poměr?m. Dosud je známe pouze obecně pro celé rostliny tohoto druhu nikoliv v?ak pro jednotlivá květenství. K jejich objasnění je t?eba p?edpokládat, ?e během r?stu probíhá na ur?itých místech eliminace jednotlivých buněk, zodpovědných za tvorbu sporogenních pletiv. Výzkum na tomto modelu není v?ak dosud ukon?en.  相似文献   

5.
Ve fotoperiodických pokusech s jarní p?enicí Niva jsme sledovali pr?běh fotoperiodické citlivosti a umístění období fotoperiodieké reakce v ontogenesi rostlin. Nepoda?ilo se nám u této dlouhodenní rostliny najít takové období, během něho? by zkrácený den v?bec neměl vliv na rychlost vývoje. Některé údaje v?ak nazna?ují, ?e m??eme vymezit období zvý?ené fotoperiodieké citlivosti, které by odpovídalo období fotoperiodieké reakce u krátkodenních rostlin. Výsledky nasvěd?ují rovně? tomu, ?e toto období nekon?í náhle, nýbr? postupně p?echází v následující období, kdy délka dne p?sobí na rychlost vývoje ji? jen prost?ednietvím fotosynthesy. Tento vliv je dob?e; patrný p?i pou?ití takových indikátor? jako je vývoj vzrostného vrcholu a metání. Existenci p?echodného období na konci období zvý?ené fotoperiodieké citlivosti a jeho souvislosti s fází vzrostného vrcholu od zakládání klísk? do zakládání ty?inek je t?eba ově?it dlouhodobím pokusem v p?ísně regulovatelních podmínkách. Z metodik sledování pr?běhu fotoperiodieké citlivosti se u na?eho pokusného materiálu nejlépe osvěd?ilo metání, které poskytlo k?ivky s ur?itými, více nebo méně z?etelnými zloniy, a také sledování abnormit (p?i klasickém uspo?ádání pokusu), které indikují naru?ení vztahu mezi r?stem a vývojem. Orienta?ní údaje poskytlo rovně? mě?ení délky rostlin u klasického uspo?ádáni pokusu. Nejméně spolehlivé byly v na?ich pokusech analysy vývojového stavu vzrostného vrcholu.  相似文献   

6.
D?ívěj?í práci, v ní? jsme hodnotili pr?běh vývoje podle fenologie a podle vzniku abnormit, jsme nyní doplnili mě?ením délky list?. Pr?běh vývoje jsme ovlivňovali fotoperiodiekou inhibicí v r?zné fázi vývoje vzrostného vrcholu. Ovlivnění pr?běhu vývoje se projevilo změnou délky pochvy a ?epele listu. ?epel byla ovlivněna více ne? pochva. V ?adě variant s r?zným za?átkem fotoperiodické inhibice do?lo k prodlou?ení nebo ke zkrácení pochvy a ?epele horních t?í list? proti p?íslu?ným list?m kontroly. Ke zkrácení do?lo u list?, které se vyvinuly nad obvyklý po?et z p?vodních základ? brakteí. Bylo to u variant s velmi ranou inhibicí. Varianty s pozděj?í inhibicí mají jednak abnormálně redukované listy so zakrnělými ú?labními klásky, jednak prodlou?ené listy, které svojí délkou p?ipomínají ontogeneticky mlad?í, ni??í listy. Ukázalo se, ?e i u tak obtí?ného materiálu jako je p?enice m??e být morfologie list? spolehlivým záznamem pr?běhu vývoje.  相似文献   

7.
Byly zji??ovány změny osmotického potenciálu (osmotického tlaku) buně?né ??ávy (vylisované z listových pletiv usmrcených p?i 100°C) p?i pasivní vodní bilanci (vadnutí) ?ástí ?epele v závislosti na zvět?ujícím se vodním deficitu (na ztrátě vody). Teoreticky by toti? bylo mo?no p?edpokládat, ?e voda vydaná p?i pasivní vodní bilanci pochází rovnoměrně z ve?keré vody buně?né, tedy také poměrně z podílu, obsa?eného v buně?né ??ávě. V tom p?ípadě by se buně?ná ??áva koncentrovala úměrně vznikajícímu deficitu. V naprosté vět?ině pozorovaných p?ípad? stoupal v?ak osmotický tlak (klesal osmotický potenciál) strměji ne? teoreticky odpovídá sou?asné ztrátě vody. Ze zji?těných rozdíl? mezi zmíněným teoretickým pr?během a mezi nalezenými hodmotami byl vypo?ítán odhad percentuálního podílu ?mobilní” vody v buňce, tj. toho podílu, kterého se v?dy bezprost?edně týkají změny obsahu vody v buňce. Tento podíl ?mobilní” vody byl u dospělých list? kolem 70 a? 80%. Velikost podílu ?mobilní” vody závisela na rychlosti vzniku vodního deficitu: P?i rychlém vadnutí byl u dospělých list? zji?těn men?í podíl ne? p?i vadnutí pomalém. To svěděí o tom, ?e ?mobilní” podíl buně?né vody je vymezován podle vodní bilance buňky dynamickou rovnováhu intracelulárních difusních proud? vody podle gradient? difusního tlaku vody mezi jednotlivými podíly buně?né vody, je? jsou ur?eny r?znou vazbou (?vázaná” voda) i r?znou lokalisací v buňce.  相似文献   

8.
Zkou?eli jsme vliv některých inhibitor? glykolýzy a dýchání na odbourávání volných glycid? a na mno?ství zplodin kva?ení ve vegeta?ních vrcholech p?enice,Triticum aestivum L., kultivar Chlumecká 12. Analýzy jsme prováděli ve 3 etapách organogeneze v 2. (vegetativní období), 3. (období fotoperiodické indukee) a 4. (po?átek zakládání květních orgán?) etapě organogenese. Izolované vegeta?ní vrcholy byly inkubovány ur?itou dobu v roztocích inhibitor? ve fosfátcitrátovém ústoji. Volné glycidy jsme stanovili metodou nátla?kové chromatografie a zplodiny kva?ení modifikovanou jodoformovou reakcí. DNP a azid zpomalily v pou?itých koncentracích odbourávání glycid? ve v?ech zkou?ených etapách organogeneze. Kyselina monojodoctová, NaFa Na-malonát měly tentý? ú?inek jen ve 3. a 4. etapě. V 2. etapě se odbourávání glycid? ú?inkem těchto inhibitor? urychlilo. Vlivem DNP se zmen?ilo mno?ství zplodin kva?ení ve v?ech etapách organogeneze. Mno?ství těchto látek nebylo ovlivněno malonátem a toté? platí pro kyselinu monojodoctovou a NaF ve 3. a 4. etapě organogeneze a pro azid ve 2. etapě. Azid ve 3. a 4. etapě někdy vedl ke zvý?ení mno?ství zplodin kva?ení, kyselina monojodoctová a Na-fluorid zp?sobily jejich pokles ve 2. etapě. Výsledky diskutujeme z hlediska mo?ného vysvětlení p?sobení jednotlivých inhibitor?. Vět?ina inhibitor? měla jiný ú?inek ve 2. etapě organogeneze ne? v dal?ích etapách. To se shoduje s d?ívěj?ím zji?těním, ?e u vegeta?ních vrchol? je v pr?běhu 3. etapy organogeneze nahrazeno kva?ení aerobními oxydázovými systémy.  相似文献   

9.
Aplikací 1 ppm zeatinu se zvý?í rychlost dýchání (mě?eno Warburgovou metodou) protoplast? z mesofylu list?Petunia hybrida po 4 h asi o 50%; pak následuje prudký pokles. Zatímeo rychlost dýchání u kontrolních rostlin stoupá po 5 a? 6 h, 1 ppm zeatinu má silný inhibi?ní ú?inek. P?i dýchání u kontrolních rostlin stoupá po 5 a? 6 h, 1 ppm zeatinu má silný inhibi?ní ú?inek. P?i pou?ití 0.1 ppm zeatinu je vzestup rychlosti, dýchání mnohem pomalej?í a po 7 h je o 30% vy??í ne? u kontrolních rostlin. Kyselina abscisová (10 ppm) sni?uje rychlost dýchání tak, ?e po 5 h je rychlost dýchání o polovinu ni??í ne? v kontrolní variantě. Později následuje vzestup, zp?sobený patrně vlivem kyseliny abscisové podporující stárnutí. Rychlost fotosynthesy protoplast? mesofylu mě?ená pomocí fixace14CO2 klesá se stárnutím preparátu. Protoplasty vystavené p?sobení zeatinu během 1 a? 3 h ukazovaly zvý?ení rychlosti fotosynthesy. P?i aplikaci 0.1 ppm zeatinu rychlost fixace14CO2 je tím vět?í, ?ím déle mohl hormon p?sobit. P?i aplikaci 1 ppm zeatinu byla získána typická optimální k?ivka podobná k?ivce pro dýchání. Tyto optimální k?ivky prokazují inhibi?ní ú?inek zeatinu na dýchání a fotosynthesu.  相似文献   

10.
Natriumfluorid, monojodacetát a malonát brzdí, pop?ípadě stimulují, dýchání ko?en? p?enice pěstované 2 a? 10 dní v roztoku humátu sodného (100 mg/l) silněji, ne? dýchání ko?en? rostlin pěstovaných ve vodě. Obdobně p?sobí natriumfluorid na dýchání list?. Poměr radioaktivit C14O2 uvolněného z glukosy zna?ené v poloze 1 nebo 6 (C6/C1) je pr?kazně zvý?en u ko?en?, nikoli v?ak u list?. Změna tohoto poměru je doprovázena zmen?ením celkové radioaktivity C14O2 uvolněného ko?eny rostlin ovlivněnými humátem z glukesy specificky i totálně zna?ené. Endogenní respirace (QO2) ko?en? je p?sobením humátu zesílena o 5–30 %, intensita respirace list? z?stává na stejné úrovni. R?st ko?en? do délky je v prost?edí s humátem intensivněj?í o 20–80 %, r?st list? o 5–15%. Uvedená zji?tění vedou k závěru, ?e v ko?enech rostlin pěstovaných v roztoku humátu vzr?stá podíl glykolysy v respira?ním metabolismu.  相似文献   

11.
Byl sledován vliv CO2 na plasmatické struktury ko?enového vlá?ení p?enice a je?mene a epidermálních buněk cibule. Výsledky byly hodnoceny na ?ivém materiálu pomocí fázového kontrastu. Ko?enové vlá?ení je?mene a epidermis cibule reagují na krátkodobý pobyt v atmosfé?e CO2 zastavením proudění plasmy, prodlu?ováním mitochondrií a zakulacením plastid?. Déle trvající vliv CO2 zp?sobuje fragmentaci mitochondrií. V této fázi se buňky nejrychleji vzpamatovávají ze ?oku zp?sobeného pobytem v CO2. P?íli? dlouhé ovlivňování rostlin atmosférou CO2 ú?inkuje letálně. Ko?enové vlá?ení p?enice, které má vět?inou zrnité mitochondrie, reagovalo ji? na 40minutový pobyt v CO2 zakulacením v?ech plasmatických partikulí. Tato pozorování se shodují s výsledky získanými na trvalých preparátech v práci p?ede?lé a vedou k domněnce, ?e fragmentací mitochondrií se buňka p?izp?sobuje ztí?eným podmínkám pro dýchání.  相似文献   

12.
K pokus?m jsme pou?ili ?erstvých oddenk? pýru plazivého (Agropyrum repens L.) a jarní p?enice Nivy. Kultiva?ní pokusy jsme prováděli v Mitscherlichových nádobách v písku a v kompostové zemině na zahradě. Délka spole?ného r?stu pýru a p?enice trvala vesměs kolem 30 dní. Byl stanoven r?st pýru, r?st nadzemních ?ástí p?enice, intensita dýchání, obsah vody a obsah cukr? v nadzemních ?ástech p?enice. Výsledky pokus? ukázaly, ?e ?ím intensivněji nar?stal pýr v kultiva?ních nádobách, tím více se sni?oval r?st p?enice a rovně? tak poklesl obsah vody v jejich nadzemních ?ástech a zna?ně se změnil i obsah glycid?. Intensita dýchání se p?i men?ím mno?ství pýru v nádobách vět?inou poněkud zvedala, p?i největ?ím mno?ství pýru ji? poněkud poklesala. Ve srovnání s r?stem byla v?ak velmi málo ovlivněna. Z toho je patrno, ?e produktivnost dýchacích proces? p?enice vlivem pýru byla zna?ně sní?ena. K hlub?ímu objasnění těchto změn bude t?eba dal?í jejich studium.  相似文献   

13.
Jedním z kritérií pro posuzování odolnosti rostiin v??i suchu je jejich schopnost sná?et vodní deficit ani? nastanou irreversibilní změny v jejich pletivech. Tato schopnost byla zkoumána metodikou, popsanou v p?edlo?ené práci. Listy některých xerothermních trav (druhy roduStipa, Melica atd.) vysýchaly za p?esně definovaných pokusných podmínek tak, ?e dosáhly r?zně odstupňovaného vodního deficitu. Potom byly roz?ezány na segmenty a ve speciálním ráme?ku dosycovány vodou. P?vodní deficit i jeho vyronání bylo sledvváno váhově. Výsledné hodnoty byly znázorněny graficky. Zatímco ztráta vody z list? během vysýchání probíhala v některých p?ípadech lineárně, k?ivka dosycování ukazovala charakteristický zlom, který indikoval, jak dalece byla ztráta vody nahraditelná, a kdy do?lo ji? k irreversibilním změnám. Ukázalo se, ?e ze studované série rostlin druhy typicky kontinentální mají schopnost doplňovat svou zásobu vody ad integrum i p?i zna?ném vodním deficitu. Rostliny s areálem spí? oceánického charakteru tuto schopnost nemají. Je pravděpodobné, ?e i tato vlastnost bude směrodatná p?i výkladu kausální fytogeografie.  相似文献   

14.
Dekapitované klíění rostliny lnu a hrachu, nat?ené pastou s trijodbenzoovou kyselinou bud nad dělohami nebo pod nimi, jeví zvlá?tě na epikotylních pahýlech rozdílné morfogenetické změny v souvislosti, s rozdílnými korela?ními vlivy jejich epigeických, resp. hypogeických děloh, je? primárně rozhodují o rozdílné dominanci jejich pupenových základ?. V nejraněj?ím období klí?ení lze prvního internodia lnu, oby?ejně velmi krátkého, a ?apík? děloh hrachu u?ít k d?kazu antagonismu mezi kyselinou trijodbenzoovou a indolyloctovou. První internodium lnu se prodlou?ilo p?sobením trijodbenzoové kyseliny na semena, i kdy? zrála na rostlině, a ?apíky děloh hrachu, zadr?ené v r?stu má?ením semen v roztoku kyseliny trijodbenzoové, se zvět?ily p?sobením kyseliny indolyloctové zvněj?ku. Tato kyselina naopak ru?í morfogenetické ú?inky trijodbenzoové kyseliny na semena lnu.  相似文献   

15.
P?i pěstování rostlin kuku?ice ve sterilních kulturách je t?eba obilky desinfi-kovat, aby se zniěily zárodky mikroorganism?. To sni?uje jejich klí?ivost, zpozdí r?st a tvorbu chlorofylu během prvních několika týdn? vyvoje klí?ních rost-linek. Nejde o specfflcké inhibice, nýbr? o vývojové opo?dění neprojevující se ani v poměru dlou?ivého r?stu a hromadění su?iny. Opo?dění je nejvě t?í p?i po-u?ití roztoku sublimáta nebo ethanolu. Vhodněj?í je desinfekce roztokem chlor-aminu. Změny vyvolané t?íhodinovým namá?ením jsou vyrovnány během cca 3 tydn?, bězně u?ívaná sedmihodinová desinfekce vyvolává kromě silného sní-zeni klí?ivosti (témě? ? 50 %) déle trvající, av?ak nezásadní změny. Chloramin neovlivnil tvorbu pohlavních organ?, intensità fotosynthesy byla úměrná mno?ství chlorofylu. Desinfekce chloraminem lze tedy u?ít, ani? by se rostliny podstatně li?ily od těch, které byly vypěstovány ze suchých obilek.  相似文献   

16.
R?st pylových lá?ek vyvolává ve ?nělce změny v hladině volnýeh aminokyselin. To bylo prokázáno u alaninu, valinu, leucinu — isoleucinu, serinu, threoninu, kyseliny γ-aminomáselné, asparaginu, kyseliny glutamové a prolinu. Tyto změny se uskute?ňují hlavně v těch ?ástech ?nělky, kde se nalézají pylové lá?ky. P?edev?ím dochází ke zvy?ování hladiny kyseliny γ-aminomáseìné a alaninu a k úbytku kyseliny glutamové. Intensita těchto jev? je mnohem výrazněj?í po opylení kompatibilním ne? v p?íipadě inkompatibilní autogamie. Jejich podstata je vysvětlována na základě p?edpokládaného hlavního směru katabolismu kyseliny γ-aminomáselné a alaninu cestou transaminace s kyselinou α-ketoglutarovou relativním nedostatkem této ketokyseliny. P?i sní?ené hladině glycid? dochází v opylenýoh ?ně1kách k akumulaci asparaginu. V cizoprá?enych ?nělkáeh se zvy?uje jeho hladina podstatně rychleji ne?, po samosprá?ení. Jestli?e je hromadění asparaginu d?sledkem intensivněj?ího prodýchávaní bílkovin p?i nedostatku cukr?, vyplývá z uvedeného stejně jako z p?ede?lé práce (TUPý 1961), ?e pylové lá?ky vyu?ívají z ?nělkového pletiva. substráty pro dýchání a ?e je tento proces omezován p?i jejich inkompatibilitní inhibici. V semenících opylených květ? se zvy?uje ji? v době, kdy pylové lá?ky prorustají ?nělkou, hladina kyseliny γ-aminomáselné a alaninu. Kvantitativně je toto zvý?ení p?ímo závislé na rychlosti r?stu lá?ek dané kompatibilním ?i inkompatibilním charakterem p?ílu?ného opylení.  相似文献   

17.
Jestli?e byly pokusně květy den p?ed opylenim odděleny od rostliny a inkubovány ve vodě za teploty 25° C, projevil se v jejich pestících během následujících t?í dn? r?st pylových lá?ek v hladině glukosy a fruktosy. Prvý den po opylení bylo mno?ství těchto cukr? v apikálních ?ástech ?nělek z neopylených květ? vy??í, v basálních úsecích a v semeníeích naopak vět?inou ni??í ne? v p?íslu?ných ?ástech květ? opylených. V dal?ích dvou dnech do?lo i zde v p?ípadě opylení, a to p?edev?ím po allogamii, k silněj?ímu úbytku obou glycid?, tak?e po t?etím dnu bylo glukosy a fruktosy nejvíce v pestících neopylených, nejmáně po kompatibilním sprá?ení. Tento pokles byl nejvýrazněj?í v semeníeích, i kdy? do nich ani kompatibilní lá?ky je?tě nepronikly. V pokusech, kdy byly květy ponechány na rostlinách kultivovaných v polních podmínkách, nedo?lo v jejich pestících ani 80 hodin po kompatibilním opylení ke sní?ení obsahu glukosy a fruktosy. Z uvedených skute?ností lze vyvodit tyto záváry: R?st lá?ek ?nělkou vyvolá vá zvý?ený p?ísun glycid? do celých pestík?. Jak kompatibilní, tak inkompatibilní lá?ky vyu?ívají cukry z ?nělkováho pletiva. Oba tyto jevy jsou intenzívněj?í po allogamii ne? v p?ípadě inkompatibilní autogamie. Vzhledem k tomu, ?e kompatibilní lá?ky rostly normálně ?nělkou i za sní?ené hladiny glukosy a fruktosy, není absolutní zvý?ení obsahu těchto cukr? v pestících pro r? st lá?ek nezbytné. V opylených ?nělkách se mění poměr glukosa/fruktosa ve prospěch glukosy. Hodnota tohoto kvocientu se zvy?uje jak v apikálních, tak v basálních ?ásteeh ?ně1ek p?edev?ím po opylení kompatibilním. Tento jev je v souladu s hypothesou uvedenou d?ive (TUpý- 1959, 1960 podle ní? pylové lá?ky prodýchávají hlavnð sacharosu a z ní p?edev?ím její fruktofuranosovou slo?ku.  相似文献   

18.
V souvislosti s d?ívěj?imi údaji (Lu?tinec a Krektjle 1959, Lu?tinec, Krekule a PokornÁ 1960) o silném inhibi?ním ú?inku fluoridu na dychání rostlin pěstovaných v roztoku kyseliny giberelové byl pomocí specificky zna?ené glukosy a respira?ních inhibitor? zji?tován vztah krátko- i dlouhodobého p?sobení kyseliny giberelové k poměru mezi podíly glykolytického a pentosofosfátového odbourání v respiraci list? p?enice. V souhlase s výsledky Fanga a spol. (1960) byIo zji?těno, ?e kyselina giberelová v koncentracích 2 a? 80 mg/l neovlivńuje během několikahodinového p?sobení na roz?ezané listy p?enice poměr radioaktivit14CO2 uvolněného z glukosy-6-14C a -1-14C (C6/C1) ani nemění v koncentraci 10 mg/l stupeń inhibice dýchání fluoridem, monojodacetátem a malonátem a spot?ebu kyslíku. Výdej14CO2 z glukosy-l-14C a -6-14C kyselina giberelová sni?uje v lineární závislosti na pou?itých koncentracích. U rostlin pěstovaných v roztoku kyseliny giberelové (10–20 mg/l) se rychleji sni?uje poměr C6C1 i absolutní hodnoty radioaktivity během několika dní od vyklí?ení, ne? u rostlin pěstovaných ve vodě. To svěd?í o rychlej?ím zvět?ování podílu pentosového cyklu v respiraci pokusných rostlin. Fluorid brzdí p?i stejném nebo men?ím obsahu ve tkáni dýchání list? rostlin pěstovaných v roztoku kyseliny giberelové silněji ne? dýchání rostlin pěstovaných ve vodě, zatimco ûcinek monojodacetátu a malonátu je u stejně starých rostlin (4 dny) obou variant stejný. O mo?ných p?í?inách tohoto jevu bylo diskutováno.  相似文献   

19.
Auto?i sledovali sou?asně intensitu dýchání a intensitu fotosynthesy u list? cukrovky, neoddělených od rostliny. Několik hodin p?ed pokusem asimilovaly listy radioaktivní14CO2, na?e? byly umístěny do normální listové komory k pr? tokovému gazometrickému stanovení intensity fotosynthesy podle změny koncentrace CO2 v procházejícím vzduchu. Sou?asně s gazometrickým stanovením fotosynthesy mě?ili auto?i specifickou aktivitu kysli?níku uhli?itého ve vzduchu, který pro?el asimila?ní komorou. Podle hodnot specifické aktivity CO2, kterou vylu?uje list v temnotě, je mo?no vypo?ítat intensitu dýchání v mg CO2. Bylo zji?těno, ?e listy cukrovky vylu?ují na světle radioaktivní CO2, a to jak první tak i druhý den po asimilaci zna?eného CO2. P?i silném p?eh?ivání list? v komo?e, kdy gazometrickou metodou bylo zji?těno ji? jen dýchání, radiometricky byl stanoven výdej14CO2, odpovídající vy??í intensitě dýchaní. Auto?i vysvětlují tuto skute?nost tím, ?e i p?i p?eh?ívaní list? probíha sou?asně s dýchaním fotosyntheticka asimilace kysli?níku uhli?itého, av?ak pasivní bilance CO2 ve výměně plyn? vede ke zji?těnédýchaní, které je v podstatě rozdílem mezi intensitou piné fotosynthesy a plného dýchaní. Produkce kysli?níku uhli?itého celými listy cukrovky na světle není za normalních podmínek vý?ivy výjime?ným zjevem.  相似文献   

20.
Metodikou fotoperiodických pokus? a analys vzrostných vrchol? jsme zjistili závislost typu výsledné morfologické abnormity na vývojovém stupni vzrostného vrcholu p?ed fotoperiodickým zásahem. Abnormálně velký po?et klásk? vznikal po zásahu u rostlin se zcela vegetativním vzrostným vrcholem. K větvení klasu do?lo nejvíce po zásahu v době prodlu?ování vzrostného vrcholu. Abnormální vývin podp?rných listen? odpovídal zásahu mezi zakládáním klásk? a zakládáním kvítk? v kláscích. ?ím d?ívěj?i byl tento zásah, tím ú plněji byly podp?rné listeny vyvinuty. První dvě odchylky p?edstavují nadpo?etný r?st osních ?lánk? v květenství, vývin podp?rného listenu je známkou posunutí korelace mezi r?stem listenu a generativním vývojem jeho ú?labního klásku. U poslední odchylky, ?ídkého klasu, která vzniká po zásahu v době zakládání ty?inek, ji? nedochází k takovému naru?ení vztahu mezi r?stem a vývojem. P?i fotoperiodickém zásahu dochází k indukci abnormální morfogenese, která pak m??e probíhat i po ukon?ení zásahu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号