首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liquid can be instilled into the pulmonary airways during medical procedures such as surfactant replacement therapy, partial liquid ventilation, and pulmonary drug delivery. For all cases, understanding the dynamics of liquid distribution in the lung will increase the efficacy of treatment. A recently developed imaging technique for the study of real-time liquid transport dynamics in the pulmonary airways was used to investigate the effect of respiratory rate on the distribution of an instilled liquid, surfactant, in a rat lung. Twelve excised rat lungs were suspended vertically, and a single bolus (0.05 ml) of exogenous surfactant (Survanta, Ross Laboratories, Columbus, OH) mixed with radiopaque tracer was instilled as a plug into the trachea. The lungs were ventilated with a 4-ml tidal volume for 20 breaths at one of two respiratory rates: 20 or 60 breaths/min. The motion of radiodense surfactant was imaged at 30 frames/s with a microfocal X-ray source and an image intensifier. Dynamics of surfactant distribution were quantified for each image by use of distribution statistics and a homogeneity index. We found that the liquid distribution depended on the time to liquid plug rupture, which depends on ventilation rate. At 20 breaths/min, liquid was localized in the gravity-dependent region of the lung. At 60 breaths/min, the liquid coated the airways, providing a more vertically uniform liquid distribution.  相似文献   

2.
The effect of viscosity on the distribution of perfluorocarbon instilled into the lungs for liquid ventilation was investigated. Perfluorocarbon (either perfluorodecalin or FC-3283) was instilled into the trachea during ventilation at a constant infusion rate of 40 ml/min and radiographic images were obtained at 30 frames/s. Image analysis was performed and the homogeneity index of the distribution was computed for images at the end of inspiration of each breath to evaluate the evolution of perfluorocarbon distribution during filling. The higher viscosity perfluorocarbon (perfluorodecalin) resulted in a more homogeneous distribution. This was attributed to perfluorodecalin's higher propensity to form liquid plugs in large airways and to those plugs leaving behind a thicker liquid layer as they propagated through the lungs.  相似文献   

3.
Motivated by the goal of understanding how to most homogeneously fill the lungs with perfluorocarbon for liquid ventilation, we investigate the transport of liquid instilled into the lungs using an intact rabbit model. Perfluorocarbon is instilled into the trachea of the ventilated animal. Radiographic images of the perfluorocarbon distribution are obtained at a rate of 30 frames/s during the filling process. Image analysis is used to quantify the liquid distribution (center of mass, spatial standard deviation, skewness, kurtosis, and indicators of homogeneity) as time progresses. We compare the distribution dynamics in supine animals to those in upright animals for three constant infusion rates of perfluorocarbon: 15, 40, and 60 ml/min. It is found that formation of liquid plugs in large airways, which is affected by posture and infusion rate, can result in a more homogeneous liquid distribution than gravity drainage alone. The supine posture resulted in more homogeneous filling of the lungs than did upright posture, in which the lungs tend to fill in the inferior regions first. Faster instillation of perfluorocarbon results in liquid plugs forming in large airways and, consequently, more uniform distribution of perfluorocarbon than slower instillation rates in the upright animals.  相似文献   

4.
Many medical therapies require liquid plugs to be instilled into and delivered throughout the pulmonary airways. Improving these treatments requires a better understanding of how liquid distributes throughout these airways. In this study, gravitational and surface mechanisms determining the distribution of instilled liquids are examined experimentally using a bench-top model of a symmetrically bifurcating airway. A liquid plug was instilled into the parent tube and driven through the bifurcation by a syringe pump. The effect of gravity was adjusted by changing the roll angle (phi) and pitch angle (gamma) of the bifurcation (phi = gamma =0 deg was isogravitational). Phi determines the relative gravitational orientation of the two daughter tubes: when phi not equal to 0 deg, one daughter tube was lower (gravitationally favored) compared to the other. Gamma determines the component of gravity acting along the axial direction of the parent tube: when gamma not equal to 0 deg, a nonzero component of gravity acts along the axial direction of the parent tube. A splitting ratio Rs, is defined as the ratio of the liquid volume in the upper daughter to the lower just after plug splitting. We measured the splitting ratio, Rs, as a function of: the parent-tube capillary number (Cap); the Bond number (Bo); phi; gamma; and the presence of pre-existing plugs initially blocking either daughter tube. A critical capillary number (Cac) was found to exist below which no liquid entered the upper daughter (Rs = 0), and above which Rs increased and leveled off with Cap. Cac increased while Rs decreased with increasing phi, gamma, and Bo for blocked and unblocked cases at a given Cap > Ca,. Compared to the nonblockage cases, Rs decreased (increased) at a given Cap while Cac increased (decreased) with an upper (lower) liquid blockage. More liquid entered the unblocked daughter with a blockage in one daughter tube, and this effect was larger with larger gravity effect. A simple theoretical model that predicts Rs and Cac is in qualitative agreement with the experiments over a wide range of parameters.  相似文献   

5.
A theoretical study of surfactant and liquid delivery into the lung   总被引:5,自引:0,他引:5  
A computational study is presented for thetransport of liquids and insoluble surfactant through the lung airways,delivered from a source at the distal end of the trachea. Four distinct transport regimes are considered: 1)the instilled bolus may create a liquid plug that occludes the largeairways but is forced peripherally during mechanical ventilation;2) the bolus creates a deposited film on the airway walls, either from the liquid plug transport or fromdirect coating, that drains under the influence of gravity through thefirst few airway generations; 3) insmaller airways, surfactant species form a surface layer that spreadsdue to surface-tension gradients, i.e., Marangoni flows; and4) the surfactant finally reachesthe alveolar compartment where it is cleared according to first-orderkinetics. The time required for a quasi-steady-state transport processto evolve and for the subsequent delivery of the dose is predicted.Following fairly rapid transients, on the order of seconds,steady-state transport develops and is governed by the interaction ofMarangoni flow and alveolar kinetics. Total delivery time is ~24 hfor a typical first dose. Numerical solutions show that both transitand delivery times are strongly influenced by the strength of thepreexisting surfactant and the geometric properties of the airwaynetwork. Delivery times for follow-up doses can increase significantlyas the level of preexisting surfactant rises.

  相似文献   

6.
Liquid plugs may form in pulmonary airways during the process of liquid instillation or removal in many clinical treatments. During inspiration the plug may split at airway bifurcations and lead to a nonuniform final liquid distribution, which can adversely affect treatment outcomes. In this paper, a combination of bench top experimental and theoretical studies is presented to study the effects of inertia and gravity on plug splitting in an airway bifurcation model to simulate the liquid distributions in large airways. The splitting ratio, Rs, is defined as the ratio of the plug volume entering the upper (gravitationally opposed) daughter tube to the lower (gravitationally favored) one. Rs is measured as a function of parent tube Reynolds number, Rep; gravitational orientations for roll angle, phi, and pitch angle, gamma; parent plug length LP; and the presence of pre-existing plug blockages in downstream daughter tubes. Results show that increasing Rep causes more homogeneous splitting. A critical Reynolds number Rec is found to exist so that when Rep < or = Rec, Rs = 0, i.e., no liquid enters the upper daughter tube. Rec increases while Rs decreases with increasing the gravitational effect, i.e., increasing phi and gamma. When a blockage exists in the lower daughter, Rec is only found at phi = 60 deg in the range of Rep studied, and the resulting total mass ratio can be as high as 6, which also asymptotes to a finite value for different phi as Rep increases. Inertia is further demonstrated to cause more homogeneous plug splitting from a comparison study of Rs versus Cap (another characteristic speed) for three liquids: water, glycerin, and LB-400X. A theoretical model based on entrance flow for the plug in the daughters is developed and predicts Rs versus Rep. The frictional pressure drop, as a part of the total pressure drop, is estimated by two fitting parameters and shows a linear relationship with Rep. The theory provides a good prediction on liquid plug splitting and well simulates the liquid distributions in the large airways of human lungs.  相似文献   

7.
Computer simulations of airflow patterns within the human upper respiratory tract (URT) are presented. The URT model includes airways of the head (nasal and oral), throat (pharyngeal and laryngeal), and lungs (trachea and main bronchi). The head and throat morphology was based on a cast of a medical school teaching model; tracheobronchial airways were defined mathematically. A body-fitted three-dimensional curvilinear grid system and a multiblock method were employed to graphically represent the surface geometries of the respective airways and to generate the corresponding mesh for computational fluid dynamics simulations. Our results suggest that for a prescribed phase of breath (i.e., inspiration or expiration), convective respiratory airflow patterns are highly dependent on flow rate values. Moreover, velocity profiles were quite different during inhalation and exhalation, both in terms of the sizes, strengths, and locations of localized features such as recirculation zones and air jets. Pressure losses during inhalation were 30-35% higher than for exhalation and were proportional to the square of the flow rate. Because particles are entrained and transported within airstreams, these results may have important applications to the targeted delivery of inhaled drugs.  相似文献   

8.
Infants with respiratory failure are frequently mechanically ventilated at rates exceeding 60 breaths/min. We analyzed the effect of ventilatory rates of 30, 60, and 90 breaths/min (inspiratory times of 0.6, 0.3, and 0.2 s, respectively) on the pressure-flow relationships of the lungs of anesthetized paralyzed rabbits after saline lavage. Tidal volume and functional residual capacity were maintained constant. We computed effective inspiratory and expiratory resistance and compliance of the lungs by dividing changes in transpulmonary pressure into resistive and elastic components with a multiple linear regression. We found that mean pulmonary resistance was lower at higher ventilatory rates, while pulmonary compliance was independent of ventilatory rate. The transpulmonary pressure developed by the ventilator during inspiration approximated a linear ramp. Gas flow became constant and the pressure-volume relationship linear during the last portion of inspiration. Even at a ventilatory rate of 90 breaths/min, 28-56% of the tidal volume was delivered with a constant inspiratory flow. Our findings are consistent with the model of Bates et al. (J. Appl. Physiol. 58: 1840-1848, 1985), wherein the distribution of gas flow within the lungs depends predominantly on resistive factors while inspiratory flow is increasing, and on elastic factors while inspiratory flow is constant. This dynamic behavior of the surfactant-depleted lungs suggests that, even with very short inspiratory times, distribution of gas flow within the lungs is in large part determined by elastic factors. Unless the inspiratory time is further shortened, gas flow may be directed to areas of increased resistance, resulting in hyperinflation and barotrauma.  相似文献   

9.
Liquid plug flow in straight and bifurcating tubes.   总被引:1,自引:0,他引:1  
A finite-length liquid plug may be present in an airway due to disease, airway closure, or by direct instillation for medical therapy. Air forced by ventilation propagates the plug through the airways, where it deposits fluid onto the airway walls. The plug may encounter single or bifurcating airways, an airway surface liquid, and other liquid plugs in nearby airways. In order to understand how these flow situations influence plug transport, benchtop experiments are performed for liquid plug flow in: Case (i) straight dry tubes, Case (ii) straight pre-wetted tubes, Case (iii) bifurcating dry tubes, and Case (iv) bifurcating tubes with a liquid blockage in one daughter. Data are obtainedfor the trailing film thickness and plug splitting ratio as a function of capillary number and plug volumes. For Case (i), the finite length plug in a dry tube has similar behavior to a semi-infinite plug. For Case (ii), the trailing film thickness is dependent upon the plug capillary number (Ca) and not the precursor film thickness, although the shortening or lengthening of the liquid plug is influenced by the precursor film. For Case (iii), the plug splits evenly between the two daughters and the deposited film thickness depends on the local plug Ca, except for a small discrepancy that may be due to an entrance effect or from curvature of the tubes. For Case (iv), a plug passing from the parent to daughters will deliver more liquid to the unblocked daughter (nearly double, consistently) and then the plug will then travel at greater Ca in the unblocked daughter as the blocked. The flow asymmetry is enhanced for a larger blockage volume and diminished for a larger parent plug volume and parent-Ca.  相似文献   

10.
We have shown previously that phospholipids instilled through the trachea are removed from the air spaces in isolated rat lungs by a process that is stimulated by beta-adrenergic agonists. In this study, we evaluated the fate of radiolabeled lipid vesicles [50% [3H]dipalmitoyl phosphatidylcholine (DPPC), 25% phosphatidylcholine (PC), 15% cholesterol, and 10% phosphatidylglycerol (PG)]. Vesicles were instilled through the trachea of anesthetized rats, and the lungs removed for perfusion. The percent of instilled 3H that could not be removed from lungs by extensive lung lavage increased progressively; at 3 h this fraction was 25.8 +/- 0.63% (mean +/- SE; n = 8). The percent of dpm in the lung homogenate accounted for by PC decreased progressively while dpm in lyso-PC, unsaturated PC, and aqueous soluble metabolites [choline, choline phosphate, glycerophosphorycholine, and cytidine 5'-diphosphate (CDP) choline (CDP-choline) increased. The dpm in microsomal and lamellar body fractions isolated from lung homogenates also increased progressively with time of perfusion. The presence of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) significantly stimulated both uptake of DPPC and the appearance of radioactivity in metabolites and subcellular organelles. This effect of 8-BrcAMP was not due to stimulation of phospholipase A activity. These results indicate that exogenous phospholipids instilled into the air spaces of rat lungs are internalized and degraded by a process that is stimulated by cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
In this article, the results of numerical simulations using computational fluid dynamics (CFD) and a comparison with experiments performed with phase Doppler anemometry are presented. The simulations and experiments were conducted in a realistic model of the human airways, which comprised the throat, trachea and tracheobronchial tree up to the fourth generation. A full inspiration/expiration breathing cycle was used with tidal volumes 0.5 and 1 L, which correspond to a sedentary regime and deep breath, respectively. The length of the entire breathing cycle was 4 s, with inspiration and expiration each lasting 2 s. As a boundary condition for the CFD simulations, experimentally obtained flow rate distribution in 10 terminal airways was used with zero pressure resistance at the throat inlet. CCM+ CFD code (Adapco) was used with an SST k-\(\upomega \) low-Reynolds Number RANS model. The total number of polyhedral control volumes was 2.6 million with a time step of 0.001 s. Comparisons were made at several points in eight cross sections selected according to experiments in the trachea and the left and right bronchi. The results agree well with experiments involving the oscillation (temporal relocation) of flow structures in the majority of the cross sections and individual local positions. Velocity field simulation in several cross sections shows a very unstable flow field, which originates in the tracheal laryngeal jet and propagates far downstream with the formation of separation zones in both left and right airways. The RANS simulation agrees with the experiments in almost all the cross sections and shows unstable local flow structures and a quantitatively acceptable solution for the time-averaged flow field.  相似文献   

12.
Previous studies of the intrapulmonary conducting airways of sheep and rabbit have demonstrated marked diversity in the epithelial populations lining them. Because studies of trachea and centriacinar regions of macaque monkeys suggested that primates may be even more diverse, the present study was designed to characterize the epithelial population throughout the airway tree of one primate species, the rhesus monkey. Trachea and intrapulmonary airways of the right cranial and middle lobes of glutaraldehyde/paraformaldehyde-infused lungs of five adult rhesus monkeys were microdissected following the axial pathway. Each branch was assigned a binary number indicating its specific location within the tree. The trachea and six generations of intrapulmonary airway from the right cranial lobe were evaluated for ultrastructure and quantitative histology as were those of the right middle lobe for quantitative carbohydrate histochemistry. Four cell types were identified throughout the tree: ciliated, mucous goblet, small mucous granule, and basal. The tallest epithelium lined the trachea; the shortest, the respiratory bronchiole. The most cells per unit length of basement membrane were in proximal intrapulmonary bronchi; the least, in the respiratory bronchiole. The nonciliated bronchiolar epithelial or Clara cell was restricted to respiratory bronchioles. Sulfomucins were present in the vast majority of surface goblet cells in the trachea and proximal bronchi. In proximal bronchi, neutral glycoconjugates predominated in glands and acidic glycoconjugates in surface epithelium. In terminal and respiratory bronchioles the ratio of acidic glycoconjugate to neutral glycoconjugate equaled that in proximal bronchi, although glands were not present. Sulfomucins were minimal in terminal airways. We conclude that the characteristics of the epithelial lining of the mammalian tracheobronchial airway tree are very species-specific. The lining of the rhesus monkey does not have the diversity in cell types in different airway generations observed in sheep and rabbit. Also, the populations lining these airways in the rhesus are very different from either the sheep or rabbit in number, proportions of different cell types, glycoconjugate content, and distribution of specific cell types.  相似文献   

13.
Imperceptible levels of proportional assist ventilation applied throughout inspiration reduced inspiratory time (TI) in awake humans. More recently, the reduction in TI was associated with flow assist, but flow assist also reaches a maximum value early during inspiration. To test the separate effects of flow assist and timing of assist, we applied a pseudorandom binary sequence of flow-assisted breaths during early, late, or throughout inspiration in eight normal subjects. We hypothesized that imperceptible flow assist would shorten TI most effectively when applied during early inspiration. Tidal volume, integrated respiratory muscle pressure per breath, TI, and TE were recorded. All stimuli (early, late, or flow assist applied throughout inspiration) resulted in a significant increase in inspiratory flow; however, only when the flow assist was applied during early inspiration was there a significant reduction in TI and the integrated respiratory muscle pressure per breath. These results provide further evidence that vagal feedback modulates breathing on a breath-by-breath basis in conscious humans within a physiological range of breath sizes.  相似文献   

14.
Airway blood flow response to eucapnic dry air hyperventilation in sheep   总被引:1,自引:0,他引:1  
Eucapnic hyperventilation, breathing dry air, produces a two- to fivefold increase in airway blood flow in the dog. To determine whether airway blood flow responds similarly in the sheep we studied 16 anesthetized sheep. Seven sheep (1-7) were subjected to two 30-min periods of eucapnic hyperventilation breathing 1) warm humid air [100% relative humidity (rh)] followed by 2) warm dry air [0% rh] at 40 breaths/min. To determine whether there was a dose-response effect on blood flow of increasing levels of hyperventilation of dry air, another nine sheep (8-16) were subjected to four 30-min periods of eucapnic hyperventilation breathing warm humid O2 followed by warm dry O2 at 20 or 40 breaths/min in random sequence. Five minutes before the end of each period of hyperventilation, hemodynamics, blood gases, and tracheal mucosal temperature were measured, and tracheal and bronchial blood flows were determined by injection of 15- or 50-micron-diam radiolabeled microspheres. After the last measurements had been made, all sheep were killed, and the lungs and trachea were removed for determination of blood flow to trachea, bronchi, and parenchyma. In sheep 1-7, warm dry air hyperventilation at 40 breaths/min produced an increase in blood flow to trachea (7.6 +/- 3.5 to 17.0 +/- 6.2 ml/min, P less than 0.05) and bronchi (9.0 +/- 5.4 to 18.2 +/- 8.2 ml/min, P less than 0.05) but not to the parenchyma. When blood flow was compared with the two ventilatory rates (sheep 8-16), tracheal blood flow increased (9.1 +/- 3.3 to 18.2 +/- 6.1 ml/min, P less than 0.05) at a rate of 40 breaths/min but not at 20 breaths/min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against [3H]quinuclidinyl benzilate [( 3H]QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced [3H]QNB with low affinity from preparations of central airways indicating the absence of M1 receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M2 and M3 receptors since AF-DX 116, an M2-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M3-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity to 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M1 receptors in the peripheral airways but not in the central airways was confirmed using [3H]telenzepine, an M1 receptor ligand. [3H]Telenzepine showed specific saturable binding to 8% of [3H]QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart. The results presented here demonstrate that there are three muscarinic receptor subtypes in rat lungs, and that the distribution of the different subtypes varies within the lungs. Throughout the airways, the dominant muscarinic receptor subtype is M2. In the trachea and bronchi the remaining receptors are M3, while in the peripheral lungs, the remaining receptors are both M1 and M3.  相似文献   

16.
We describe an immunohistochemical study of the acute and chronic effects of fluorescein isothiocyanate (FITC) on Sonic hedgehog (Shh) expression and Clara cell secretory protein (CC10) up-regulation in murine lung. FITC was dissolved in PBS and instilled non-surgically into adult mouse lungs via the trachea. During the acute phase (120h) of the FITC response, CC10 staining within Clara cells increased markedly but the protein did not leak into the tissue spaces or the airways, and no fibrosis was apparent. An immune response was evident, characterised by infiltrating T and B lymphocytes. There was no concomitant expression of Shh. During the chronic phase (6 months post-instillation), significant tissue degeneration was observed in the airways. There was moderate to severe fibrosis in the lung fields that stained positively for FITC and significant inflammatory cell infiltrate was observed. Shh was expressed, and CC10 showed multiple sites of diffuse staining consistent with release from Clara cells into alveolar air spaces. PBS controls showed no fibrosis after 6 months, but there was positive Shh staining below the airway epithelia and minimal extracellular CC10 staining. The results may throw some light on the role of CC10 in pulmonary inflammation. The relationship of Shh expression and CC10 leakage to lung damage and repair is discussed.  相似文献   

17.
The effects of vitamin A-deficiency and inflammation were studied in the conducting airways of Syrian golden hamsters. An important goal of the study was to characterize epithelial changes that occur early in vitamin A-deficiency, that might precede yet predispose to infection, and precipitate inflammatory changes in the lungs. Age-matched vitamin A-replete control and vitamin A-deprived hamsters were killed at 33 days of age (preweight-plateau); at 41 days of age (weight plateau-early weight loss); and at 48-55 days of age (prolonged weight plateau followed by weight loss). A tablet containing bromodeoxyuridine (BrdU) was implanted subcutaneously into each hamster 7 h before it was killed. No changes were seen in the conducting airway epithelium of vitamin A-deprived hamsters in the preweight plateau. However, labelling of secretory cells for BrdU was reduced 6-7 fold in the epithelium lining the lobar bronchus (p less than 0.0002) and the bronchioles (p less than 0.0001), and the proportions of ciliated cells were decreased (p less than 0.0001) at both airway levels in vitamin A-deficient hamsters in the weight plateau-early weight loss stage. Changes in cellular morphology were minimal in the intrapulmonary airway epithelium at this time but a few small focal patches of epidermoid metaplasia were seen in the tracheal epithelium. Small foci of inflammation were closely associated with the airways in the weight plateau, and the inflammation became more widespread when the deficiency was prolonged. The results suggest that the defense of the lungs to infection was impaired initially in the vitamin A-deficient hamsters by a widespread reduction in the numbers of ciliated cells throughout the epithelium of the conducting airways (trachea, bronchi, bronchioles). At the foci of inflammation, labelling of epithelial secretory cells for BrdU was greatly increased at all airway levels. A highly stratified cornifying epidermoid metaplasia developed in the tracheal epithelium, and goblet cell metaplasia developed in the cranial portion of the lobar bronchus, in association with submucosal inflammation. Goblet cell metaplasia appeared to be the only abnormality that was not reversed when vitamin A was restored to the diet.  相似文献   

18.
A two-compartment mechanical model of the lungs was constructed with two parallel peripheral and collapsible bronchi in series with one central and collapsible trachea. Maximal expiratory flow-volume (MEFV) curves similar to those obtained in most dogs and in some humans could be produced: a peak followed by a gently sloping plateau ending in a knee, where flow suddenly fell to a much smaller value approaching zero rather slowly over the last 25 to 50% of the expired vital capacity. It was shown that flow before the knee was limited in the trachea, and after the knee it was limited in the bronchi. Two patterns of changes in the configuration of the MEFV curve could be observed. Pattern of changes affecting the central airway, at a given volume, maximal flow during the first part of the expiration (i.e., before the knee) is decreased; the knee occurs at a lower lung volume; the flow at the beginning of the knee is decreased. This pattern was observed with the following interventions: decreased cross-sectional area of the trachea (partial obstruction); decreased axial tension of the trachea; and, increased frictional loss between the trachea and the bronchi. Pattern of changes affecting the airways in the periphery: the knee occurs at a higher lung volume; at a given volume, flow after the knee becomes smaller; the absolute flow at the start of the knee is almost unchanged. This pattern was observed with the following interventions: decreased cross-sectional area of the peripheral airways (partial obstruction); increased frictional loss upstream to the peripheral airways; and, decreased elastic recoil pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Influence of upper respiratory tract on liquid flow to and from fetal lungs   总被引:1,自引:0,他引:1  
The experiments were designed to determine the influence of the upper respiratory tract (URT) on liquid flow in the fetal trachea. This flow probably influences pulmonary distension, which is thought to be a major determinant of prenatal lung development. In six fetal sheep the URT could be bypassed by connecting the lower trachea, via an external flowmeter, to a cannula in the amniotic sac. In confirmation of our earlier findings, when the URT was in circuit, the mean rate of tracheal efflux was greater during episodes of fetal breathing movements (FBM) [mean 13.8 +/- 2.6 (SE) ml/h] than during apneic periods (mean 3.2 +/- 1.0 ml/h). When the URT was bypassed there was a reversal of net tracheal flow during FBM episodes (mean 19.6 +/- 5.6 ml/h toward the lungs); during apnea there was a much greater rate of efflux (mean 33.1 +/- 10.2 ml/h) than when the URT was in circuit. Nonlabor uterine contractions were associated with an increased rate of efflux during apnea only when the URT was bypassed. We conclude that during fetal life the URT imposes an essentially unidirectional flow of pulmonary liquid away from the lungs, preventing ingress of amniotic fluid and maintaining constancy of composition of liquid in the developing airways. By retarding outward flow during periods of apnea and thoracic compression and by preventing net influx during episodes of FBM, the URT has the probable effect of maintaining the volume and composition of liquid in the fetal airways within narrow limits.  相似文献   

20.
Inhalation of smoke generated from high-nicotine cigarettes frequently evoked an immediate augmented inspiration in conscious dogs (J. Appl. Physiol. 54: 562-570, 1983); this reflex response was believed to result from a stimulation of rapidly adapting receptors in the lungs. To test this hypothesis, we recorded the vagal afferent activity arising from the rapidly adapting receptors in the lungs and delivered 120 ml of high- and low-nicotine cigarette smoke separately in a single ventilatory cycle in 20 anesthetized open-chest and artificially ventilated dogs. These receptors were stimulated on the first breath of delivery of smoke generated by high-nicotine cigarettes; activity increased from a base line of 0.9 +/- 0.2 to a peak of 9.9 +/- 1.2 (SE) impulses/breath (n = 58). After three to six breaths when the receptors' discharge returned toward base-line activity, a delayed increase of activity emerged (peak activity = 3.4 +/- 0.6 impulses/breath, n = 58) in 32 of the 58 receptors studied and lasted for three to seven breaths. By contrast, only a mild stimulatory effect of low-nicotine cigarette smoke was found, either immediately or after a delay, in 15 of the 54 receptors studied. We conclude that rapidly adapting receptors are stimulated by a single breath of cigarette smoke and that nicotine is the primary stimulant agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号