首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterial thermostable citrate synthase has been analyzed to investigate the structural basis of its thermostability, and to compare such features with those previously identified in archaeal citrate synthases. The gene encoding the citrate synthase from Thermus aquaticus was identified from a gene library by screening with a PCR fragment amplified from genomic DNA using a primer based on the determined N-terminal amino acid sequence and a citrate synthase consensus primer. Apart from high sequence similarities with citrate synthase sequences within the Thermus/ Deinococcus group, the analyzed enzyme has highest similarities with the enzyme from the hyperthermophilic Archaeon Pyrococcus furiosus. The recombinant enzyme is a dimer with high specific activity. Compared to its thermoactivity (T(opt)at 80 degrees C), the thermal stability of the enzyme is high, as judged from its T(m) (101 degrees C), and from irreversible thermal inactivation assays. Molecular modeling of the structure revealed an inter-subunit ion-pair network, comparable in size to the network found in the citrate synthase from P. furiosus; these networks are discussed in relation to the high thermal stability of these bacterial and archaeal enzymes.  相似文献   

2.
Citrate synthase, an essential enzyme of the tricarboxylic acid cycle in mitochondria, was purified from acetate-grown Candida tropicalis. Results from SDS-PAGE and gel filtration showed that this enzyme was a dimer composed of 45-kDa subunits. A citrate synthase cDNA fragment was amplified by the 5′-RACE method. Nucleotide sequence analysis of this cDNA fragment revealed that the deduced amino acid sequence contained an extended leader sequence which is suggested to be a mitochondrial targeting signal, as judged from helical wheel analysis. Using this cDNA probe, one genomic citrate synthase clone was isolated from a yeast λEMBL3 library. The nucleotide sequence of the gene encoding C. tropicalis citrate synthase, CtCIT, revealed the presence of a 79-bp intron in the N-terminal region. Sequences essential as yeast splicing motifs were present in this intron. When the CtCIT gene including its intron was introduced into Saccharomyces cerevisiae using the promoter UPR-ICL, citrate synthase activity was highly induced, which strongly indicated that this intron was correctly spliced in S. cerevisiae. Received: 20 November 1996 / Accepted: 25 February 1997  相似文献   

3.
Aluminum (Al) toxicity is one of the major factors that limit plant growth in acid soils. Al-induced release of organic acids into rhizosphere from the root apex has been identified as a major Al-tolerance mechanism in many plant species. In this study, Al tolerance of Yuzu (Citrus Junos Sieb. ex Tanaka) was tested on the basis of root elongation and the results demonstrated that Yuzu was Al tolerant compared with other plant species. Exposure to Al triggered the exudation of citrate from the Yuzu root. Thus, the mechanism of Al tolerance in Yuzu involved an Al-inducible increase in citrate release. Aluminum also elicited an increase of citrate content and increased the expression level of mitochondrial citrate synthase (CjCS) gene and enzyme activity in Yuzu. The CjCS gene was cloned from Yuzu and overexpressed in Nicotiana benthamiana using Agrobacterium tumefaciens-mediated methods. Increased expression level of the CjCS gene and enhanced enzyme activity were observed in transgenic plants compared with the wild-type plants. Root growth experiments showed that transgenic plants have enhanced levels of Al tolerance. The transgenic Nicotiana plants showed increased levels of citrate in roots compared to wild-type plants. The exudation of citrate from roots of the transgenic plants significantly increased when exposed to Al. The results with transgenic plants suggest that overexpression of mitochondrial CS can be a useful tool to achieve Al tolerance.  相似文献   

4.
N 5,N 10-Methenyltetrahydromethanopterin cyclohydrolase (Mch) is an enzyme involved in methanogenesis from CO2 and H2 which represents the energy metabolism of Methanopyrus kandleri, a methanogenic Archaeon growing at a temperature optimum of 98°C. The gene mch from M. kandleri was cloned, sequenced, and expressed in Escherichia coli. The overproduced enzyme could be purified in yields above 90% in one step by chromatography on phenyl Sepharose in 80% ammonium sulfate. From 3.5 g cells (250 mg protein), approximately 18 mg cyclohydrolase was obtained. The purified enzyme showed essentially the same catalytic properties as the enzyme purified from M. kandleri cells. The primary structure and properties of the cyclohydrolase are compared with those of the enzyme from Methanococcus jannaschii (growth temperature optimum 85°C), from Methanobacterium thermoautotrophicum (65°C), and from Methanosarcina barkeri (37°C). Of the four enzymes, that from M. kandleri has the lowest isoelectric point (3.8) and the lowest hydrophobicity of amino acid composition. Besides, it has the highest relative content of glutamate, leucine, and valine and the lowest relative content of isoleucine, serine, and lysine. Some of these properties are unusual for enzymes from hyperthermophilic organisms. They may reflect the observation that the cyclohydrolase from M. kandleri is not only adapted to hyperthermophilic conditions but also to the high intracellular concentrations of lyotrophic salts prevailing in this organism. Received: July 14, 1997 / Accepted: August 28, 1997  相似文献   

5.
Methylcitrate synthase (EC 2.3.3.5; MCS) is a key enzyme of the methylcitric acid cycle localized in the mitochondria of eukaryotic cells and related to propionic acid metabolism. In this study, cloning of the gene mcsA encoding MCS and heterologous expression of it in Escherichia coli were performed for functional analysis of the MCS of citric acid-producing Aspergillus niger WU-2223L. Only one copy of mcsA (1,495 bp) exists in the A. niger WU-2223L chromosome. It encodes a 51-kDa polypeptide consisting of 465 amino acids containing mitochondrial targeting signal peptides. Purified recombinant MCS showed not only MCS activity (27.6 U/mg) but also citrate synthase (EC 2.3.3.1; CS) activity (26.8 U/mg). For functional analysis of MCS, mcsA disruptant strain DMCS-1, derived from A. niger WU-2223L, was constructed. Although A. niger WU-2223L showed growth on propionate as sole carbon source, DMCS-1 showed no growth. These results suggest that MCS is an essential enzyme in propionic acid metabolism, and that the methylcitric acid cycle operates functionally in A. niger WU-2223L. To determine whether MCS makes a contribution to citric acid production, citric acid production tests on DMCS-1 were performed. The amount of citric acid produced from glucose consumed by DMCS-1 in citric acid production medium over 12 d of cultivation was on the same level to that by WU-2223L. Thus it was found that MCS made no contribution to citric acid production from glucose in A. niger WU-2223L, although MCS showed CS activity.  相似文献   

6.
Peroxisomal (nonmitochondrial) citrate synthase (CS2) has been purified from a Saccharomyces cerevisiae strain in which the gene for the mitochondrial citrate synthase (CS1) had been disrupted and no CS1 protein is produced. The enzyme, CS2, the sequence of which had been previously determined from its DNA, behaved differently from CS1 in its purification, kinetics, stability, and binding to the inner surface of mitochondrial inner membranes.  相似文献   

7.
Rhizobium species elicit the formation of nitrogen-fixing root nodules through a complex interaction between bacteria and plants. Various bacterial genes involved in the nodulation and nitrogen-fixation processes have been described and most have been localized on the symbiotic plasmids (pSym). We have found a gene encoding citrate synthase on the pSym plasmid of Rhizobium tropici, a species that forms nitrogen-fixing nodules on the roots of beans (PhasBoius vuigaris) and trees (Leucaena spp.). Citrate synthase is a key metabolic enzyme that incorporates carbon into the tricarboxylic acid cycle by catalysing the condensation of acetyl-CoA and oxalo-acetic acid to form citrate. R. tropici pcsA (the plasmid citrate synthase gene) is closely related to the corresponding genes of Proteobacteria. pcsA inactivation by a Tn5-mob insertion causes the bacteria to form fewer nodules (30–50% of the original strain) and to have a decreased citrate synthase activity in minimal medium with sucrose. A clone carrying the pcsA gene complemented ail the phenotypic alterations of the pcsA mutant, and conferred Rhizobium iegumino-sarum bv. phaseoli (which naturally lacks a plasmid citrate synthase gene) a higher nodulation and growth capacity in correlation with a higher citrate synthase activity. We have also found that pcsA gene expression is sensitive to iron availability, suggesting a possible role of pcsA in iron uptake.  相似文献   

8.
Summary The sequence of the small-subunit rRNA from the thermoacidophilic archaebacteriumSulfolobus solfataricus has been determined and compared with its counterparts from halophilic and methanogenic archaebacteria, eukaryotes, and eubacteria. TheS. solfataricus sequence is specifically related to those of the other archaebacteria, to the exclusion of the eukaryotic and eubacterial sequences, when examined either by evolutionary distance matrix analyses or by the criterion of minimum change (maximum parsimony). The archaebacterial 16S rRNA sequences all conform to a common secondary structure, with theS. solfataricus structure containing a higher proportion of canonical base pairs and fewer helical irregularities than the rRNAs from the mesophilic archaebacteria.S. solfataricus is unusual in that its 16S rRNA-23S rRNA intergenic spacer lacks a tRNA gene.  相似文献   

9.
A mutation was induced in Aspergillus niger wild strain using ethidium bromide resulting in enhanced expression of citric acid by three folds and 112.42 mg/mL citric acid was produced under optimum conditions with 121.84 mg/mL of sugar utilization. Dendograms of 18S rDNA and citrate synthase from different fungi including sample strains were made to assess homology among different fungi and to study the correlation of citrate synthase gene with evolution of fungi. Subsequent comparative sequence analysis revealed strangeness between the citrate synthase and 18S rDNA phylogenetic trees. Furthermore, the citrate synthase movement suggests that the use of traditional marker molecule of 18S rDNA gives misleading information about the evolution of citrate synthase in different fungi as it has shown that citrate synthase gene transferred independently among different fungi having no evolutionary relationships. Random amplified polymorphic DNA (RAPD-PCR) analysis was also employed to study genetic variation between wild and mutant strains of A. niger and only 71.43% similarity was found between both the genomes. Keeping in view the importance of citric acid as a necessary constituent of various food preparations, synthetic biodegradable detergents and pharmaceuticals the enhanced production of citric acid by mutant derivative might provide significant boost in commercial scale viability of this useful product.

Abbreviations

CS - Citrate synthase, CA - Citric acid, RAPD - Random amplified polymorphic DNA, TAF - Total amplified fragments, PAF - Polymorphic amplified fragments, CAF - Common amplified fragments.  相似文献   

10.
The citrate synthase (CS) of Escherichia coli is an allosteric hexameric enzyme specifically inhibited by NADH. The crystal structure of wild type (WT) E. coli CS, determined by us previously, has no substrates bound, and part of the active site is in a highly mobile region that is shifted from the position needed for catalysis. The CS of Acetobacter aceti has a similar structure, but has been successfully crystallized with bound substrates: both oxaloacetic acid (OAA) and an analog of acetyl coenzyme A (AcCoA). We engineered a variant of E. coli CS wherein five amino acids in the mobile region have been replaced by those in the A. aceti sequence. The purified enzyme shows unusual kinetics with a low affinity for both substrates. Although the crystal structure without ligands is very similar to that of the WT enzyme (except in the mutated region), complexes are formed with both substrates and the allosteric inhibitor NADH. The complex with OAA in the active site identifies a novel OAA-binding residue, Arg306, which has no functional counterpart in other known CS-OAA complexes. This structure may represent an intermediate in a multi-step substrate binding process where Arg306 changes roles from OAA binding to AcCoA binding. The second complex has the substrate analog, S-carboxymethyl-coenzyme A, in the allosteric NADH-binding site and the AcCoA site is not formed. Additional CS variants unable to bind adenylates at the allosteric site show that this second complex is not a factor in positive allosteric activation of AcCoA binding.  相似文献   

11.
The microbial product citramalic acid (citramalate) serves as a five-carbon precursor for the chemical synthesis of methacrylic acid. This biochemical is synthesized in Escherichia coli directly by the condensation of pyruvate and acetyl-CoA via the enzyme citramalate synthase. The principal competing enzyme with citramalate synthase is citrate synthase, which mediates the condensation reaction of oxaloacetate and acetyl-CoA to form citrate and begin the tricarboxylic acid cycle. A deletion in the gltA gene coding citrate synthase prevents acetyl-CoA flux into the tricarboxylic acid cycle, and thus necessitates the addition of glutamate. In this study the E. coli citrate synthase was engineered to contain point mutations intended to reduce the enzyme's affinity for acetyl-CoA, but not eliminate its activity. Cell growth, enzyme activity and citramalate production were compared in several variants in shake flasks and controlled fermenters. Citrate synthase GltA[F383M] not only facilitated cell growth without the presence of glutamate, but also improved the citramalate production by 125% compared with the control strain containing the native citrate synthase in batch fermentation. An exponential feeding strategy was employed in a fed-batch process using MEC626/pZE12-cimA harboring the GltA[F383M] variant, which generated over 60 g/L citramalate with a yield of 0.53 g citramalate/g glucose in 132 hr. These results demonstrate protein engineering can be used as an effective tool to redirect carbon flux by reducing enzyme activity and improve the microbial production of traditional commodity chemicals.  相似文献   

12.
The crystal structure of citrate synthase from the thermophilic Archaeon Sulfolobus solfataricus (optimum growth temperature = 85 degrees C) has been determined, extending the number of crystal structures of citrate synthase from different organisms to a total of five that span the temperature range over which life exists (from psychrophile to hyperthermophile). Detailed structural analysis has revealed possible molecular mechanisms that determine the different stabilities of the five proteins. The key to these mechanisms is the precise structural location of the additional interactions. As one ascends the temperature ladder, the subunit interface of this dimeric enzyme and loop regions are reinforced by complex electrostatic interactions, and there is a reduced exposure of hydrophobic surface. These observations reveal a progressive pattern of stabilization through multiple additional interactions at solvent exposed, loop and interfacial regions.  相似文献   

13.
Summary The activity of enzymes of the tricarboxylic acid (TAC) and glyoxylate (GC) cycles in Candida parapsilosis (wild type KSh 21 and mutant 337) were studied under different physiological and metabolic conditions. C. parapsilosis differed in most of its enzyme activities from other non-citric acid producing yeasts. Furthermore, pH-value, temperature and age of culture proved to act differently on both strains of the tested organism.The addition of trans-aconitate increased not only the growth but also the activities of citrate synthase and some other enzymes while that of aconitase decreased enormously.The high citrate synthase activity might be connected with the role of citrate in the transport of acetyl groups.Abbreviations CS citrate synthase - AC aconitase - ICDH isocitrate dehydrogenase - GDH glutamate dehydrogenase - Fum fumarase - MDH malate dehydrogenase - ICL isocitrate lyase - MS malate synthase  相似文献   

14.
The shikimate pathway in Plasmodium falciparum provides several targets for designing novel antiparasitic agents for the treatment of malaria. Chorismate synthase (CS) is a key enzyme in the shikimate pathway which catalyzes the seventh and final step of the pathway. P. falciparum chorismate synthase (PfCS) is unique in terms of enzymatic behavior, cellular localization and in having two additional amino acid inserts compared to any other CS. The structure of PfCS along with cofactor FMN was predicted by homology modeling using crystal structure of Helicobacter pylori chorismate synthase (HpCS). The quality of the model was validated using structure analysis servers and molecular dynamics. Dimeric form of PfCS was generated and the FMN binding mechanism involving movement of loop near active site has been proposed. Active site pocket has been identified and substrate 5-enolpyruvylshikimate 3-phosphate (EPSP) along with screened potent inhibitors has been docked. The study resulted in identification of putative inhibitors of PfCS with binding efficiency in nanomolar range. The selected putative inhibitors could lead to the development of anti-malarial drugs.  相似文献   

15.
A new gene from the hyperthermophilic archaeon Sulfolobus solfataricus MT4, coding for a putative protein reported to show sequence identity with the phosphotriesterase-related protein family (PHP), was cloned by means of the polymerase chain reaction from the S. solfataricus genomic DNA. In order to analyse the biochemical properties of the protein an overexpression system in Escherichia coli was established. The recombinant protein, expressed in soluble form at 5 mg/l of E. coli culture, was purified to homogeneity and characterized. In contrast with its mesophilic E. coli counterpart that was devoid of any tested activity, the S. solfataricus enzyme was demonstrated to have a low paraoxonase activity. This activity was dependent from metal cations with Co2+, Mg2+ and Ni2+ being the most effective and was thermophilic and thermostable. The enzyme was inactivated with EDTA and o-phenantroline. A reported inhibitor for Pseudomonas putida phosphotriesterase (PTE) had no effect on the S. solfataricus paraoxonase. The importance of a stable paraoxonase for detoxification of chemical warfare agents and agricultural pesticides will be discussed.  相似文献   

16.
17.
In vitro mutagenesis techniques have been used to investigate two structure-function questions relating to the allosteric citrate synthase of Escherichia coli. The first question concerns the binding site of alpha-keto-glutarate, which is a structural analogue of the substrate oxaloacetate and yet has been suggested to be an allosteric inhibitor of the enzyme. Using oligonucleotide-directed mutagenesis of the cloned E. coli citrate synthase gene, we prepared missense mutants, designated CS226H----Q and CS229H----Q, in which histidine residues at positions 226 and 229, respectively, were replaced by glutamine. In the homologous pig heart citrate synthase it is known (Wiegand, G., and Remington, S. J. (1986) Annu. Rev. Biophys. Biophys. Chem. 15, 97-117) that the equivalent of His-229 helps to bind oxaloacetate, while the equivalent of His-226 is nearby. Kinetic and ligand binding measurements showed that CS226H----Q had a reduced affinity for oxaloacetate and alpha-ketoglutarate, while CS229H----Q bound oxaloacetate even less effectively, and was not inhibited by alpha-ketoglutarate at all under our conditions. This parallel loss of binding affinities for oxaloacetate and alpha-ketoglutarate, in two mutants altered in residues at the active site of E. coli citrate synthase, strongly suggests that inhibition of this enzyme by alpha-ketoglutarate is not allosteric but occurs by competitive inhibition at the active site. The second question investigated was whether the known inhibition by acetyl-CoA of binding of NADH, an allosteric inhibitor of E. coli citrate synthase, occurs heterotropically, as an indirect result of acetyl-CoA binding at the active site, or directly, by competition at the allosteric NADH binding site. Using existing restriction sites in the cloned E. coli citrate synthase gene, we prepared a deletion mutant which lacked 24 amino acids near what is predicted to the acetyl-CoA-binding portion of the active site. The mutant protein was inactive, and acetyl-CoA did not bind to the active site but still inhibited NADH binding. Thus acetyl-CoA can interact with both the allosteric and the active sites of this enzyme.  相似文献   

18.
The thermostable class I HMG-CoA reductase of Sulfolobus solfataricus offers potential for industrial applications and for the initiation of crystallization trials of a biosynthetic HMG-CoA reductase. However, of the 15 arginine codons of the hmgA gene that encodes S. solfataricus HMG-CoA reductase, 14 (93%) are AGA or AGG, the arginine codons used least frequently by Escherichia coli. The presence of these rare codons in tandem or in the first 20 codons of a gene can complicate expression of that gene in E. coli. Problems include premature chain termination and misincorporation of lysine for arginine. We therefore sought to improve the expression and subsequent yield of S. solfataricus HMG-CoA reductase by expanding the pool size of tRNAAGA,AGG, the tRNA that recognizes these two rare codons. Coexpression of the S. solfataricus hmgA gene with the argU gene that encodes tRNAAGA,AGG resulted in an over 10-fold increase in enzyme yield. This has provided significantly greater quantities of purified enzyme for potential industrial applications and for crystallographic characterization of a stable class I HMG-CoA reductase. It has, in addition, facilitated determination of kinetic parameters and of pH optima for all four catalyzed reactions, for determination of the Ki for inhibition by the statin drug mevinolin, and for comparison of the properties of the HMG-CoA reductase of this thermophilic archaeon to those of other class I HMG-CoA reductases.  相似文献   

19.
Alfalfa is very sensitive to soil acidity and its yield and stand duration are compromised due to inhibited root growth and reduced nitrogen fixation caused by Al toxicity. Soil improvement by liming is expensive and only partially effective, and conventional plant breeding for Al tolerance has had limited success. Because tobacco and papaya plants overexpressing Pseudomonas aeruginosa citrate synthase (CS) have been reported to exhibit enhanced tolerance to Al, alfalfa was engineered by introducing the CS gene controlled by the Arabidopsis Act2 constitutive promoter or the tobacco RB7 root-specific promoter. Fifteen transgenic plants were assayed for exclusion of Al from the root tip, for internal citrate content, for growth in in vitro assays, or for shoot and root growth in either hydroponics or in soil assays. Overall, only the soil assays yielded consistent results. Based on the soil assays, two transgenic events were identified that were more aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to help achieve aluminum tolerance. Pierluigi Barone and Daniele Rosellini contributed equally to this work.  相似文献   

20.
α-Mannosidases, important enzymes in the N-glycan processing and degradation in Eukaryotes, are frequently found in the genome of Bacteria and Archaea in which their function is still largely unknown. The α-mannosidase from the hyperthermophilic Crenarchaeon Sulfolobus solfataricus has been identified and purified from cellular extracts and its gene has been cloned and expressed in Escherichia coli. The gene, belonging to retaining GH38 mannosidases of the carbohydrate active enzyme classification, is abundantly expressed in this Archaeon. The purified α-mannosidase activity depends on a single Zn2+ ion per subunit is inhibited by swainsonine with an IC50 of 0.2 mM. The molecular characterization of the native and recombinant enzyme, named Ssα-man, showed that it is highly specific for α-mannosides and α(1,2), α(1,3), and α(1,6)-d-mannobioses. In addition, the enzyme is able to demannosylate Man3GlcNAc2 and Man7GlcNAc2 oligosaccharides commonly found in N-glycosylated proteins. More interestingly, Ssα-man removes mannose residues from the glycosidic moiety of the bovine pancreatic ribonuclease B, suggesting that it could process mannosylated proteins also in vivo. This is the first evidence that archaeal glycosidases are involved in the direct modification of glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号