首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and aims

Vegetation can have direct and indirect effects on soil nutrients. To test the effects of trees on soils, we examined the patterns of soil nutrients and nutrient ratios at two spatial scales: at sites spanning the alpine tundra/subalpine forest ecotone (ecotone scale), and beneath and beyond individual tree canopies within the transitional krummholz zone (tree scale).

Methods

Soils were collected and analyzed for total carbon (C), nitrogen (N), and phosphorus (P) as well as available N and P on Niwot Ridge in the Colorado Rocky Mountains.

Results

Total C, N, and P were higher in the krummholz zone than the forest or tundra. Available P was also greatest in the krummholz zone while available N increased from the forest to the tundra. Throughout the krummholz zone, total soil nutrients and available P were higher downwind compared to upwind of trees.

Conclusions

The krummholz zone in general, and downwind of krummholz trees in particular, are zones of nutrient accumulation. This pattern indicates that the indirect effects of trees on soils are more important than the direct effects. The higher N:P ratios in the tundra suggest nutrient dynamics differ from the lower elevation sites. We propose that evaluating soil N and P simultaneously in soils may provide a robust assay of ecosystem nutrient limitation.  相似文献   

2.
Elgersma  Kenneth J.  Yu  Shen  Vor  Torsten  Ehrenfeld  Joan G. 《Plant and Soil》2012,352(1-2):341-351

Background and Aims

In line with the Stress Gradient Hypothesis, studies of facilitation have tended to focus on plant–plant interactions (biotic nurses), while the relative role of abiotic nurses has been little studied. We assessed the role of biotic and abiotic nurses, and their interaction, on soil enhancement and the consequential performance of a native annual grass, Dactyloctenium radulans.

Methods

We used a growth chamber study with two levels of water application to compare the performance of D. radulans growing in soil from foraging pits of the Short-beaked echidna (Tachyglossus aculeatus; abiotic nurse) and non-pit soil from either under tree canopies (biotic nurse) or surrounding open areas.

Results

All measures of plant performance were more pronounced under the high than the low water treatment. The greatest differences between pit and surface Microsites occurred under the low water application, reinforcing our view that facilitatory effects are greater in resource-limited environments. Despite tree canopy soil having greater N, there was no significant effect on plant performance, nor any significant interaction with Microsite.

Conclusions

Our study provides strong evidence that foraging pits enhance soil properties and this soil, in turn, facilitates plant growth; and supports previous work documenting the positive effect of nurse-protégé interactions under greater levels of abiotic stress.  相似文献   

3.

Aims

The below-canopy soil moisture content and litter-layer arthropod abundance and diversity of Acacia karroo trees parasitized by each of three mistletoe species (Erianthemum ngamicum, Plicosepalus kalachariensis, and Viscum verrucosum) and uninfected A. karroo trees were investigated in semi-arid savanna, southwest Zimbabwe.

Results

The soils below the canopies of mistletoe-infected trees were significantly low in moisture content compared to those beneath uninfected A. karroo trees. Nevertheless, arthropod species diversity was greater by up to 34 % below the canopies of mistletoe-infected trees than beneath uninfected A. karroo trees, with greater abundances beneath trees infected by E. ngamicum and P. kalachariensis. In addition, the majority of the arthropod species associated with mistletoe-infected trees had litter as their dominant foraging substrate.

Conclusions

Our findings show that mistletoes increase the abundance and diversity of litter-dwelling and –foraging arthropods due to increase in the quality and quantity of litterfall beneath mistletoe-infected trees. By altering the below-canopy arthropod communities and soil moisture content, mistletoes have potential to modify ecosystem processes such as decomposition, soil process rates, and nutrient cycling. Therefore, we suggest that the resulting increase in resource heterogeneity plays an important role in determining the structure and functioning of semi-arid savanna ecosystems.  相似文献   

4.

Aims

The extent to which the spatial and temporal patterns of soil microbial and available nutrient pools hold across different Mediterranean forest types is unclear impeding the generalization needed to consolidate our understanding on Mediterranean ecosystems functioning.

Methods

We explored the response of soil microbial, total, organic and inorganic extractable nutrient pools (C, N and P) to common sources of variability, namely habitat (tree cover), soil depth and season (summer drought), in three contrasting Mediterranean forest types: a Quercus ilex open woodland, a mixed Q. suber and Q. canariensis woodland and a Pinus sylvestris forest.

Results

Soil microbial and available nutrient pools were larger beneath tree cover than in open areas in both oak woodlands whereas the opposite trend was found in the pine forest. The greatest differences in soil properties between habitat types were found in the open woodland. Season (drought effect) was the main driver of variability in the pine forest and was related to a loss of microbial nutrients (up to 75 % loss of Nmic and Pmic) and an increase in microbial ratios (Cmic/Nmic, Cmic/Pmic) from Spring to Summer in all sites. Nutrient pools consistently decreased with soil depth, with microbial C, N and P in the top soil being up to 208 %, 215 % and 274 % larger than in the deeper soil respectively.

Conclusions

Similar patterns of variation emerged in relation to season and soil depth across the three forest types whereas the direction and magnitude of the habitat (tree cover) effect was site-dependent, possibly related to the differences in tree species composition and forest structure, and thus in the quality and distribution of the litter input.  相似文献   

5.

Background and Aims

Soil texture is an important determinant of ecosystem structure and productivity in drylands, and may influence animal foraging and, indirectly, plant community composition.

Methods

We measured the density and composition of surface disturbances (foraging pits) of small, soil-foraging desert vertebrates in shrubland and grasslands, both with coarse- and fine-textured soils. We predicted that the density and functional significance of disturbances would be related more to differences in texture than shrub encroachment.

Results

Soil texture had a stronger influence on animal foraging sites than shrub encroachment. There were more disturbances, greater richness and abundance of trapped seed, and greater richness of germinating plants on coarse- than fine-textured soils. Pits in coarse soils trapped 50 % more litter than those in finer soils. Apart from slightly more soil removal and greater litter capture in shrubland pits, there were no effects of encroachment.

Conclusions

Although the process of woody encroachment has been shown to have marked effects on some ecosystem properties, it is likely to have a more subordinate effect on surface disturbances and therefore their effects on desert plant communities than soil texture. Our results highlight the importance of animal activity in shaping desert plant communities, and potentially, in maintaining or reinforcing shrub dominant processes.  相似文献   

6.

Background and aims

Soil acidification is known to be one of the constraints of tree growth; however, it is unclear how it affects tree growth at photosynthesis level (i.e., through affecting stomatal conductance vs. carboxylation rate) during the growth of trees. This paper studied the effects of soil acidification on Pinus densiflora foliar chemistry and tree ring C isotope ratio (13C/12C, expressed as δ13C) and their relationship with tree growth.

Methods

Tree growth (diameter, annual growth ring area, and root biomass), soil chemistry (pH, mineral N, and exchangeable Ca and Al), foliage chemistry (N, Ca/Al, and δ13C), and tree ring δ13C in P. densiflora stands along a soil pH gradient (from 4.38 to 4.83, n?=?9) in southern Korea were investigated.

Results

Overall, trees with relatively poor growth under more acidic soil conditions (low pH and Ca/Al) had lower values of foliar N concentration and δ13C and tree ring δ13C, suggesting that restricted N uptake under more acidic soil conditions caused N limitation for photosynthesis, leading to poor tree growth. In addition, relationships between mean annual area increment and carbon isotope discrimination of tree rings at five-yr intervals from 1968 to 2007 revealed that the impact of soil acidification on tree growth became severer during the last 15 yrs as negative correlations between them became significant after 1993.

Conclusions

Reduced N uptake under acidic soil conditions resulted in lower radial growth of P. densiflora via non-stomatal limitation of photosynthesis.  相似文献   

7.

Background and Aims

Phosphorus (P) is commonly one of most limiting nutrients in tropical and subtropical forests, but whether P limitation would be exacerbated during forest succession remains unclear.

Methods

Soil phosphatase activity is often used as an indicator of P limitation. Here we examined soil acid phosphatase activity (APA) underneath tree species in pine forest (PF), mixed pine and broadleaf forest (MF) and monsoon evergreen broadleaf forest (MEBF) which represented the early, middle and late successional stages of subtropical forests in China, respectively. We also analyzed other indicators of P status (soil available P and N and P stoichiometry of the tree species).

Results

APA or APA per unit soil organic carbon under tree species was relatively low in the early successional forest. Different from PF and MF, soil available P beneath the tree species was lower than in the bulk soils in MEBF. Soil APA was closely related to N:P ratios of tree species across all three forests.

Conclusions

Our results imply that P limitation increases during forest succession at our site. The dominant tree species with low soil APAs in MEBF are likely more P-limited than other tree species.  相似文献   

8.
Boletus edulis Bull. is one of the most economically and gastronomically valuable fungi worldwide. Sporocarp production normally occurs when symbiotically associated with a number of tree species in stands over 40 years old, but it has also been reported in 3-year-old Cistus ladanifer L. shrubs. Efforts toward the domestication of B. edulis have thus focused on successfully generating C. ladanifer seedlings associated with B. edulis under controlled conditions. Microorganisms have an important role mediating mycorrhizal symbiosis, such as some bacteria species which enhance mycorrhiza formation (mycorrhiza helper bacteria). Thus, in this study, we explored the effect that mycorrhiza helper bacteria have on the efficiency and intensity of the ectomycorrhizal symbiosis between C. ladanifer and B. edulis. The aim of this work was to optimize an in vitro protocol for the mycorrhizal synthesis of B. edulis with C. ladanifer by testing the effects of fungal culture time and coinoculation with the helper bacteria Pseudomonas fluorescens Migula. The results confirmed successful mycorrhizal synthesis between C. ladanifer and B. edulis. Coinoculation of B. edulis with P. fluorescens doubled within-plant mycorrhization levels although it did not result in an increased number of seedlings colonized with B. edulis mycorrhizae. B. edulis mycelium culture time also increased mycorrhization levels but not the presence of mycorrhizae. These findings bring us closer to controlled B. edulis sporocarp production in plantations.  相似文献   

9.

Background and aims

Quantitative relationships between soil N availability indices and tree growth are lacking in the oil sands region of Alberta and this can hinder the development of guidelines for the reclamation of the disturbed landscape after oil sands extraction. The aim of this paper was to establish quantitative relationships between soil N availability indices and tree growth in the oil sands region of Alberta.

Methods

In situ N mineralization rates, in situ N availability measured in the field using Plant Root Simulators (PRS? probes), laboratory aerobic and anaerobic soil N mineralization rates, and soil C/N and N content were determined for both the forest floor and the 0–20?cm mineral soil in eight jack pine (Pinus banksiana Lamb.) stands in the oil sands region in northern Alberta. Tree growth rates were determined based on changes in tree ring width in the last 6?years and as mean annual aboveground biomass increment.

Results

Soil N availability indices across those forest stands varied and for each stand it was several times higher in the forest floor than in the mineral soil. The in situ and laboratory aerobic and anaerobic soil N mineralization rates, soil mineralized N, in situ N availability measured using PRS probes, soil C/N ratio and N content in both the forest floor and mineral soil, as well as stand age were linearly correlated with tree ring width of jack pine trees across the selected forest stands, consistent with patterns seen in other published studies and suggesting that N availability could be a limiting factor in the range of jack pine stands studied.

Conclusions

In situ and laboratory aerobic and anaerobic N mineralization rates and soil C/N ratio and N content can be used for predicting tree growth in jack pine forests in the oil sand region. Laboratory based measurements such as aerobic and anaerobic N mineralization rates and soil C/N ratio and N content would be preferable as they are more cost effective and equally effective for predicting jack pine growth.  相似文献   

10.

Aims

The selection of tree characteristics is critical for the outcome of the tree effects on soil fertility in silvopastoral pastures. This study aims to quantify the effects of trees on soil nutrient and C stocks, as well as assessing differences on the effects between legume (Albizia saman; Enterolobium cyclocarpum) and non-legume tree species (Tabebuia rosea; Guazuma ulmifolia).

Methods

In Central Nicaragua, soil was sampled (0–10 cm deep) in paired plots, under both a canopy and in open grassland, in 12 sites per tree species and analysed for organic C, total N stocks, available P and extractable K+, Ca2+ and Mg2+. To assess the effects of herbaceous composition and cattle to soil proprieties, we recorded the cover of plant groups and assessed the mass of dung in each plot.

Results

Soil organic C and N, available P and extractable K+ and Ca2+ were higher under the tree canopy than under paired open grassland. The basal area of trees was positively related with the canopy effect on soil variables, thus suggesting that the age or sizes of the trees are relevant factors associated with the content of soil C and nutrients. No specific effects related to the legume species group were detected.

Conclusions

Our results indicate that in fertile seasonally dry subtropical pastures, scattered trees have an overall effect on soil fertility, and that the magnitude of the effect depends more on the tree characteristics (i.e. basal area, crown area) than on whether the species is a legume or not.  相似文献   

11.
Cistus ladanifer L. (Cistaceae) is a Mediterranean shrub covering different kinds of soils in the Western Mediterranean area. This species has colonised several metalliferous areas (serpentine outcrops as well as human-polluted sites) throughout its distribution range, and is therefore an interesting species to study the possible effects on genetic diversity and differentiation produced by the colonisation of areas polluted with heavy metals. The genetic structure of 33 natural populations distributed across its entire natural distribution range (Morocco, Portugal and Spain) and growing on either metalliferous or non-metalliferous soils was investigated using chloroplast microsatellites. Population genetic parameters were estimated and genetic groups were identified using Bayesian inference. In addition, we compared the genetic diversity and differentiation among metallicolous and non-metallicolous populations within each Bayesian-defined group. The cpSSR data suggested that metallicolous populations of Cistus ladanifer have arisen through multiple independent evolutionary origins within two different chloroplast lineages. Evidence that the soil type provoked genetic bottlenecks in metallicolous populations or genetic differentiation among metallicolous and non-metallicolous populations was not observed. Historical factors are the main cause of the present genetic structure of C. ladanifer. The nature of tolerance to heavy metals as a species-wide trait in this shrub is discussed.  相似文献   

12.

Background and aims

Although changes in water and nitrogen (N) supply have been largely used to explain modifications in plant communities, the spatio-temporal variability of those factors has been little studied in chalky environments.

Methods

In this study, we explored for 1?year the temporal variations in soil water content, N inorganic forms and net N-mineralization and nitrification for two horizons in three herbaceous communities (short grasslands, tall grasslands, and encroached grasslands) in the Hénouville Nature Reserve (Upper-Normandy, France). Plant available soil water and permanent wilting points of seven plant species were also characterized.

Results

We found that plant available soil water was lower in short grasslands than in tall grasslands and encroached grasslands. Soil water content was below permanent wilting point during four months in short grasslands and only three months in the other communities. Seasonal patterns for inorganic N content and N-mineralization and nitrification were observed with peaks of NH 4 + –N in summer and peaks of N-mineralization in spring.

Conclusions

For the studied year, our data highlight the harsh soil desiccation that vegetation endured during the late spring (active growth period) and summer, and show that water shortage is an ecological factor affecting the N cycling in the three successional herbaceous communities.  相似文献   

13.
No-till reduces global warming potential in a subtropical Ferralsol   总被引:1,自引:0,他引:1  

Aims

We investigated the link between tree community composition and soil microbial community biomass and structure in central-eastern Spain.

Methods

The effects of the forest stand composition on the soil organic matter dynamics and on the structure and activity of the soil microbial community have been determined using phospholipid fatty acid profiles and soil enzymatic activities.

Results

The soil and litter N and C contents were higher in Pinus nigra Arn. ssp. salzmannii and Quercus ilex mixed forest stands (SBHO) and in long-term unmanaged Pinus nigra Arn. ssp. salzmannii forest stands (SBPC) than in pure Pinus nigra Arn. ssp. salzmannii forest stands (SBPA) and Pinus nigra Arn. ssp. salzmannii and Juniperus thurifera mixed forest stands (SBSJ). The bacterial biomass was significantly higher in SBSJ and SBPA than in SBPC and SBHO. The results show an uncoupling of the soil microbial biomass and its activity. pH is related to microbial biomass and its community structure under a Mediterranean humid climate.

Conclusions

The tree species seem to affect the biomass of the soil microbial community and its structure. The pH, but not the C/N ratio, is a factor influencing the microbial dynamics, biomass, and community structure.  相似文献   

14.

Aims

Shrub removal by ploughing has been used widely to reduce the effects of shrub encroachment into open woodlands and grasslands. Our aim was to demonstrate that soil chemical properties varied markedly among three patch types (shrub hummock, debris mound, interspace) which varied in age, almost two decades after shrub removal by ploughing.

Methods

We compared changes in nutrients under 1) young post-ploughing recruits and mature, unploughed shrubs, 2) mature and recently formed debris mounds and 3) ploughed and recovering interspaces at three depths.

Results

Irrespective of their age, nutrient concentrations were greater under shrub hummocks and debris mounds than in the interspaces at two sites. Soil in mature shrub hummocks generally had greater levels of labile carbon and nitrogen (total, mineral, mineralisable), but results varied between sites. There were a few, sometimes inconsistent, effects of ploughing on nutrients under debris mounds, and no differences between the interspaces two decades after ploughing. Nutrient effects were most marked in the top 15 cm of the soil, diminishing rapidly with depth.

Conclusions

Our results reinforce the importance of hummocks and mounds as resource sinks and indicate the long-lasting effects of disturbances such as ploughing on soil nutrient pools.  相似文献   

15.

Background and aims

Invasion by N2-fixing species may alter biogeochemical processes. We hypothesized that the grade of invasion by the N2-fixer black locust (Robinia pseudoacacia L.) could be related to the distribution and pools of carbon (C) and nitrogen (N) along the profile of two Mediterranean mixed forests of stone pine (Pinus pinea L.) and holm oak (Quercus ilex L.).

Methods

A low-invaded (LIN) and a high-invaded (HIN) mixed forest were studied. We assessed: N concentration in green and in senescent leaves; C and N pools along the soil profile; seasonal changes of soluble C and N fractions, and microbial activity.

Results

Compared to coexisting holm oak and stone pine, black locust had higher N content in green and in senescent leaves. In the mineral soil: N stocks were similar in LIN and HIN; water soluble C and microbial activity, were lower in HIN compared to LIN; water soluble N showed seasonal changes consistent with tree growth activity in both HIN and LIN. In the organic layer of HIN, C and N stocks were about twofold larger than expected on the basis of stand density.

Conclusion

Black locust increased C and N stocks in the upper organic layers that are more vulnerable to disturbance. However, it did not increase N stocks in the mineral soil.  相似文献   

16.

Background and aims

Interacting effects of atmospheric N deposition on the degree to which tree demand for other nutrients is met by soil supply has seldom been explored in Mediterranean-type ecosystems. We hypothesized that patterns for the relative availability of N and P in soils will be matched by variations in process rates related to soil organic P cycling and by shifts from N to P limitation of tree growth.

Methods

We examined N/P relationships in Mediterranean-fir (Abies pinsapo) forests from two nearby regions differing in N deposition levels.

Results

N pools and transformation rates and the contribution of organic fractions to the labile P pool in soils showed increasing trends toward the pollution source. Phosphomonoesterase activity (PME) in bulk soils, root PME per unit biomass (but not per unit soil volume) and biomass accumulation in P-fertilized root-in-growth cores incubated in situ were also the highest at the sites receiving elevated N deposition, indicating P limitation. In contrast, forest stands in the region farther from the pollutant source were N-limited (preferential root growth in N-rich soil microsites) and showed lower PME activities and higher total fine root biomass.

Conclusions

In the forests under elevated N deposition, higher values for an overall indicator of soil N status matched with indications of an accelerated soil organic P subcycle and P-limitation of tree growth.  相似文献   

17.

Aims

Forest thinning is expected to affect tree water use and carbon assimilation, but the related influence from climate variability is little known. Recent forest thinning in the Wungong catchment coincided with a record dry year following the thinning, which provides a rare opportunity to understand the climate influence on the thinning effect.

Methods

A field experiment was conducted to examine changes before and after thinning, especially the rainfall, soil moisture, leaf water status, tissue isotope signature (13?C and 15?N) and N concentration of overstorey and understorey juvenile trees of Eucalyptus marginata (Donn ex Sm.).

Results

Despite the post-thinning drought, surface soil was moister and juvenile jarrah plants were less water stressed, attributable to reduced rain interception and transpiration as a result of less canopy cover. The overstorey was under stress but mainly due to drought rather than by thinning. The concentration of N declined in both tree stems and juvenile leaves along with available N in soil, suggesting a soil N limitation. No treatment effects were detected from leaf relative water content and tissue isotope signature (13?C and 15?N).

Conclusions

The drought effects were superimposed over the thinning effects on overstorey growth, with stemwood δ13C being a major indicator of water stress. The water relations and carbon assimilation of understorey juveniles were however dependent more on topsoil moisture, and the wetter soil during the year following thinning enhanced growth activity and hence the depletion of 13?C (more negative δ13C) in juvenile leaves.  相似文献   

18.

Aims

Shrub encroachment in mesic grasslands alters the identity and quality of litters entering the system. As litter from shrubs and grasses can differ in their quality, this can lead to differences in litter decomposition by the direct effect of quality, but also to litter interaction during decomposition. The objective of this study was to examine the occurrence of non-additive effects of litter mixtures on the decomposition rates of legume shrub litter (poor in P) or conifer shrub litter (poor in N) and grass litter.

Methods

In addition to single litter type litterbags for the three species, we mixed litters of each pair of possible combinations to determine the influence of each species on mass loss. Litterbags were placed in the field and collected after 1, 6, 8, 12 and 24 months. In each collection, litter of each species remaining in mixed bags was separated, dry weighed and analyzed for C, N and P.

Results

With respect to shrub litter decomposing alone, mass loss of shrub litter when mixed with grass showed a 9–10 % increase in decomposition rate for conifer and a 3 % increase for legume litter. These litter mixture effects varied with time and they were detected after a decomposition period of 1 year in legume litter and of 2 years in conifer litter.

Conclusions

Grass litter hastened conifer and legume litter decomposition in leaf litter mixtures, at least during the first stages of the process. The potential consequences of this result to alter litter accumulation patterns and thus carbon sequestration rates after shrub encroachment into grasslands will depend on whether the observed trends are maintained in the advanced decomposition stages.  相似文献   

19.

Background and aims

Variations in responses to soil N between a non-N-fixing shrub, Baccharis halimifolia L., and a N-fixing shrub, Morella cerifera (L.) Small, were tested over 12 weeks to determine whether N availability is the sole cause of persistent dominance of M. cerifera on barrier islands.

Methods

Plants were supplied increasing levels of soil N up to 200 mg kg?1. Measurements included gas exchange and chlorophyll fluorescence parameters across treatments, species, and time. Tissues were analyzed for differences in biomass and nutrients.

Results

Baccharis halimifolia had reduced physiological responses across all treatment levels, but M. cerifera had comparatively few variations. Across all treatments B. halimifolia photosynthesis and stomatal conductance were reduced by 62 and 76 %, respectively,by week 12. Increasing foliar δ15N values across treatments for M. cerifera indicated a shift from utilizing fixed N to available soil N. Biomass was highest at 200 mg kg?1 N for both species. Baccharis halimifolia showed indications of stress response and resource limitation based on physiological responses, nutrient contents, and isotope effects.

Conclusions

Baccharis halimifolia showed signs of co-limitation of both N and P whereas M. cerifera was limited by neither, suggesting that dominance of M. cerifera is only partially explained by actinorhizal symbiosis and N availability.  相似文献   

20.

Background and aims

Knowledge related to extent of differing soil N forms and N transformation rates in subtropical southern China is severely limited. Accordingly, the purpose of this study was to investigate if and how tree species of different foliage types (coniferous, deciduous, and evergreen broadleaved) influence N forms and microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) content as well as gross N transformation rates in the organic and mineral soils of three distinct subtropical forests in China.

Methods

Chloroform fumigation extraction was used to determine MBC and MBN content while 15N-isotope dilution techniques were used to measure gross N transformation rates. Canonical correspondence analysis (CCA) was used to quantify relationships between soil chemical characteristics and changes in soil N transformation rates.

Results

Soil N forms, MBC and MBN content, and N transformation rates were found to be significantly different between tree species. Deciduous forest soil exhibited the highest N transformation rates. Soil N transformation rates were closely associated with total soil C and N and MBC and MBN content.

Conclusions

Soil substrate quantity and soil microbial activity play a more important role in soil N transformation processes than does soil quality in China’s subtropical forests. Tree species type should therefore be taken into account when trying to determine ecosystem N cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号