首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells.  相似文献   

2.
As a vital cell-signaling molecule, nitric oxide (NO) has been reported to regulate toxic metal responses in plants. Our recent report has suggested that caspase-3-like protease activation was detected in Arabidopsis (Arabidopsis thaliana) after Cd2+ treatment. NO contributed caspase-3-like protease activation in Cd2+ induced Arabidopsis thaliana programmed cell death (PCD), which was mediated by MPK6. It was first shown that NO promotes Cd2+-induced Arabidopsis PCD by promoting MPK6-mediated caspase-3-like activation. Our study contributed to the understanding of NO signaling pathway in Cd2+-induced Arabidopsis thaliana PCD. Although several studies have revealed that NO regulates plant PCD, compared with the study of signaling pathways involved in animal cell apoptosis, the mechanism of NO function still remains elusive and the molecular mechanisms of MAPK are far from clear in Cd2+-induced PCD. By using the fluorescence techniques and the Arabidopsis seedlings as the reference model, the subsequent researches have been performed to obtain comprehensive understanding of Cd2+-induced plant PCD.  相似文献   

3.
To find out whether and how proteasome is involved in plant programmed cell death (PCD) we measured proteasome function in tobacco cells undergoing PCD as a result of heat shock (HS-PCD). Reactive oxygen species (ROS) production, cytochrome c levels and caspase-3-like protease activation were also measured in the absence or presence of MG132, a proteasome inhibitor. We show that proteasome activation occurs in early phase of HS-PCD upstream of the caspase-like proteases activation; moreover inhibition of proteasome function by MG132 results in prevention of PCD perhaps due to the prevention of ROS production, cytochrome c release and caspase-3-like protease activation.  相似文献   

4.
Oligochitosan has been proved to trigger plant cell death. To gain some insights into the mechanisms of oligochitosan-induced cell death, the nature of oligochitosan-induced cell death and the role of calcium (Ca2+), nitric oxide (NO) and hydrogen peroxide (H2O2) were studied in tobacco suspension cells. Oligochitosan-induced cell death occurred in cytoplasmic shrinkage, phosphatidylserine externalization, chromatin condensation, TUNEL-positive nuclei, cytochrome c release and induction of programmed cell death (PCD)-related gene hsr203J, suggesting the activation of PCD pathway. Pretreatment cells with cyclosporin A, resulted in reducing oligochitosan-induced cytochrome c release and cell death, indicating oligochitosan-induced PCD was mediated by cytochrome c. In the early stage, cells undergoing PCD showed an immediate burst in free cytosolic Ca2+ ([Ca2+]cyt) elevation, NO and H2O2 production. Further study showed that these three signals were involved in oligochitosan-induced PCD, while Ca2+ and NO played a negative role in this process by modulating cytochrome c release.  相似文献   

5.
1-Butanol, which is a specific inhibitor of phospholipase D, usually inhibits phosphatidic acid (PA) production and blocks the PA-dependent signaling pathway under stress conditions. However, the effects of 1-butanol on plant cells under non-stress condition are still unclear. In this study, we report that 1-butanol induced a dose dependent cell death in poplar (Populus euphratica) cell cultures. In contrast, the control 2-butanol and ethanol had no effects on cell viability. 1-Butanol-treated cells displayed hallmark features of programmed cell death (PCD), such as shrinkage of the cytoplasm, DNA fragmentation, condensed or stretched chromatin and the activation of caspase-3-like protease. Exogenous application of PA markedly inhibited the 1-butanol-induced PCD. 1-Butanol also caused a burst of mitochondrial H2O2 ([H2O2]mit) that was usually accompanied by a loss of mitochondrial membrane potential (?Ψm). Supplement of PA, antioxidant enzyme (catalase) and antioxidant (ascorbic acid) reversed this effect. Moreover, a significant increase of nitric oxide (NO) was observed in 1-butanol-treated poplar cells. This NO burst was suppressed by PA or inhibitors of NO synthesis. Further pharmacological experiments indicate that the burst of NO contributed to the 1-butanol-induced inhibition of antioxidant enzymes and subsequent H2O2-dependent PCD. In conclusion, we propose that 1-butanol is a potent inducer of PCD in plants and this process is regulated by the PA, NO and H2O2.  相似文献   

6.
NO signalling in cytokinin-induced programmed cell death   总被引:6,自引:0,他引:6  
Cell death can be induced by cytokinin 6-benzylaminopurine (BA) at high dosage in suspension-cultured Arabidopsis cells. Herein, we provide evidence that BA induces nitric oxide (NO) synthesis in a dose-dependent manner. A reduction in cell death can be observed when the cytokinin is supplemented with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) or the nitric oxide synthase (NOS) inhibitors: 2-aminoethyl-isothiourea (AET) and NG.-monomethyl- l -arginine ( l -NMMA), which suggests that NO is produced via a NOS and is a signalling component of this form of programmed cell death. In BA-treated cells, mitochondrial functionality is altered via inhibition of respiration. This inhibition can be prevented by addition of either cPTIO or AET implying that NO acts at the mitochondrial level.  相似文献   

7.
Recent evidence has proved that caspase protease activities are detected in both mammals and plants during programmed cell death (PCD). The characteristics and functions of caspase-like proteases play important roles in understanding the mechanisms of PCD in plants. In this work, we report firstly the involvement of caspase-like protease activities and effects in aluminum (Al) stress in two contrasting peanut genotypes. Caspase-like activities in the root tip cells of ‘Zhonghua 2’ (Al-sensitive) and ‘99-1507’ (Al-tolerant) were detected using synthetic caspase substrates during Al-triggered PCD. Caspase-1-, -2-, -3-, -4-, -5-, -6-, -8- and -9-like proteases were found in peanut root tip cells. VDQQDase (caspase-2-like) and WEHD (caspase-5-like) were the first detected in the plants, and almost all of the caspase-like proteases were activated during Al-induced PCD, especially caspase-3-like and caspase-1-like, which was higher in ‘Zhonghua 2’ than in ‘99-1507’. The highest activity levels of caspase-3- and caspase-1-like proteases occurred 8 and 4 h after 100 µM Al treatment, respectively. Compared with 100 µM AlCl3 treatment alone, specific caspase-3 protease inhibitor Ac-DEVD-CHO inhibited the increase of caspase-3-like protease activity, Al content, Hsr203j expression, cell death and DNA fragmentation, and the decrease in root growth induced by 100 µM AlCl3 treatment, but it was more obvious in ‘Zhonghua 2’ than in ‘99-1507’. In conclusion, there were different caspase-like proteases in root tips of peanut, and caspase-3-like protease was a crucial executioner in Al-induced PCD. Its effects in the ‘Zhonghua 2’ genotype were higher than in ‘99-1507’. An improved model of the mechanism of Al-induced PCD and Al tolerance differences in different genotypes is proposed.  相似文献   

8.
Nitric oxide (NO), a vital cell‐signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen‐activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd2+) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase‐3‐like protease activation was detected after Cd2+ treatment. This was further confirmed with a caspase‐3 substrate assay. Cd2+‐induced caspase‐3‐like activity was inhibited in the presence of the NO‐specific scavenger 2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (cPTIO), suggesting that NO mediated caspase‐3‐like protease activation under Cd2+ stress conditions. Pretreatment with cPTIO effectively inhibited Cd2+‐induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd2+‐induced caspase‐3‐like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase‐3‐like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd2+‐induced Arabidopsis PCD by promoting MPK6‐mediated caspase‐3‐like activation.  相似文献   

9.
Nitric oxide (NO) is a bioactive gas and functions as a signaling molecule in plants exposed to diverse biotic and abiotic stresses including cadmium (Cd2+). Cd2+ is a non-essential and toxic heavy metal, which has been reported to induce programmed cell death (PCD) in plants. Here, we investigated the role of NO in Cd2+-induced PCD in tobacco BY-2 cells (Nicotiana tabacum L. cv. Bright Yellow 2). In this work, BY-2 cells exposed to 150 μM CdCl2 underwent PCD with TUNEL-positive nuclei, significant chromatin condensation and the increasing expression of a PCD-related gene Hsr203J. Accompanied with the occurring of PCD, the production of NO increased significantly. The supplement of NO by sodium nitroprusside (SNP) had accelerated the PCD, whereas the NO synthase inhibitor Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) and NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) alleviated this toxicity. To investigate the mechanism by which NO exerted its function, Cd2+ concentration was measured subsequently. SNP led more Cd2+ content than Cd2+ treatment alone. By contrast, the prevention of NO by l-NAME decreased Cd2+ accumulation. Using the scanning ion-selective electrode technique, we analyzed the pattern and rate of Cd2+ fluxes. This analysis revealed the promotion of Cd2+ influxes into cells by application of SNP, while l-NAME and cPTIO reduced the rate of Cd2+ uptake or even resulted in net Cd2+ efflux. Based on these founding, we concluded that NO played a positive role in CdCl2-induced PCD by modulating Cd2+ uptake and thus promoting Cd2+ accumulation in BY-2 cells.  相似文献   

10.
This investigation demonstrates that programmed cell death (PCD) in a cyanobacterium, Microcystis aeruginosa, resulting from allelopathic stress induced by a submerged macrophyte, Myriophyllum spicatum, in a co-culture system. The hallmarks of PCD, caspase-3-like protease activity, DNA fragmentation, and destruction of cell ultrastructure, as well as intracellular PCD signaling radicals, reactive oxygen species (ROS), and nitric oxide (NO), were measured in M. aeruginosa cells co-cultured with M. spicatum for 7 days. The results showed a dose–response relationship between M. spicatum biomass and M. aeruginosa mortality. A caspase-3-like protease was activated and elevated from day 3. Thylakoid disintegration, cytoplasmic vacuolation, and fuzzy nuclear zone were observed by transmission electron microscopy, and distinct DNA fragmentation was detected in M. aeruginosa cells at a M. spicatum biomass of 6.0 g fresh weight (FW) L?1 during the 7 days. Allelochemicals of total phenolic compounds (TPCs) were determined in co-culture water, and the concentration increased with increasing of M. spicatum biomass and co-culture time. Compared with the level of ROS production in the control group, a significant overproduction of ROS was detected in M. aeruginosa cells in the treatment group, and this was positively correlated with TPC concentration. Furthermore, the level of intracellular NO increased with the percent mortality of M. aeruginosa. The results indicated that a PCD pathway was induced in the cyanobacterium M. aeruginosa when co-cultured with the submerged macrophyte M. spicatum.  相似文献   

11.
Programmed cell death (PCD) plays a vital role in plant development and is involved in defence mechanisms against biotic and abiotic stresses. Different forms of PCD have been described in plants on the basis of the cell organelle first involved. In sycamore ( Acer pseudoplatanus L.) cultured cells, the phytotoxin fusicoccin (FC) induces cell death. However, only a fraction of the dead cells shows the typical hallmarks of animal apoptosis, including cell shrinkage, chromatin condensation, DNA fragmentation and release of cytochrome c from the mitochondrion. In this work, we show that the scavenging of nitric oxide (NO), produced in the presence of FC, by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) and rutin inhibits cell death without affecting DNA fragmentation and cytochrome c release. In addition, we show that FC induces a massive depolymerization of actin filaments that is prevented by the NO scavengers. Finally, the addition of actin-depolymerizing drugs induces PCD in control cells and overcomes the inhibiting effect of cPTIO on FC-induced cell death. Vice versa, the addition of actin-stabilizing drugs to FC-treated cells partially inhibits the phytotoxin-induced PCD. These results suggest that besides an apoptotic-like form of PCD involving the release of cytochrome c , FC induces at least another form of cell death, likely mediated by NO and independent of cytochrome c release, and they make it tempting to speculate that changes in actin cytoskeleton are involved in this form of PCD.  相似文献   

12.
Self-incompatibility (SI) in higher plants prevents inbreeding through specific recognition and rejection of incompatible (“self”) pollen. In Papaver rhoeas, S proteins encoded by the pistil component of the S-locus interact with incompatible pollen, triggering a Ca2+-dependent signaling network resulting in programmed cell death (PCD). We recently showed that a mitogen-activated protein kinase (MAPK) is involved in loss of pollen viability, stimulation of caspase-3-like (DEVDase) activity and later DNA fragmentation in incompatible pollen. As p56 appears to be the only MAPK activated by SI, our data suggest that p56 could be the MAPK responsible for mediating SI-induced PCD.Key words: MAPK, self-incompatibility, PCD, caspase-3-like activity, Papaver rhoeas  相似文献   

13.
Xanthomonas campestris strains have been reported to undergo programmed cell death (PCD) in a protein rich medium. Protein hydrolysates used in media such as nutrient broth comprise of casein digest with abundance of proline and glutamate. In the current study, X. campestris pv. campestris (Xcc) cells displayed PCD when grown in PCD inducing medium (PIM) containing casein tryptic digest. This PCD was also observed in PCD non-inducing carbohydrate rich medium (PNIM) fortified with either proline or proline along with glutamate. Surprisingly, no PCD was noticed in PNIM fortified with glutamate alone. Differential role of proline or glutamate in inducing PCD in Xcc cells growing in PNIM was studied. It was found that an intermediate product of this oxidation was involved in initiation of PCD. Proline oxidase also called as proline utilization A (PutA), catalyzes the two step oxidation of proline to glutamate. Interestingly, higher PutA activity was noticed in cells growing in PIM, and PCD was found to be inhibited by tetrahydro-2-furoic acid, a competitive inhibitor of this enzyme. Further, PCD was abolished in Xcc ΔputA strain generated using a pKNOCK suicide plasmid, and restored in Xcc ΔputA strain carrying functional PutA in a plasmid vector. Xanthomonas cells growing in PIM also displayed increased generation of ROS, as well as cell filamentation (a probable indication of SOS response). These filamented cells also displayed enhanced caspase-3-like activity during in situ labeling using a fluorescent tagged caspase-3 inhibitor (FITC-DEVD-FMK). The extent of PCD associated markers such as DNA damage, phosphatidylserine externalization and membrane depolarization were found to be significantly enhanced in wild type cells, but drastically reduced in Xcc ΔputA cells. These findings thus establish the role of PutA mediated proline oxidation in regulating death in stressed Xanthomonas cells.  相似文献   

14.
The current study deals with the molecular mechanism of radiation-induced cell death (RICD) in Escherichia coli. Irradiated E. coli cells displayed markers similar to those found in eukaryotic programmed cell death (PCD) such as caspase-3 activation and phosphatidylserine externalization. RICD was found to be suppressed upon pretreatment with sublethal concentrations of rifampicin or chloramphenicol, indicating the requirement of de novo gene expression. RICD was also found to be inhibited by cell permeable inhibitors of caspase-3 or poly (ADP-ribose) polymerase, indicating the involvement of PCD during RICD in E. coli. Radiation-induced SOS response was alleviated as observed with decrease in LexA level and also reduced cell filamentation frequency in the presence of caspase inhibitor. Further, the inhibitor-mediated rescue was not observed in single-gene knockouts of umuC, umuD, recB and ruvA, the genes which are associated with SOS response. This implies a linkage between SOS response and PCD in radiation-exposed E. coli cells.  相似文献   

15.
Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.  相似文献   

16.
A Role for Caspases in Lens Fiber Differentiation   总被引:13,自引:0,他引:13       下载免费PDF全文
There is increasing evidence that programmed cell death (PCD) depends on a novel family of intracellular cysteine proteases, called caspases, that includes the Ced-3 protease in the nematode Caenorhabditis elegans and the interleukin-1β–converting enzyme (ICE)-like proteases in mammals. Some developing cells, including lens epithelial cells, erythroblasts, and keratinocytes, lose their nucleus and other organelles when they terminally differentiate, but it is not known whether the enzymatic machinery of PCD is involved in any of these normal differentiation events. We show here that at least one CPP32 (caspase-3)-like member of the caspase family becomes activated when rodent lens epithelial cells terminally differentiate into anucleate lens fibers in vivo, and that a peptide inhibitor of these proteases blocks the denucleation process in an in vitro model of lens fiber differentiation. These findings suggest that at least part of the machinery of PCD is involved in lens fiber differentiation.  相似文献   

17.
通过提高摇床转速对烟草细胞施加机械刺激(Ms)可诱导其胞内一氧化氮(No)的快速产生和一氧化氮合酶(Nos)活性的提高,这种MS诱导的NO产生可被N0清除剂cPTIO和NOS抑制剂L-NMMA显著抑制。此外,Ca2+螯合剂EGTA、质膜Ca+通道阻断剂La3+、胞内Ca2+通道拮抗剂钌红,以及钙调素抑制剂CPZ和TFP预处理均不同程度地抑制了机械刺激诱导的烟草细胞NO的产生,而机械刺激过程中钙调素活性显著上升并与NOS活性和NO含量的变化相一致。这些结果暗示着(类)Nos酶催化的精氨酸依赖途径可能是机械刺激诱发烟草细胞NO产生的主要途径,Ca2+/CAM可能通过调节(类)NOS活性来调控No的产生。  相似文献   

18.
Recent studies have suggested that aluminium (Al) induces programmed cell death (PCD) in plants. To investigate possible mechanisms, fluorescence techniques were used to monitor the behaviour of mitochondria in vivo, as well as the activation of caspase-3-like activity during protoplast PCD induced by Al. A quick burst of mitochondrial reactive oxygen species (ROS) was detected in Al-treated protoplasts. The mitochondrial swelling and mitochondrial transmembrane potential (MTP) loss occurred prior to cell death. Pre-incubation with ascorbic acid (AsA, antioxidant molecule) retarded mitochondrial swelling and MTP loss. The real-time detection of caspase-3-like activation was achieved by measuring the degree of fluorescence resonance energy transfer (FRET). At 30 min after exposure to Al, caspase-3-like protease activation, indicated by the decrease in the FRET ratio, occurred, taking about 1 h to reach completion in single living protoplasts. The mitochondrial permeability transition pore (MPTP) inhibitor, cyclosporine (CsA) gave significant protection against MTP loss and subsequent caspase-3-like activation. Our data also showed that Al-induced mitochondrial ROS possibly originated from complex I and III damage in the respiratory chain through the interaction between Al and iron-sulphur (Fe-S) protein. Alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, was demonstrated to play protective roles in Al-induced protoplast death. Our results showed that mitochondrial swelling and MTP loss, as well as the generation of mitochondrial ROS play important roles in Al-induced caspase-3-like activation and PCD, which provided new insight into the signalling cascades that modulate Al phytotoxicity mechanism.  相似文献   

19.
20.
我们以往的研究工作证实了硫化氢(hydrogen sulfide,H2S)对甲醛神经毒性和氧化应激具有拮抗作用.Paraoxonase-1(PON-1)是机体重要的内源性抗氧化剂.本研究的目的是探讨PON-1是否可介导H2S的抗甲醛神经毒性作用.采用甲醛损伤PC12细胞为甲醛神经毒性的细胞模型.硫氢化钠(NaHS,一种H2S的供体)不仅可以上调PC12细胞PON-1的活力,还可恢复甲醛对PC12细胞PON-1表达与活力的抑制作用.2-hydroxyquinoline(2-HQ)是一种选择性PON-1抑制剂,它可显著降低H2S对甲醛细胞毒性、凋亡和活性氧(reactive oxygen species,ROS)累积的抑制作用.而且,2-HQ可阻止H2S逆转甲醛激活PC12细胞caspase-3和下调PC12细胞bcl-2表达.结果提示H2S依赖PON-1去保护PC12细胞对抗甲醛的神经毒性.我们的这一发现表明PON-1有希望成为防治甲醛神经损伤的新靶点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号