首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.

Aims

Decomposition of leaf litterfall plays a major role for nitrogen (N) dynamics in soils. However, little is known as to which extent beech leaf litter contributes to N turnover and nitrous oxide (N2O) emissions within one decade after litterfall.

Methods

In 1997, we exchanged recently fallen leaf litter by 15N-labelled litter in a beech stand (Fagus sylvatica) at the Solling, Germany. Measurements were conducted 2–3 and 10–11 years after litter exchange.

Results

Two years after litter exchange, 92 % of added 15N was recovered in the surface 10 cm of the soil. The labelled N was primarily found in the upper part of the F layer of the moder type humus. Eleven years after litter exchange, 73 % of the added 15N was lost and the remaining 27 % was mainly recovered in the lower part of the F layer indicating N sequestration. The remaining leaf litter N was subject to measurable N mineralisation (2–3 % of litter N) and N2O production (0.02 %). Between 0.3 % (eleventh year) and 0.6 % (second year) of total annual N2O emissions were attributed to beech leaf litter of a single year.

Conclusions

Most of the annual N2O emissions (1.33–1.54 kg N ha?1 yr?1) were probably derived from older soil N pools.  相似文献   

2.

Background and Aims

Increased N availability induced by agricultural fertilization applications and atmospheric N deposition may affect plant nutrient resorption in temperate wetlands. However, the relationship between nutrient resorption and N availability is still unclear, and most studies have focused on leaf nutrient resorption only. The aim of our study was to examine the response of leaf and non-leaf organ nutrient resorption to N enrichment in a temperate freshwater wetland.

Methods

We conducted a 7-year N addition experiment to investigate the effects of increased N loading on leaf, sheath and stem nutrient (N and P) resorption of two dominant species (Deyeuxia angustifolia and Glyceria spiculosa) in a freshwater marsh in the Sanjiang Plain, Northeast China.

Results

Our results showed that, for both leaf and non-leaf organs (sheath and stem), N addition decreased N resorption proficiency and hence increased litter N concentration. Moreover, the magnitude of N addition effect on N resorption proficiency varied with fertilization rates for D. angustifolia sheaths and stems, and G. spiculosa leaves. However, increased N loading produced inconsistent impacts on N and P resorption efficiencies and P resorption proficiency, and the effects only varied with species and plant organs. In addition, N enrichment increased litter mass and altered litter allocation among leaf, sheath and stem.

Conclusions

Our results highlight that leaf and non-leaf organs respond differentially to N addition regarding N and P resorption efficiencies and P resorption proficiency, and also suggest that N enrichment in temperate freshwater wetlands would alter plant internal nutrient cycles and increase litter quality and quantity, and thus substantially influence ecosystem carbon and nutrient cycles.  相似文献   

3.

Background and aims

Litter decomposition is a key process controlling flows of energy and nutrients in ecosystems. Altered biodiversity and nutrient availability may affect litter decomposition. However, little is known about the response of litter decomposition to co-occurring changes in species evenness and soil nutrient availability.

Methods

We used a microcosm experiment to evaluate the simultaneous effects of species evenness (two levels), identity of the dominant species (three species) and soil N availability (control and N addition) on litter decomposition in a Mongolian pine (Pinus sylvestris var. mongolica) plantation in Northeast China. Mongolian pine needles and senesced aboveground materials of two dominant understory species (Setaria viridis and Artemisia scoparia) were used for incubation.

Results

Litter evenness, dominant species identity and N addition significantly affected species interaction and litter decomposition. Higher level of species evenness increased the decomposition rate of litter mixtures and decreased the incidence of antagonistic effects. A. scoparia-dominated litter mixtures decomposed faster than P. sylvestris var. mongolica- and S. viridis-dominated litter mixtures. Notably, N addition increased decomposition rate of both single-species litters and litter mixtures, and meanwhile altered the incidence and direction of non-additive effects during decomposition of litter mixtures. The presence of understory species litters stimulated the decomposition rate of pine litters irrespective of N addition, whereas the presence of pine litters suppressed the mass loss of A. scoparia litters. Moreover, N addition weakened the promoting effects of understory species litters on decomposition of pine litters.

Conclusions

Pine litter retarded the decomposition of understory species litters whereas its own decomposition was accelerated in mixtures. Nitrogen addition and understory species evenness altered species interaction through species-specific responses in litter mixtures and thus affected litter decomposition in Mongolian pine forests, which could produce a potential influence on ecosystem C budget and nutrient cycling.  相似文献   

4.

Aims

We assessed the effects of native and exotic tree leaf litter on soil properties in two contrasting scenarios. The native Quercus robur and Pinus pinaster tree species coexist with the aliens Eucalyptus globulus and Acacia dealbata in acid soils of NW Spain. The native trees Fraxinus angustifolia and Ulmus minor coexist with the aliens Ailanthus altissima, Robinia pseudoacacia and Ulmus pumila in eutrophic basic riparian soils in Central Spain.

Methods

Four plastic trays per species were filled with homogenized top-soil of the site and covered with leaf litter. Before and after 9?months of incubation, litter mass, soil pH, organic matter, mineral and total N were measured. Available mineral N (NO 3 ? -N and NH 4 + -N) was assessed every 2?months.

Results

Soil biological activity was higher in the basic than in the acid soil. Litter of the exotic trees tended to decompose less than litter of native species, probably due to the presence of secondary metabolites in the former. Soil pH, mineral and total N responded differently to different litter types, irrespective of their exotic or native origin (acid soil), or was similar across litter treatments (basic riparian soil). The similar response of the basic soil to the addition of different litter types may be due to the low contrast of litter quality between the species. E. globulus litter inhibitied soil microbial activity much more than the rest of the studied litter types, leading to a drastic impoverishment of N in soils.

Conclusion

Litter of exotic N-fixing trees (A. dealbata and R. pseudoacacia) did not increase soil N pools because of the inhibition of microbial activity by secondary compounds. Therefore, secondary metabolites of the litter played a major role explaining exotic litter impact on soil properties.  相似文献   

5.

Background and aims

Nutrient acquisition of forest stands is controlled by soil resource availability and belowground production, but tree species are rarely compared in this regard. Here, we examine ecological and management implications of nitrogen (N) dynamics during early forest stand development in productive commercial tree species with narrow (Populus deltoides Bartr. and Platanus occidentalis L.) and broad (Liquidambar styraciflua L. and Pinus taeda L.) site requirements while grown with a range of nutrient and water resources.

Methods

We constructed N budgets by measuring N concentration ([N]) and N content (N C ) of above- and belowground perennial and ephemeral tissues, determined N uptake (N UP ), and calculated N use efficiency (NUE).

Results

Forest stands regulated [N] within species-specific operating ranges without clear temporal or treatment patterns, thus demonstrating equilibrium between tissue [N] and biomass accumulation. Forest stand N C and N UP increased with stand development and paralleled treatment patterns of biomass accumulation, suggesting productivity is tightly linked to N UP . Inclusion of above- and belowground ephemeral tissue turnover in N UP calculations demonstrated that maximum N demand for narrow-sites adapted species exceeded 200?kg?N ha?1?year?1 while demand for broad-site adapted species was below this level. NUE was species dependent but not consistently influenced by N availability, suggesting relationships between NUE and resource availability were species dependent.

Conclusions

Based on early stand development, species with broad site adaptability are favored for woody cropping systems because they maintain high above- and belowground productivity with minimal fertilization requirements due to higher NUE than narrow site adapted species.  相似文献   

6.

Aims

Litter decomposition and subsequent nutrient release play a major role in forest carbon and nutrient cycling. To elucidate how soluble or bulk nutrient ratios affect the decomposition process of beech (Fagus sylvatica L.) litter, we conducted a microcosm experiment over an 8 week period. Specifically, we investigated leaf-litter from four Austrian forested sites, which varied in elemental composition (C:N:P ratio). Our aim was to gain a mechanistic understanding of early decomposition processes and to determine microbial community changes.

Methods

We measured initial litter chemistry, microbial activity in terms of respiration (CO2), litter mass loss, microbial biomass C and N (Cmic and Nmic), non purgeable organic carbon (NPOC), total dissolved nitrogen (TDN), NH4 +, NO3 - and microbial community composition (phospholipid fatty acids – PLFAs).

Results

At the beginning of the experiment microbial biomass increased and pools of inorganic nitrogen (N) decreased, followed by an increase in fungal PLFAs. Sites higher in NPOC:TDN (C:N of non purgeable organic C and total dissolved N), K and Mn showed higher respiration.

Conclusions

The C:N ratio of the dissolved pool, rather than the quantity of N, was the major driver of decomposition rates. We saw dynamic changes in the microbial community from the beginning through the termination of the experiment.  相似文献   

7.

Background and aims

Roots of the lowest branch orders have the highest mortality rate, and may contribute predominately to plant carbon (C) and nutrient transfer into the soil. Yet patterns and controlling factors of the decomposition of these roots are poorly understood.

Methods

We conducted a two-year field litterbag study on different root orders and leaf litter in four temperate and four subtropical tree species.

Results

Five species showed slower decay rates in lower- (order 1–2) than higher-order (order 3–5) roots, and all species showed slower decay rates in lower-order roots than leaf litter. These patterns were strongly related to higher acid-insoluble fraction in lower- than higher-order roots, and in roots than in leaf litter, but were unrelated to initial N concentration. Litter N was predominantly in recalcitrant forms and limited amount of N was released during the study period;only 12 % of root N and 26 % of leaf litter N was released in 2 years.

Conclusions

We conclude that the slow decomposition of lower-order roots may be a common phenomenon and is mainly driven by their high acid-insoluble fraction. Moreover, litter N, especially root N, is retained during decomposition and may not be available for immediate plant uptake.  相似文献   

8.

Aims

The interactive effects of enhanced nitrogen (N) deposition and ultraviolet-B (UV-B) radiation on litter decomposition are still unknown. The aims are to test whether the interactive effects of the two environmental factors on litter decomposition and nutrient loss are stronger than that of each factor alone.

Methods

Experiment included five treatments: elevated UV-B radiation (UV-B, 10 % enhancement), low N addition (N1, 30 kg N ha?1 year?1), high N addition (N2, 60 kg N ha?1 year?1), the two combined treatments of the two factors (UV-B+N1 and UV-B+N2), and an unmanipulated control.

Results

The annual decomposition rates under combination of UV-B and N addition significantly decreased compared with that under UV-B and N additions for Pinus massoniana, and did also compared with that under UV-B but did not significantly differ with N additions for Cyclobalanopsis glauca. Negative effects of N additions alone on lignin degradation and P loss were partly offset but negative effect on N loss was further amplified when was combined with UV-B.

Conclusions

The combination of N deposition and UV-B radiation on litter decomposition and nutrient loss was significantly different from that of each factor alone without a general response pattern of decomposition, and was regulated by litter chemistry.  相似文献   

9.

Aims

Coexistence of trees and grasses in nutrient-poor arid savannas may result in competition for soil N. While grasses may be more effective than woody plants in acquiring N from the soil, some leguminous woody species rely on N2 fixation. We assessed the role of N2 fixation in the N-budget of Acacia mellifera seedlings by varying N supply and grass competition.

Methods

The contribution of N2 fixation to the N-budget of Acacia mellifera seedlings with varying N supply and grass competition was determined by measuring growth, nutrient concentrations, and 15N values.

Results

Tree seedlings were 4-fold taller and had 20-fold more biomass in the absence of grass. Tree foliar δ15N was lower with (?0.25?±?0.2‰, n?=?9) than without grasses (5.2?±?0.1‰, n?=?64). The contribution of N2-fixation to the N budget decreased with increasing N supply. Greater reliance on N2-fixation by trees in the presence of grasses did not result in greater biomass accumulation or tissue [N] relative to tree seedlings grown without grass competition. Tree seedlings competing with grass had significantly more negative δ13C (?29.5?±?0.6‰) than seedlings without grass competition (?28.8‰?±?0.5‰).

Conclusions

Induction of N2-fixation by grass may have resulted from competition for nutrients. N2-fixation enables tree seedlings to compensate for limited soil N and survive grass competition at a critical and vulnerable developmental stage of germination and establishment.  相似文献   

10.

Key message

Total leaf hydraulic dysfunction during severe drought could lead to die-back in N. dombeyi , while hydraulic traits of A. chilensis allow it to operate far from the threshold of total hydraulic failure.

Abstract

Die-back was observed in South America temperate forests during one of the most severe droughts of the 20th century (1998–1999). During this drought Austrocedrus chilensis trees survived, whereas trees of the co-occurring species (Nothofagus dombeyi) experienced symptoms of water stress, such as leaf wilting and abscission, before tree die-back occurred. We compared hydraulic traits of these two species (a conifer and an angiosperm species, respectively) in a forest stand located close to the region with records of N. dombeyi mass mortality. We asked whether different hydraulic traits exhibited by the two species could help explain their contrasting survivorship rates. Austrocedrus chilensis had wide leaf safety margins, which appear to be the consequence of relatively high leaf-and-stem capacitance, large stored water use, strong stomatal control and ability to recover from embolism-induced loss of leaf hydraulic capacity. On the other hand, N. dombeyi even though had a stem hydraulic threshold of ?6.7 MPa before reaching substantial hydraulic failure (P88), leaf P88 occurred at leaf water potentials of only ?2 MPa, which probably are reached during anomalous droughts. Massive mortality in N. dombeyi appears to be the result of the total loss of leaf hydraulic conductance leading to leaf dehydration and leaf drop. Drought occurs during the summer and it is highly likely that N. dombeyi cannot recover its photosynthetic surface to produce carbohydrates required to avoid tissue injury in the winter season with subfreezing temperatures. Strong hydraulic segmentation in N. dombeyi does not seem to have an adaptive value to survive severe droughts.  相似文献   

11.

Background and aims

Plant litter has an important role in terrestrial ecosystems (Lambers et al. 2008). Our aim was to assess the short-term effect of litter from 21 woody species (deciduous and evergreens) on plant growth and root development.

Methods

We conducted a short-term experiment (10 weeks) under controlled conditions adding litter from 21 woody species to pots with Dactylis glomerata (target species). We determined plant biomass and root development and related these variables to decomposition rate and litter quality.

Results

Litter from two species enhanced plant growth whereas litter of five species inhibited it. Considering all species in the data set, plant growth was associated to litter with high decomposition rate and high litter quality: high Ca and N concentration and low polyphenols concentration. However, excluding from the analyses the two species that increased growth, litter inhibition effect on plant growth was related to the litter-polyphenols concentration. Plants growing with nutrient-richer litter had a lower proportion of fine roots which could be related to a litter mediated increase in soil nutrient.

Conclusions

Enhanced plant growth or, on the contrary, plant growth inhibition could be the result of a positive or, in turn, negative balance between nutrient and polyphenols concentration in litter.  相似文献   

12.

Background and aims

Replacement of beech by spruce is associated with changes in soil acidity, soil structure and humus form, which are commonly ascribed to the recalcitrance of spruce needles. It is of practical relevance to know how much beech must be admixed to pure spruce stands in order to increase litter decomposition and associated nutrient cycling. We addressed the impact of tree species mixture within forest stands and within litter on mass loss and nutritional release from litter.

Methods

Litter decomposition was measured in three adjacent stands of pure spruce (Picea abies), mixed beech-spruce and pure beech (Fagus sylvatica) on three nutrient-rich sites and three nutrient-poor sites over a three-year period using the litterbag method (single species and mixed species bags).

Results

Mass loss of beech litter was not higher than mass loss of spruce litter. Mass loss and nutrient release were not affected by litter mixing. Litter decay indicated non-additive patterns, since similar remaining masses under pure beech (47%) and mixed beech-spruce (48%) were significantly lower than under pure spruce stands (67%). Release of the main components of the organic substance (Corg, Ntot, P, S, lignin) and associated K were related to mass loss, while release of other nutrients was not related to mass loss.

Conclusions

In contradiction to the widely held assumption of slow decomposition of spruce needles, we conclude that accumulation of litter in spruce stands is not caused by recalcitrance of spruce needles to decay; rather adverse environmental conditions in spruce stands retard decomposition. Mixed beech-spruce stands appear to be as effective as pure beech stands in counteracting these adverse conditions.  相似文献   

13.

Background and aims

Litter decomposition is a major process in the carbon (C) flow and nutrient cycling of terrestrial ecosystems, but the effects of litter type, microsite, and root diameter on decomposition are poorly understood.

Methods

Litterbags were used to examine the decomposition rate of leaf litter and roots at three soil depths (5, 10 and 20 cm) over a 470-day period in Pinus sylvestris plantations in northern China.

Results

Leaves and the finest roots decomposed more quickly at 5 cm depth and coarser roots (>1-mm) decomposed more quickly at 10 and 20 cm depth. Roots generally decomposed more quickly than leaf litter, except at 5 cm deep; leaves decomposed more quickly than the coarsest roots (>5-mm). Root decomposition was strongly influenced by root diameter. Leaves experienced net nitrogen (N) immobilization and coarse roots (>2-mm) experienced more N release than fine roots. Significant heterogeneity was seen in N release for fine-roots (<2-mm) with N immobilization occurring in smaller (0.5–2-mm) roots and N release in the finest roots (<0.5-mm).

Conclusions

Soil depth of litter placement significantly influenced the relative contribution of the decomposition of leaves and roots of different diameters to carbon and nutrient cycling.  相似文献   

14.

Aims

The aim of this study was to examine the effect of plant species differing in functional and phylogenetic traits on the decomposition processes of leaf litter in a grassland of Japanese pampas grass (Miscanthus sinensis) and adjacent forests of Japanese red pine (Pinus densiflora) and Japanese oak (Quercus crispula), representing sequential stages of secondary succession.

Methods

The litterbag experiments were carried out for 3 years in a temperate region of central Japan.

Results

The decomposition constant (Olson’s k) was 0.49, 0.39, and 0.56/year for grass, pine, and oak, respectively. Nitrogen mass decreased in grass leaf litter during decomposition, whereas the absolute amount of nitrogen increased in leaf litter of pine and oak during the first year. Holocellulose in grass leaf litter decomposed selectively over acid-unhydrolyzable residues more markedly than in leaf litter of pine and oak. 13C nuclear magnetic resonance analysis also revealed a decrease in the relative area of O-alkyl-C in grass.

Conclusions

The different decomposition among the three litter species implied that the secondary succession from grassland to pine forest and from pine to oak forests could decrease and increase, respectively, the rate of accumulation and turnover of organic materials and N in soils.  相似文献   

15.

Background and aims

Exotic coniferous species have been used widely in restoration efforts in tropical montane forests due to their tolerance to adverse conditions and rapid growth, with little consideration given to the potential ecological benefits provided by native tree species. The aim of this study was to elucidate differences in litterfall and nutrient flow between a montane oak forest (Quercus humboldtii Bonpl.) and exotic coniferous plantations of pine (Pinus patula Schltdl. & Cham.) and cypress (Cupressus lusitanica Mill.) in the Colombian Andes.

Methods

Litter production, litter decomposition rate, and element composition of leaf litter were monitored during 3 years.

Results

Litter production in the oak forest and pine plantation was similar, but considerably lower in the cypress plantation . Similar patterns were observed for nutrient concentrations in litterfall, with the exception of Ca which was three times higher in the cypress plantation. The annual decay rate of litter was faster in the montane oak forest than in either of the exotic coniferous plantations. The potential and net return of nutrients to the forest floor were significantly higher in oak forest than in the exotic coniferous plantations.

Conclusions

Future restoration programs should consider new species that can emulate the nutrient flow of native broadleaf species instead of exotic species that tend to impoverish soil nutrient stocks in tropical montane forests.  相似文献   

16.

Background and aims

Roots and mycorrhizas play an important role in not only plant nutrient acquisition, but also ecosystem nutrient cycling.

Methods

A field experiment was undertaken in which the role of arbuscular mycorrhizas (AM) in the growth and nutrient acquisition of tomato plants was investigated. A mycorrhiza defective mutant of tomato (Solanum lycopersicum L.) (named rmc) and its mycorrhizal wild type progenitor (named 76R) were used to control for the formation of AM. The role of roots and AM in soil N cycling was studied by injecting a 15N-labelled nitrate solution into surface soil at different distances from the 76R and rmc genotypes of tomato, or in plant free soil. The impacts of mycorrhizal and non-mycorrhizal root systems on soil greenhouse gas (CO2 and 14+15N2O and 15N2O) emissions, relative to root free soils, were also studied.

Results

The formation of AM significantly enhanced plant growth and nutrient acquisition, including interception of recently applied NO 3 ? . Whereas roots caused a small but significant decrease in 15N2O emissions from soils at 23?h after labeling, compared to the root-free treatment, arbuscular mycorrhizal fungi (AMF) had little effect on N2O emissions. In contrast soil CO2 emissions were higher in plots containing mycorrhizal root systems, where root biomass was also greater.

Conclusions

Taken together, these data indicate that roots and AMF have an important role to play in plant nutrient acquisition and ecosystem N cycling.  相似文献   

17.

Background and aims

The relationship between tree species and soil nutrient availability is critical for evaluating plantation succession and promoting forest restoration. This study was conducted to evaluate the impact of exotic and native tress species on soil nutrient availability.

Methods

Four exotic species (Eucalyptus urophylla, E. tereticornis, Acaia auriculaeformis, A. mangium) and four native species (Castanopsis fissa, Schima superba, C. hystrix, Michelia macclurei) were planted and grown for one-year. Soil solution (DOC, DON, NH4?N, NO3?N) was sampled and analyzed during the study. After the experiment, soil properties were determined, and plant tissues were analyzed.

Results

DOC levels were greater in soils with trees planted than controls without trees. Compared to native species, exotic species had much faster growth rates and greatly reduced DON and NO3?N concentrations. Exotic species always had less P concentrations in leaves and stems than native species. Furthermore, N-fixing A. auriculaeformis led to greater soil available P compared to other species.

Conclusions

Based on these findings, we provide some recommendations for afforestation practice. This study highlights that a better understanding of the pros and cons of exotic species would be beneficial to advance afforestation in China and the world.  相似文献   

18.
19.

Background and aims

Anthropogenic nitrogen (N) and phosphorus (P) input has changed the relative importance of nutrient elements. This study aimed to examine the effects of different nutrient conditions on the interaction between exotic and native plants.

Methods

We conducted a greenhouse experiment with a native species Quercus acutissima Carr. and an exotic species Rhus typhina L. grown in monocultures or mixtures, under three N:P ratios (5, 15 and 45 corresponding to N-limited, basic N and P supply and P-limited conditions, respectively). After 12 weeks of treatment, traits related to biomass allocation, leaf physiology and nutrient absorption were determined.

Results

R. typhina was dominant under competition, with a high capacity for carbon assimilation and nutrient absorption, and the dominance was unaffected by increasing N:P ratios. R. typhina invested more photosynthate in leaves and more nutrients in the photosynthetic apparatus, enabling high biomass production. Q. acutissima invested more photosynthate in roots and more nutrients in leaf persistence at the expense of reduced carbon assimilation capacity.

Conclusions

Different trade-offs in biomass and nutrient allocation of the two species is an important reason for their distinct performances under competition and helps R. typhina to maintain dominance under different nutrient conditions.  相似文献   

20.

Background and aim

Symbiotic dinitrogen (N2) fixation is the most important external N source in organic systems. Our objective was to compare symbiotic N2 fixation of clover grown in organically and conventionally cropped grass-clover leys, while taking into account nutrient supply gradients.

Methods

We studied leys of a 30-year-old field experiment over 2 years in order to compare organic and conventional systems at two fertilization levels. Using 15N natural abundance methods, we determined the proportion of N derived from the atmosphere (PNdfa), the amount of Ndfa (ANdfa), and the transfer of clover N to grasses for both red clover (Trifolium pratense L.) and white clover (Trifolium repens L.).

Results

In all treatments and both years, PNdfa was high (83 to 91 %), indicating that the N2 fixation process is not constrained, even not in the strongly nutrient deficient non-fertilized control treatment. Annual ANdfa in harvested clover biomass ranged from 6 to 16 g?N m?2. At typical fertilizer input levels, lower sward yield in organic than those in conventional treatments had no effect on ANdfa because of organic treatments had greater clover proportions. In two-year-old leys, on average, 51 % of N taken up by grasses was transferred from clover.

Conclusion

Both, organically and conventionally cropped grass-clover leys profited from symbiotic N2 fixation, with high PNdfa, and important transfer of clover N to grasses, provided sufficient potassium- and phosphorus-availability to sustain clover biomass production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号