首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PC12 cells, in the presence of nerve growth factor (NGF), support replication of the mouse-derived scrapie strains 139A and ME7, with the former yielding 100–1000-fold higher levels of infectivity. Infectivity remained cell-associated and cells did not show any gross morphological alterations, although changes were observed by electron microscopy in the form of an increased number of lipid droplets in 139A-infected cultures. Analysis of phospholipid metabolism in 139A infected cells indicated that scrapie replication did not change the inositol phosphate levels, but did stimulate phosphoinositide synthesis. Replication was not detected in PC12 cells infected with either the hamster-derived 263K or rat-derived 139R scrapie strains. Since scrapie-infected cultures did not exhibit cell death or any gross changes, any scrapie-induced effects would probably be manifested in nonvital cellular functions. When compared to controls, infection with the 139A scrapie strain resulted in decreased activity of the cholinergic pathway-related enzymes, as well as the GABA synthetic pathway; however, the adrenergic pathway was unaffected by scrapie infection. The effects of the 139A scrapie strain on the cholinergic system appeared to be dose-dependent and were first detected prior to the detection of scrapie agent replication in these cells. No neurotransmitter-related enzymatic changes were detected in 263K- or 139R-infected PC12 cells. The enzymatic changes observed in ME7-infected PC12 cells and in Chandler agent-infected mouse neuroblastoma cells suggest that the significant changes in neurotransmitter levels in cultures exhibiting low infectivity titers must involve factors other than, but not excluding, replication of the agent. The role of additional factors is also suggested in studies of protein kinase C activity in 139A- and 139R-infected PC12 cells. These studies emphasize the value of the PC12 cell model system in examining the scrapie strain-host cell interaction and, in addition, support the concept of variation among scrapie strains.  相似文献   

2.
Transmissible spongiform encephalopathies are accompanied by the accumulation of a pathologic isoform of a host-encoded protein, termed prion protein (PrP). Despite the widespread distribution of the cellular isoform of PrP (protease-sensitive PrP; PrP-sen), the disease-associated isoform (protease-resistant PrP; PrP-res) appears to be primarily restricted to cells of the nervous and lymphoreticular systems. In order to study why scrapie infection appears to be restricted to certain cells, we followed acute and persistent PrP-res formation upon exposure of cells to different scrapie agents. We found that, independent of the cell type and scrapie strain, initial PrP-res formation occurred rapidly in cells. However, sustained generation of PrP-res and persistent infection did not necessarily follow acute PrP-res formation. Persistent PrP-res formation and scrapie infection was restricted to one cell line inoculated with the mouse scrapie strain 22L. In contrast to cells that did not become scrapie-infected, the level of PrP-res in the 22L-infected cells rapidly increased in the absence of a concomitant increase in the number of PrP-res-producing cells. Furthermore, the protein banding pattern of PrP-res in these cells changed over time as the cells became chronically infected. Thus, our results suggest that the events leading to the initial formation of PrP-res may differ from those required for sustained PrP-res formation and infection. This may, at least in part, explain the observation that not all PrP-sen-expressing cells appear to support transmissible spongiform encephalopathy agent replication.  相似文献   

3.
The possibility of the agent causing bovine spongiform encephalopathy (BSE) infecting small ruminants is of serious concern for human health. Among scrapie cases, the CH1641 source in particular appears to have certain biochemical properties similar to the BSE strain. In France, several natural scrapie cases were identified as “CH1641-like” natural scrapie isolates in sheep and goats. The Tg(OvPrP4) mouse line expressing the ovine prion protein is a sensitive model for studying and identifying strains of agents responsible for scrapie and BSE. This model is also very useful when studying specific scrapie source CH1641, known to be not transmissible to wild-type mice despite the similarity of some of its biochemical properties to those of the BSE strain. As it is important to be able to fully distinguish CH1641 from BSE, we herein report the histopathological data from CH1641 scrapie transmission experiments compared to specific cases of “CH1641-like” natural scrapie isolates in sheep, murine scrapie strains and BSE. In addition to the conventional vacuolar lesion profile approach and PrPd brain mappings, an innovative differential PET-blot analysis was introduced to classify the different strains of agent and revealed the first direct concordance between ways of grouping strains on the basis of PrPd biochemical characteristics.  相似文献   

4.
Prion diseases are associated with the accumulation of an abnormal isoform of host-encoded prion protein (PrP(Sc)). A number of prion strains can be distinguished by "glycotyping" analysis of the respective deposited PrP(Sc) compound. In this study, the long-term proteinase K resistance, the molecular mass, and the localization of PrP(Sc) deposits derived from conventional and transgenic mice inoculated with 11 different BSE and scrapie strains or isolates were examined. Differences were found in the long-term proteinase K resistance (50 microg/ml at 37 degrees C) of PrP(Sc). For example, scrapie strain Chandler or PrP(Sc) derived from field BSE isolates were destroyed after 6 hr of exposure, whereas PrP(Sc) of strains 87V and ME7 and of the Hessen1 isolate were extremely resistant to proteolytic cleavage. Nonglycosylated, proteinase K-treated PrP(Sc) of BSE isolates and of scrapie strain 87V exhibited a 1-2 kD lower molecular mass than PrP(Sc) derived from all other scrapie strains and isolates. With the exception of strain 87V, PrP(Sc) was generally deposited in the cerebrum, cerebellum, and brain stem of different mouse lines at comparable levels. Long-term proteinase resistance, molecular mass, and the analysis of PrP(Sc) deposition therefore provide useful criteria in discriminating prion strains and isolates (e.g., BSE and 87V) that are otherwise indistinguishable by the PrP(Sc) "glycotyping" technique.  相似文献   

5.
The agent responsible for prion disease may exist in different forms, commonly referred to as strains, with each carrying the specific information that determines its own distinct biological properties, such as incubation period and lesion profile. Biological strain typing of ovine scrapie isolates by serial passage in conventional mice has shown some diversity in ovine prion strains. However, this biological diversity remains poorly supported by biochemical prion strain typing. The protein-only hypothesis predicts that variation between different prion strains in the same host is manifest in different conformations adopted by PrPSc. Here we have investigated the molecular properties of PrPSc associated with two principal Prnp(a) mouse-adapted ovine scrapie strains, namely, RML and ME7, in order to establish biochemical prion strain typing strategies that may subsequently be used to discriminate field cases of mouse-passaged ovine scrapie isolates. We used a conformation-dependent immunoassay and a conformational stability assay, together with Western blot analysis, to demonstrate that RML and ME7 PrPSc proteins show distinct biochemical and physicochemical properties. Although RML and ME7 PrPSc proteins showed similar resistance to proteolytic digestion, they differed in their glycoform profiles and levels of proteinase K (PK)-sensitive and PK-resistant isoforms. In addition, the PK-resistant core (PrP27-30) of ME7 was conformationally more stable following exposure to guanidine hydrochloride or Sarkosyl than was RML PrP27-30. Our data show that mouse-adapted ovine scrapie strains can be discriminated by their distinct conformers of PrPSc, which provides a basis to investigate their diversity at the molecular level.  相似文献   

6.
Creutzfeldt-Jakob disease (CJD) and scrapie are degenerative neurological diseases caused by unusual infectious pathogens. The term prion has been introduced to underscore the apparent distinctness of these agents from viruses and viroids. The only macromolecule shown to be associated with the infectious agent, the CJD or scrapie prion protein (PrPCJD or PrPSc, respectively), is encoded by the same gene as a normal cellular protein. In several studies biochemical differences have been reported in PrPScs derived from a common host species infected with different putative strains of the scrapie agent, suggesting agent-specific characteristics independent of the host. We analyzed various agent-host combinations by Western blotting of PrPs that were separated by size or charge. The profile of immunoreactive proteins for CJD prions isolated from mice, guinea pigs, and humans appeared distinct. Importantly, PrPCJDS purified from a human brain and from the corresponding first-passage mouse brains were clearly distinguishable. PrPCJDs isolated from CJD prions propagated in NAMRU or B10.Q mice, which are homozygous for a short-incubation-time gene; from the short-incubation-time backcross progeny of (B10.Q x I/LnJ)F1 x B10.Q; or from NAMRU mice inoculated with I/LnJ prions were identical to each other but distinguishable from those of I/LnJ mice, which are homozygous for the long-incubation-time gene. The PrPs from human CJD and ovine scrapie propagated in the same mouse strain appeared the same, but they were distinct from the same isolate of scrapie passaged in hamsters. Lastly, PrPScs purified from five different strains of scrapie propagated in C57BL mice were identical, including strains, ME7 and 139A, which were previously reported to be distinct. This evidence does not support, although it does not exclude, agent-mediated characteristics independent of host-mediated ones for scrapie and CJD.  相似文献   

7.
The Tg(OvPrP4) mouse line, expressing the sheep prion protein, is a sensitive model crucial for the identification of the bovine spongiform encephalopathy agent possibly present in natural sheep spongiform encephalopathies. It was also previously demonstrated as susceptible to infection with natural scrapie isolates from sheep harbouring various genotypes. The performance of this new transgenic mouse line in scrapie strain characterization was further assessed by intracranial inoculation of five groups of Tg(OvPrP4) mice with brain homogenate of the wild type mouse-adapted scrapie strains, C506M3, 22A, 79A, 87V, or Chandler. The Tg(OvPrP4) mice were susceptible to the scrapie agent transmitted using mouse-adapted scrapie strains but not equivalently. Strains 87V and Chandler were most readily transmissible followed by 79A and C506M3. Strain 22A was the least transmissible. Clinical signs, survival data, spongiosis, and PrPsc distribution were also reported. These various data demonstrate the possibility of distinguishing between scrapie strains. Our findings are discussed with regard to agent strain and host factors and already demonstrate the dissimilar susceptibilities of Tg(OvPrP4) mice to the different murine strains studied, thus, reinforcing their potential use in strain typing studies.  相似文献   

8.
Molecular features of the proteinase K-resistant prion protein (PrP res) may discriminate among prion strains, and a specific signature could be found during infection by the infectious agent causing bovine spongiform encephalopathy (BSE). To investigate the molecular basis of BSE adaptation and selection, we established a model of coinfection of mice by both BSE and a sheep scrapie strain (C506M3). We now show that the PrP res features in these mice, characterized by glycoform ratios and electrophoretic mobilities, may be undistinguishable from those found in mice infected with scrapie only, including when mice were inoculated by both strains at the same time and by the same intracerebral inoculation route. Western blot analysis using different antibodies against sequences near the putative N-terminal end of PrP res also demonstrated differences in the main proteinase K cleavage sites between mice showing either the BSE or scrapie PrP res profile. These results, which may be linked to higher levels of PrP res associated with infection by scrapie, were similar following a challenge by a higher dose of the BSE agent during coinfection by both strains intracerebrally. Whereas PrP res extraction methods used allowed us to distinguish type 1 and type 2 PrP res, differing, like BSE and scrapie, by their electrophoretic mobilities, in the same brain region of some patients with Creutzfeldt-Jakob disease, analysis of in vitro mixtures of BSE and scrapie brain homogenates did not allow us to distinguish BSE and scrapie PrP res. These results suggest that the BSE agent, the origin of which remains unknown so far but which may have arisen from a sheep scrapie agent, may be hidden by a scrapie strain during attempts to identify it by molecular studies and following transmission of the disease in mice.  相似文献   

9.
10.
Hybrid cell lines producing monoclonal antibodies against the C3H strain of mouse mammary tumor virus (C3H MMTV) were prepared by the fusion of mouse myeloma cells with the lymphocytes of BALB/c mice that were immunized with C3H MMTV. Approximately 10% of the hybrid cells initially plated after cell fusion produced immunoglobulins that reacted in antibody-binding assays with C3H MMTV; 40 of these cells were cloned, and 6 eventually yielded stable cell lines. High concentrations of monoclonal antibodies (5 to 20 mg/ml) were obtained from serum and ascites fluid of syngeneic mice inoculated with the hybrid cells. All of the monoclonal antibodies were directed against the envelope glycoprotein gp52. Three of the hybrid cell lines produced immunoglobulins of the immunoglobulin M subclass and three produced immunoglobulin G2a. The monoclonal antibodies showed limited charge heterogeneity in light and heavy chains when analyzed by high-resolution, two-dimensional gel electrophoresis. Three serologically distinct specificities were observed when these ascites fluids were tested against different strains of MMTV. The antigenic determinants detected were the following: (i) a type-specific determinant unique to the C3H strain of MMTV; (ii) class-specific determinants shared between C3H and GR MMTVs; and (iii) a group-specific determinant found on C3H, GR, RIII, and the endogenous C3H (C3Hf) MMTVs. Because monoclonal antibodies recognize single antigenic determinants, these results demonstrate for the first time that the three patterns of antigenic reactivity for MMTV are related to individual determinants on the gp52 molecule and also clearly show that one strain of MMTV can be distinguished from other strains.  相似文献   

11.
Viral particles (virions) are made of genomic material packaged with proteins, drawn from the pool of proteins in the parent cell. It is well known that when virion concentrations are high, cells can be coinfected with multiple viral strains that can complement each other. Viral genomes can then interact with proteins derived from different strains, in a phenomenon known as phenotypic mixing. But phenotypic mixing is actually far more common: viruses mutate very often, and each time a mutation occurs, the parent cell contains different types of viral genomes. Due to phenotypic mixing, changes in viral phenotypes can be shifted by a generation from the mutations that cause them. In the regime of evolutionary invasion and escape, when mutations are crucial for the virus to survive, this timing can have a large influence on the probability of emergence of an adapted strain. Modeling the dynamics of viral evolution in these contexts thus requires attention to the mutational mechanism and the determinants of fitness.  相似文献   

12.
PrP accumulation in the brains of mice infected with scrapie takes several different forms: amyloid plaques, widespread accumulation in neuropile, and perineuronal deposits. PrP is also sometimes detected within microglia and in or around astrocytes. There are dramatic and reproducible differences between scrapie strains in the relative prominence of these changes and their distribution in the brain. Depending on the scrapie strain, PrP pathology is targeted precisely to particular brain areas, often showing a clear association with identifiable groups of neurons. These results suggest that PrP changes are primarily associated with neurons, and that different scrapie strains recognize and selectively replicate in different populations of neurons. Immunostaining at the ultrastructural level demonstrates an association of PrP with neurite plasmalemma, around amyloid plaques, and in areas of widespread neuropile and perineuronal accumulation. It is probable that PrP is encoded by theSinc gene, which controls the incubation period of scrapie in mice. Studies using the intraocular infection route show that theSinc gene controls the onset rather than the rate of replication, suggesting that PrP may be involved in cell-to-cell spread of infection. The accumulation of PrP at the surface of neurons is consistent with such a role.  相似文献   

13.
Previous studies have defined a novel, MHC-linked alloantigenic system in the rat (CT) detectable with cytotoxic T cells (CTL) generated by alloimmunization and restimulation using strain combinations thought to be RT1-compatible, for instance, Lewis and Fischer 344. CTLs generated in this way are able to lyse targets from a variety of different strains without any evidence of MHC-restricted interactions, and yet these CT determinants possess properties unlike conventional class I and class II MHC gene products. The present studies employ cold target competition assays to derive a minimal estimate of the number of different CT determinants detected with Lewis anti-Fischer 344 CTLs, the number of loci involved in their expression, and their strain distribution. The results indicate that Lewis anti-Fischer CTLs define at least four different determinants encoded by at least two different loci.  相似文献   

14.
《朊病毒》2013,7(2):174-183
Prion diseases exhibit different disease phenotypes in their natural hosts and when transmitted to rodents, and this variability is regarded as indicative of prion strain diversity. Phenotypic characterization of scrapie strains in sheep can be attempted by histological, immunohistochemical and biochemical approaches, but it is widely considered that strain confirmation and characterization requires rodent bioassay. Examples of scrapie strains obtained from original sheep isolates by serial passage in mice include ME7, 79A, 22A and 87V. In order to address aspects of prion strain stability across the species barrier, we transmitted the above murine strains to sheep of different breeds and susceptible Prnp genotypes. The experiment included 40 sheep dosed by the oral route alone and 36 sheep challenged by combined subcutaneous and intracerebral routes. Overall, the combined route produced higher attack rates (~100%) than the oral route (~50%) and 2–4 times shorter incubation periods. Uniquely, 87V given orally was unable to infect any sheep. Overall, scrapie strains adapted and cloned in mice produce distinct but variable disease phenotypes in sheep depending on breed or Prnp genotype. Further re-isolation experiments in mice are in progress in order to determine whether the original cloned murine disease phenotype will reemerge.  相似文献   

15.
In studies with alloantisera and monoclonal antibodies (mAb) a number of antigenic determinants have been defined that are the products of the Ly-6 locus on murine chromosome 2 and that are expressed primarily on B and T lymphoid cells. It remains controversial whether these antigenic determinants are encoded by a single gene or a multigene complex. We have characterized a new rat mAb, D7, which recognizes a cell surface antigen whose expression on nonactivated peripheral lymphocytes varies from strain to strain. The phenotype of the staining profile, i.e., high or low percentage of D7-positive cells, mapped to the Ly-6 locus as assayed by strain distribution studies, RI lines, and Ly-6 congenic strains. The binding of D7 to Ly-6.1-positive strains could be inhibited by mAb directed to the Ly-6E.1 specificity, whereas D7 could inhibit the binding of mAb specific for Ly-6A.2 to cells from Ly-6.2-positive strains. Coprecipitation studies followed by Western blot analysis confirmed that D7 reacts with both Ly-6E.1- and Ly-6A.2-bearing molecules. The most likely explanation for these findings is that Ly-6A.2 and Ly-6E.1 represent allelic specificities. Further dissection of the complexity of the Ly-6 antigen system and determination of its possible functional importance in lymphocyte activation should be greatly facilitated by the availability of xenogeneic mAb that recognize framework determinants on multiple Ly-6 products.  相似文献   

16.

Background

Sheep scrapie is caused by multiple prion strains, which have been classified on the basis of their biological characteristics in inbred mice. The heterogeneity of natural scrapie prions in individual sheep and in sheep flocks has not been clearly defined.

Methodology/Principal Findings

In this study, we intravenously injected 2 sheep (Suffolk and Corriedale) with material from a natural case of sheep scrapie (Suffolk breed). These 3 sheep had identical prion protein (PrP) genotypes. The protease-resistant core of PrP (PrPres) in the experimental Suffolk sheep was similar to that in the original Suffolk sheep. In contrast, PrPres in the Corriedale sheep differed from the original PrPres but resembled the unusual scrapie isolate, CH1641. This unusual PrPres was not detected in the original sheep. The PrPres distributions in the brain and peripheral tissues differed between the 2 breeds of challenged sheep. A transmission study in wild-type and TgBoPrP mice, which overexpressing bovine PrP, led to the selection of different prion strains. The pathological features of prion diseases are thought to depend on the dominantly propagated strain.

Conclusions/Significance

Our results indicate that prion strain selection occurs after both inter- and intraspecies transmission. The unusual scrapie prion was a hidden or an unexpressed component in typical sheep scrapie.  相似文献   

17.
Mammalian prion proteins (PrPs) that cause transmissible spongiform encephalopathies are misfolded conformations of the host cellular PrP. The misfolded form, the scrapie PrP (PrPSc), can aggregate into amyloid fibrils that progressively accumulate in the brain, evolving to a pathological phenotype. A particular characteristic of PrPSc is to be found as different strains, related to the diversity of conformational states it can adopt. Prion strains are responsible for the multiple phenotypes observed in prion diseases, presenting different incubation times and diverse deposition profiles in the brain. PrP biochemical properties are also strain-dependent, such as different digestion pattern after proteolysis and different stability. Although they have long been studied, strain formation is still a major unsolved issue in prion biology. The recreation of strain-specific conformational features is of fundamental importance to study this unique pathogenic phenomenon. In our recent paper, we described that murine PrP, when expressed in bacteria, forms amyloid inclusion bodies that possess different strain-like characteristics, depending on the PrP construct. Here, we present an extra-view of these data and propose that bacteria might become a successful model to generate preparative amounts of prion strain-specific assemblies for high-resolution structural analysis as well as for addressing the determinants of infectivity and transmissibility.  相似文献   

18.
Transgenic (Tg) mice expressing full-length bovine prion protein (BoPrP) serially propagate bovine spongiform encephalopathy (BSE) prions without posing a transmission barrier. These mice also posed no transmission barrier for Suffolk sheep scrapie prions, suggesting that cattle may be highly susceptible to some sheep scrapie strains. Tg(BoPrP) mice were also found to be susceptible to prions from humans with variant Creutzfeldt-Jakob disease (CJD); on second passage in Tg(BoPrP) mice, the incubation times shortened by 30 to 40 days. In contrast, Tg(BoPrP) mice were not susceptible to sporadic, familial, or iatrogenic CJD prions. While the conformational stabilities of bovine-derived and Tg(BoPrP)-passaged BSE prions were similar, the stability of sheep scrapie prions was higher than that found for the BSE prions but lower if the scrapie prions were passaged in Tg(BoPrP) mice. Our findings suggest that BSE prions did not arise from a sheep scrapie strain like the one described here; rather, BSE prions may have arisen spontaneously in a cow or by passage of a scrapie strain that maintains its stability upon passage in cattle. It may be possible to distinguish BSE prions from scrapie strains in sheep by combining conformational stability studies with studies using novel Tg mice expressing a chimeric mouse-BoPrP gene. Single-amino-acid substitutions in chimeric PrP transgenes produced profound changes in incubation times that allowed us to distinguish prions causing BSE from those causing scrapie.  相似文献   

19.
Cell based models used for the study of prion diseases have traditionally employed mouse-adapted strains of sheep scrapie prions. To date, attempts to generate human prion propagation in cell culture have been unsuccessful. Rabbit kidney epithelial cells (RK13) are permissive to infection with prions from a variety of species upon expression of cognate PrP transgenes. We explored RK13 cells expressing human PrP for their utility as a cell line capable of sustaining infection with human prions. RK13 cells processed exogenously expressed human PrP similarly to exogenously expressed mouse PrP but were not permissive to infection when exposed to sporadic Creutzfeldt-Jakob disease prions. Transmission of the same sporadic Creutzfeldt Jakob disease prions to wild-type mice generated a strain of mouse-adapted human prions, which efficiently propagated in RK13 cells expressing mouse PrP, demonstrating these cells are permissive to infection by mouse-adapted human prions. Our observations underscore the likelihood that, in contrast to prions derived from non-human mammals, additional unidentified cofactors or subcellular environment are critical for the generation of human prions.  相似文献   

20.
To assess scrapie infectivity associated with caprine-origin tissues, bioassay can be performed using kids, lambs or transgenic mice expressing caprine or ovine prion (PRNP) alleles, but the incubation periods are fairly long. Although several classical ovine scrapie prion permissive cell lines with the ability to detect brain-derived scrapie prion have been available, no classical caprine scrapie permissive cell line is currently available. Therefore, the aims of this study were to generate a rabbit kidney epithelial cell line (RK13) stably expressing caprine wild-type PRNP (cpRK13) and then to assess permissiveness of cpRK13 cells to classical caprine scrapie prion propagation. The cpRK13 and plasmid control RK13 (pcRK13) cells were incubated with brain-derived classical caprine scrapie inocula prepared from goats or ovinized transgenic mice (Tg338, express ovine VRQ allele) infected with caprine scrapie. Significant PrPSc accumulation, which is indicative of scrapie prion propagation, was detected by TSE ELISA and immunohistochemistry in cpRK13 cells inoculated with classical caprine scrapie inocula. Western blot analysis revealed the typical proteinase K-resistant 3 PrPres isoforms in the caprine scrapie prion inoculated cpRK13 cell lysate. Importantly, PrPSc accumulation was not detected in similarly inoculated pcRK13 cells, whether by TSE ELISA, immunohistochemistry, or western blot. These findings suggest that caprine scrapie prions can be propagated in cpRK13 cells, thus this cell line may be a useful tool for the assessment of classical caprine prions in the brain tissues of goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号