首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kesavan J  Borisovska M  Bruns D 《Cell》2007,131(2):351-363
Assembly of SNARE proteins between opposing membranes mediates fusion of synthetic liposomes, but it is unknown whether SNAREs act during exocytosis at the moment of Ca(2+) increase, providing the molecular force for fusion of secretory vesicles. Here, we show that execution of pre- and postfusional steps during chromaffin granule exocytosis depends crucially on a short molecular distance between the complex-forming SNARE motif and the transmembrane anchor of the vesicular SNARE protein synaptobrevin II. Extending the juxtamembrane region of synaptobrevin by insertion of flexible "linkers" reduces priming of granules, delays initiation of exocytosis upon stepwise elevation of intracellular calcium, attenuates fluctuations of early fusion pores, and slows rapid expansion of the pore in a linker-length dependent fashion. These observations provide evidence that v-SNARE proteins drive Ca(2+)-triggered membrane fusion at millisecond time scale and support a model wherein continuous molecular pulling by SNAREs guides the vesicle throughout the consecutive stages of exocytosis.  相似文献   

2.
Exocytosis in adrenal chromaffin cells is strongly influenced by the pattern of stimulation. To understand the dynamic and spatial properties of the underlying Ca(2+) signal, we used pulsed laser Ca(2+) imaging to capture Ca(2+) gradients during stimulation by single and repetitive depolarizing stimuli. Short single pulses (10-100 ms) lead to the development of submembrane Ca(2+) gradients, as previously described (F. D. Marengo and J. R. Monck, 2000, Biophysical Journal, 79:1800-1820). Repetitive stimulation with trains of multiple pulses (50 ms each, 2Hz) produce a pattern of intracellular Ca(2+) increase that progressively changes from the typical Ca(2+) gradient seen after a single pulse to a Ca(2+) increase throughout the cell that peaks at values 3-4 times higher than the maximum values obtained at the end of single pulses. After seven or more pulses, the fluorescence increase was typically larger in the interior of the cell than in the submembrane region. The pattern of Ca(2+) gradient was not modified by inhibitors of Ca(2+)-induced Ca(2+) release (ryanodine), inhibitors of IP(3)-induced Ca(2+) release (xestospongin), or treatments designed to deplete intracellular Ca(2+) stores (thapsigargin). However, we found that the large fluorescence increase in the cell interior spatially colocalized with the nucleus. These results can be simulated using mathematical models of Ca(2+) redistribution in which the nucleus takes up Ca(2+) by active or passive transport mechanisms. These results show that chromaffin cells can respond to depolarizing stimuli with different dynamic Ca(2+) signals in the submembrane space, the cytosol, and the nucleus.  相似文献   

3.
We used pulsed laser imaging to measure the development and dissipation of Ca(2+) gradients evoked by the activation of voltage-sensitive Ca(2+) channels in adrenal chromaffin cells. Ca(2+) gradients appeared rapidly (<5 ms) upon membrane depolarization and dissipated over several hundred milliseconds after membrane repolarization. Dissipation occurred with an initial fast phase, as the steep gradient near the membrane collapsed, and a slower phase as the remaining shallow gradient dispersed. Inhibition of active Ca(2+) uptake by the endoplasmic reticulum (thapsigargin) and mitochondria (carbonylcyanide p-trifluoro-methoxyphenylhydrazone/oligomycin) had no effect on the size of Ca(2+) changes or the rate of gradient dissipation, suggesting that passive endogenous Ca(2+) buffers are responsible for the slow Ca(2+) redistribution. We used a radial diffusion model incorporating Ca(2+) diffusion and binding to intracellular Ca(2+) buffers to simulate Ca(2+) gradients. We included a 3D optical sectioning model, simulating the effects of out-of-focus light, to allow comparison with the measured gradients. Introduction of a high-capacity immobile Ca(2+) buffer, with a buffer capacity on the order of 1000 and appropriate affinity and kinetics, approximated the size of the Ca(2+) increases and rate of dissipation of the measured gradients. Finally, simulations without exogenous buffer suggest that the Ca(2+) signal due to Ca(2+) channel activation is restricted by the endogenous buffer to a space less than 1 microm from the cell membrane.  相似文献   

4.
Two potential mechanisms by which the intracellular Ca(2 stores might modulate catecholamine release from bovine adrenal chromaffin cells were investigated: (i) that the cytosolic Ca(2+)transient caused by Ca(2+)release from the intracellular stores recruits additional chromaffin granules to a readily releasable pool that results in augmented catecholamine release when this is subsequently evoked, and (ii) that the Ca(2+)influx that follows depletion of intracellular stores (i.e. store-operated Ca(2+)entry) triggers release per se thereby augmenting evoked catecholamine release. When histamine or caffeine were applied in Ca(2+)-free perfusion media, a transient elevation of intracellular free Ca(2+)occurred owing to mobilization of Ca(2+)from the stores. When Ca(2+)was later readmitted to the perfusing fluid there followed a prompt and maintained rise in intracellular Ca(2+)concentrations of magnitude related to the degree of store mobilization. In parallel experiments, increased catecholamine secretion was measured under the conditions when Ca(2+)influx following store-mobilization occurred. Furthermore, the size of the catecholamine release increment correlated with the degree of Ca(2+)influx. Store-operated Ca(2+)entry evoked by mobilization with histamine and/or caffeine did not augment nicotine-evoked secretion per se; that is, it augmented evoked catecholamine release only to the extent that it increased basal catecholamine release. The nicotine-evoked catecholamine release was sensitive to cytosolic BAPTA, which, at the concentration used (50 microM BAPTA-AM), reduced release by approximately 25%. However, the increment in basal catecholamine release which followed Ca(2+)influx triggered by Ca(2+)store mobilization was not reduced by intracellular BAPTA. This finding is inconsistent with the hypothesis that the elevated cytosolic Ca(2+)from store mobilization recruits additional vesicles of catecholamine to the sub-plasmalemmal release sites to augment subsequently evoked secretion. This position is supported by the observation that histamine (10 microM) in Ca(2+)-free medium caused a pronounced elevation of cytosolic free Ca(2+), but this caused no greater catecholamine release when Ca(2+)was re-introduced than did prior exposure to Ca(2+)-free medium alone, which caused no elevation of cytosolic free Ca(2+). It is concluded that intracellular Ca(2+)stores can modulate secretion of catecholamines from bovine chromaffin cells by permitting Ca(2+)influx through a store-operated entry pathway. The results do not support the notion that the Ca(2+)released from intracellular stores plays a significant role in the recruitment of vesicles into the ready-release pool under the experimental conditions reported here.  相似文献   

5.
Internal Ca2+ mobilization and secretion in bovine adrenal chromaffin cells   总被引:5,自引:0,他引:5  
T R Cheek  O Thastrup 《Cell calcium》1989,10(4):213-221
Since secretion from intact bovine adrenal chromaffin cells in response to depolarization by nicotine is triggered by a rise in the concentration of intracellular Ca2+ ([Ca2+]i) to about 200-300 nM above basal, it has been assumed that the failure of the inositol 1,4,5-trisphosphate (InsP3)-mobilizing muscarinic agonists to induce secretion reflects the fact that the 50 nM rise in [Ca2+]i they elicit is insufficient to trigger the exocytotic machinery. A recent report, however, has demonstrated that some of the nicotine-induced rise in [Ca2+]i could originate from the InsP3-releasable Ca2+ store. The role of this Ca2+ store in secretion from bovine adrenal chromaffin cells is therefore unclear. In order to investigate in more detail the role of the InsP3-sensitive Ca2+ store in secretion from these cells, we have used a combination of an InsP3-mobilizing muscarinic agonist and the sesquiterpene lactone thapsigargin (TG), which releases internal Ca2+ without concomitant breakdown of inositol lipids or protein kinase C activation, to examine the events which follow depletion of the releasable Ca2+ store in these cells. Monitoring [Ca2+]i using Fura-2 demonstrated that TG released Ca2+ from the InsP3-sensitive store and, additionally, that the Ca2+ response to TG was composed of two distinct, temporally separated, components: a) a slow (1 min) increase in [Ca2+]i to approximately 50 nM above basal that was independent of extracellular Ca2+ and b) the maintenance of this level at a new steady-state that was dependent on the continual entry of extracellular Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Mechanisms of secretion from adrenal chromaffin cells   总被引:27,自引:0,他引:27  
  相似文献   

7.
8.
It is well established that pituitary adenylate cyclase-activating polypeptide (PACAP) can stimulate catecholamine biosynthesis and secretion in adrenal chromaffin cells. Recent studies from this laboratory demonstrated that PACAP pretreatment inhibits nicotine (NIC)-induced intracellular Ca(2+) transients and catecholamine secretion in porcine adrenal chromaffin cells. Mechanistically, this effect is mediated by protein kinase C (PKC), and based on indirect evidence, is thought to primarily target voltage-gated Ca(2+) channels. The present study used whole-cell patch-clamp analysis to test this possibility more directly in rat chromaffin cells. Consistent with the porcine data, pretreatment with PACAP or with phorbol ester [phorbol myristate acetate (PMA)] significantly suppressed NIC-induced intracellular Ca(2+) transients and catecholamine secretion in rat chromaffin cells. Exposure to PACAP and PMA significantly reduced peak Ca(2+) current in rat cells. The effects of both PACAP and PMA on Ca(2+) current could be blocked by treating cells with the PKC inhibitor staurosporine. Exposure to selective channel blockers demonstrated that rat chromaffin cells contain L-, N- and P/Q-type Ca(2+) channels. PACAP pretreatment significantly reduced Ca(2+) current gated through all three channel subtypes. These data suggest that PACAP can negatively modulate NIC-induced catecholamine secretion in both porcine and rat adrenal chromaffin cells.  相似文献   

9.
Anionic lipids are native membrane components that have a profound impact on many cellular processes, including regulated exocytosis. Nonetheless, the full nature of their contribution to the fast, Ca(2+)-triggered fusion pathway remains poorly defined. Here we utilize the tightly coupled quantitative molecular and functional analyses enabled by the cortical vesicle model system to elucidate the roles of specific anionic lipids in the docking, priming and fusion steps of regulated release. Studies with cholesterol sulfate established that effectively localized anionic lipids could contribute to Ca(2+)-sensing and even bind Ca(2+) directly as effectors of necessary membrane rearrangements. The data thus support a role for phosphatidylserine in Ca(2+) sensing. In contrast, phosphatidylinositol would appear to serve regulatory functions in the physiological fusion machine, contributing to priming and thus the modulation and tuning of the fusion process. We note the complexities associated with establishing the specific roles of (anionic) lipids in the native fusion mechanism, including their localization and interactions with other critical components that also remain to be more clearly and quantitatively defined.  相似文献   

10.
Y N Wu  P D Wagner 《FEBS letters》1991,282(1):197-199
Incubation of digitonin-permeabilized bovine chromaffin cells results in a loss of Ca(2+)-dependent catecholamine secretion. The addition of cytosolic proteins prevents this loss of secretory activity. It has been proposed that calpactin might be the protein which is responsible for preventing this loss of activity. The experiments described in this paper show that cytosolic proteins which have been depleted of calpactin are as effective as control cytosolic proteins in preventing the loss of Ca(2+)-dependent secretion. Thus, a cytosolic protein(s) other than calpactin appears to be responsible for preventing this loss of secretory activity.  相似文献   

11.
Selective protein kinase C (PKC) activators and inhibitors were used to investigate the involvement of specific PKC isoforms in the modulation of voltage-sensitive Ca(2+) channels (VSCCs) in bovine adrenal chromaffin cells. Exposure to the phorbol ester phorbol-12,13-dibutyrate (PDBu) inhibited the Ca(2+) currents elicited by depolarizing voltage steps. This inhibition was occluded by the PKC-specific inhibitor Ro 31-8220 but remained unaffected by G? 6976, a selective inhibitor of conventional PKC isoforms. PDBu treatment caused the translocation of PKC-alpha and -epsilon isoforms from cytosol to membranes. PKC-iota and -zeta showed no signs of translocation. It is concluded that VSCCs are specifically inhibited by the activation of PKC-epsilon in chromaffin cells. This may be relevant to the action of phospholipase-linked receptors involved in the control of Ca(2+) influx, both in catecholaminergic cells and other cell types.  相似文献   

12.
The relative importance of mitochondria, the Na(+)/Ca(2+) exchanger (NCX) and the endoplasmic reticulum (ER) in the regulation of the cytosolic Ca(2+) concentration ([Ca(2+)](i)) were examined in bovine chromaffin cells using fura-2 for average [Ca(2+)](i) and amperometry for secretory activity, which reflects the local Ca(2+) concentration near the exocytotic sites. Chromaffin cells were stimulated by a high concentration of K(+) when the three Ca(2+) removal mechanisms were individually or simultaneously inhibited. When the mitochondrial Ca(2+) uptake was inhibited, the [Ca(2+)](i) decayed at a significantly slower rate and the secretory activity was higher than the control cells. The NCX appears to function only in the initial phase of [Ca(2+)](i) decay and when the ER Ca(2+) pump is blocked. Similarly, the ER had a significant effect on the [Ca(2+)](i) decay and on the secretion only when the NCX was blocked. Inhibition of all three mechanisms leads to a substantial delay in [Ca(2+)](i) recovery and an increase in the secretion. The results suggest that the three mechanisms work together in the regulation of the Ca(2+) near the Ca(2+) channels and exocytotic sites and therefore modulate the secretory activity. When Ca(2+) diffuses away from the exocytotic sites, the mitochondrial Ca(2+) uptake becomes the dominant mechanism.  相似文献   

13.
Dehydroepiandrosterone (DHEA) is a putative anti-stress agent and stress is associated with the secretion of catecholamine from the adrenal gland, but the effects of DHEA on catecholamine secretion are not fully understood. Using bovine chromaffin cells, we found that DHEA inhibited catecholamine secretion and cytosolic Ca2+ ([Ca2+]i) rise coupled with nicotinic acetylcholine receptor (nAChR) without exerting an effect on3H-nicotine binding. In the case of high K+ stimulation, DHEA effectively suppressed secretion without affecting [Ca2+]1 rise. Trifluoperazine (TFP), a calmodulin inhibitor, was capable of counteracting the inhibition of DHEA on high K+-induced secretions. In permeabilized cells, DHEA suppressed the Ca2+-induced secretion. These results suggest that DHEA (a) acts as a channel blocker that suppresses Ca2+ influx and subsequent secretions associated with nAChR, or (b) affects the intracellular secretion machinery to suppress high K+-induced secretions without affecting the high K+-induced [Ca2+]i rise.  相似文献   

14.
Standard (UICC) chrysotile B asbestos fibres caused rapid (within minutes) 5-to-8-fold stimulations of catecholamine secretion from isolated bovine adrenal chromaffin cells without affecting their viability (97%). The stimulation of catecholamine secretion by asbestos was selective to chrysotile type fibres, half-maximal stimulation by standard chrysotile B, chrysotile A, crocidolite, amosite and silica fibres being observed at 7, 73, 160, 250 and ? 500 μg per ml, respectively. The secretory effect of chrysotile B was additive to that of acetylcholine and blocked by either the divalent cations, Co2+, Ni2+ and Mg2+ or the ion chelators, EGTA and EDTA. Conversely, neither verapamil, methoxyverapamil, or removal of extracellular calcium affected the asbestos-evoked catecholamine secretion. These data indicate that the selective stimulatory effect of chrysotile type asbestos on adrenal chromaffin cells can be mediated by membrane or intracellular calcium and raise the question of the possible involvement of catecholamines in the pathogenesis of asbestos related diseases.  相似文献   

15.
Voets T 《Neuron》2000,28(2):537-545
In neurosecretory cells, intracellular Ca2+ ([Ca2+]i) not only acts as the trigger for secretion but also regulates earlier steps in the secretory pathway. Here, a novel approach was developed to control [Ca2+]i over a broad concentration range, which allowed the quantification of three distinct actions of [Ca2+]i on large dense-core vesicle (LDCV) fusion in chromaffin cells from mouse adrenal slices. Basal [Ca2+]i regulated the transfer of vesicles toward a slowly releasable state, whereas further maturation to the readily releasable state was Ca2+ independent. [Ca2+]i levels above 3 microM triggered exocytosis of all readily and slowly releasable vesicles in two parallel, kinetically distinct fusion reactions. In a molecular context, these results suggest that Ca2+ acts both before and after trans-SNARE complex formation to regulate fusion competence and fusion kinetics of LDCVs.  相似文献   

16.
The localization and function of Ca(2+) stores in isolated chromaffin cells of rat adrenal medulla were investigated using confocal laser microscopy and amperometry. Binding sites for BODIPY-inositol 1,4,5-trisphosphate (IP(3)), -ryanodine (Ry), and -thapsigargin (Thap) were both perinuclear and at the cell periphery. The endoplasmic reticulum (ER), which was identified by ER Tracker dye, took up fluorescent Ry and IP(3), and the majority of BODIPY-Ry-binding area was bound by fluorescent IP(3). Under Ca(2+)-free conditions, the amount of caffeine-induced catecholamine secretion was 33% of that of muscarine-induced secretion, but muscarine induced little or no secretion after exposure to caffeine. Muscarine-induced Ca(2+) increases, as observed with fluo-3, lasted for a few tens of seconds under Ca(2+)-free conditions, whereas a caffeine-induced Ca(2+) transient diminished rapidly with a half decay time of 3s and this spike-like Ca(2+) transient was then followed by a sustained increase with a low level. These results indicate that IP(3) receptors and Ry receptors (RyRs) are present in common ER Ca(2+) storage and the lower potency of caffeine for secretion may be due to a rapid decrease in RyR channel activity to a low level.  相似文献   

17.
18.
Amperometry and microfluorimetry were employed to investigate the Ca(2+)-dependence of catecholamine release induced from PC12 cells by cholinergic agonists. Nicotine-evoked exocytosis was entirely dependent on extracellular Ca(2+) but was only partly blocked by Cd(2+), a nonselective blocker of voltage-gated Ca(2+) channels. Secretion and rises of [Ca(2+)](i) observed in response to nicotine could be almost completely blocked by methyllycaconitine and alpha-bungarotoxin, indicating that such release was mediated by receptors composed of alpha7 nicotinic acetylcholine receptor subunits. Secretion and [Ca(2+)](i) rises could also be fully blocked by co-application of Cd(2+) and Zn(2+). Release evoked by muscarine was also fully dependent on extracellular Ca(2+). Muscarinic receptor activation stimulated release of Ca(2+) from a caffeine-sensitive intracellular store, and release from this store induced capacitative Ca(2+) entry that could be blocked by La(3+) and Zn(2+). This Ca(2+) entry pathway mediated all secretion evoked by muscarine. Thus, activation of acetylcholine receptors stimulated rises of [Ca(2+)](i) and exocytosis via Ca(2+) influx through voltage-gated Ca(2+) channels, alpha7 subunit-containing nicotinic acetylcholine receptors, and channels underlying capacitative Ca(2+) entry.  相似文献   

19.
To clarify when the cholinergic receptor-mediated secretion mechanism of developing adrenal chromaffin cells is expressed and becomes functional, morphological changes and intracellular calcium dynamics were studied by immunohistochemistry, electron microscopy, and Fura-2 digital image analysis. From embryonic day 14 to 16, adrenal medullary cells were immunoreactive to noradrenaline-synthesizing enzyme (dopamine β-hydroxylase) but not to adrenaline-synthesizing enzyme (phenylethanolamine N-methyltransferase). These cells contained either no granules or just a few granules of high electron density. Exocytotic figures were rarely observed in cells of the control or in cells after carbamylcholine stimulation. Nerve fibers in the adrenal medulla contained either no clear vesicles or very few. Neither methacholine nor nicotine caused a change of intracellular Ca2+ in most chromaffin cells. From embryonic day 18 to 20, chromaffin cells were immunoreactive to both dopamine β-hydroxylase and phenylethanolamine N-methyltransferase and they contained relatively numerous secretory granules. Exocytotic figures were often seen in cells after carbamylcholine stimulation. The intra-adrenal nerve fibers contained numerous clear vesicles and a few dense-cored vesicles. Methacholine caused no rise of intracellular Ca2+, but nicotine induced a low to relatively high rise in many cells. From postnatal day 2 or 3 to postnatal week 1, numerous cells were immunoreactive to both dopamine β-hydroxylase and phenylethanolamine N-methyltransferase, whereas some cells were reactive to dopamine β-hydroxylase alone. Chromaffin cells were divisible into noradrenaline cells and adrenaline cells based on the ultrastructural features of their granules. Methacholine induced a moderate rise of intracellular Ca2+ and nicotine caused a high rise in many chromaffin cells, whereas, in some chromaffin cells, methacholine induced no rise of intracellular Ca2+ and nicotine induced a high rise. These results suggest that morphological changes of the developing cells and the intra-adrenal nerve fibers are related to the expression of a cholinergic receptor-mediated secretion mechanism and that this mechanism via a nicotinic receptor-mediated Ca2+ signaling pathway precedes the muscarinic receptor-mediated one during development.  相似文献   

20.
The nonhydrolyzable GTP analogue guanosine 5'-(beta, gamma-imido)triphosphate (GMP-PNP) produced an ATP-dependent but Ca2+-independent stimulation of [3H]norepinephrine release from permeabilized chromaffin cells. This stimulation of secretion was 25-35% of the secretion induced by 10 microM Ca2+. A similar Ca2+-independent stimulation was produced by other non-hydrolyzable GTP analogues. No effect was seen with a variety of other nucleotides, including GTP. The GMP-PNP effect was specifically inhibited by low concentrations of guanine nucleotides. Addition of cAMP did not mimic the Ca2+-independent GMP-PNP effect, but did slightly enhance Ca2+-dependent secretion. Pretreatment with pertussis toxin had no effect on Ca2+-dependent secretion or on the GMP-PNP effect. There was no detectable diglyceride or inositol phosphate produced during GMP-PNP treatment, and addition of diglyceride and inositol trisphosphate did not induce secretion. Guanosine 5'-(beta-thio)diphosphate (GDP-beta-S), in addition to its ability to inhibit the GMP-PNP effect, partially inhibited Ca2+-dependent secretion. At 10 microM free Ca2+, the effects of GMP-PNP and Ca2+ were nonadditive. In fact, secretion in the presence of both GMP-PNP and 10 microM Ca2+ was slightly less than secretion due to Ca2+ alone. These data suggest that a guanine nucleotide-dependent process interacts in some way with one or more components of the normal Ca2+-dependent secretory pathway. However, it may not be an intrinsic part of the mechanism underlying Ca2+-dependent secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号