首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Insect antimicrobial peptides and their applications   总被引:1,自引:0,他引:1  
Insects are one of the major sources of antimicrobial peptides/proteins (AMPs). Since observation of antimicrobial activity in the hemolymph of pupae from the giant silk moths Samia Cynthia and Hyalophora cecropia in 1974 and purification of first insect AMP (cecropin) from H. cecropia pupae in 1980, over 150 insect AMPs have been purified or identified. Most insect AMPs are small and cationic, and they show activities against bacteria and/or fungi, as well as some parasites and viruses. Insect AMPs can be classified into four families based on their structures or unique sequences: the α-helical peptides (cecropin and moricin), cysteine-rich peptides (insect defensin and drosomycin), proline-rich peptides (apidaecin, drosocin, and lebocin), and glycine-rich peptides/proteins (attacin and gloverin). Among insect AMPs, defensins, cecropins, proline-rich peptides, and attacins are common, while gloverins and moricins have been identified only in Lepidoptera. Most active AMPs are small peptides of 20–50 residues, which are generated from larger inactive precursor proteins or pro-proteins, but gloverins (~14 kDa) and attacins (~20 kDa) are large antimicrobial proteins. In this mini-review, we will discuss current knowledge and recent progress in several classes of insect AMPs, including insect defensins, cecropins, attacins, lebocins and other proline-rich peptides, gloverins, and moricins, with a focus on structural-functional relationships and their potential applications.  相似文献   

2.
3.
4.
VmCT1 is a cationic antimicrobial peptide (AMP) from the venom of the scorpion Vaejovis mexicanus. VmCT1 and analogs were designed with single substitutions for verifying the influence of changes in physicochemical features described as important for AMPs antimicrobial and hemolytic activities, as well as their effect on VmCT1 analogs resistance against proteases action. The increase of the net positive charge by the introduction of an arginine residue in positions of the hydrophilic face of the helical structure affected directly the antimicrobial activity. Arg-substituted analogs presented activity against Gram-negative bacteria from the ESKAPE list of pathogens that were not observed for VmCT1. Additionally, peptides with higher net positive charge presented increased antimicrobial activity with values ranging from 0.39 to 12.5 μmol L−1 against Gram-positive and Gram-negative bacteria and fungi. The phenylalanine substitution by glycine (position 1), and the valine substitution by a proline residue (position 8) led to analogs with lower hemolytic activity (at concentrations 50 and 100 μmol L−1, respectively). These results revealed that it is possible to modulate the biological activities of VmCT1 derivatives by designing single substituted-analogs as prospective therapeutics against bacteria and fungi.  相似文献   

5.
Antimicrobial peptides (AMPs) provide a potential source of new antimicrobial therapeutics for the treatment of multidrug-resistant pathogens. To develop Gram-negative selective AMPs that can inhibit the effects of lipopolysaccharide (LPS)-induced sepsis, we added various rationally designed LPS-targeting peptides [amino acids 28–34 of lactoferrin (Lf28–34), amino acids 84–99 of bactericidal/permeability increasing protein (BPI84–99), and de novo peptide (Syn)] to the potent AMP, GNU7 (RLLRPLLQLLKQKLR). Compared to our original starting peptide GNU7, hybrid peptides had an 8- to 32-fold improvement in antimicrobial activity against Gram-negative bacteria, such as Escherichia coli and Salmonella typhimurium. Among them, Syn-GNU7 showed the strongest LPS-binding and -neutralizing activities, thus allowing it to selectively eliminate Gram-negative bacteria from within mixed cultures. Our results suggest that LPS-targeting peptides would be useful to increase the antimicrobial activity and selectivity of other AMPs against Gram-negative bacteria.  相似文献   

6.
Animals posses a large variety of antimicrobial peptides (AMPs) that serve as effective components in innate host defenses against microbial infections. These antimicrobial peptides differ in amino acid composition, range of antimicrobial specificities, hemolysis, cytotoxicity and mechanisms of action. This study was designed to evaluate their therapeutic potential of the following six antimicrobial peptides initially found from animals: cecropin P1, indolicidin, LL-37, palustrin-OG1, LFP-20 and LFB-11. Our results indicated that cecropin P1 possessed the most desired biological activity, with fast and potent antimicrobial activity but only slight hemolytic or cytotoxic activity against human cells. Indolicidin was more effective against gram-positive bacteria but with higher hemolytic and cytotoxic activity on human peripheral blood mononuclear cell (PBMCs) (P < 0.05). Although LFP-20 and LFB-11 had moderate activity against tested strains and need 30 min to kill E. coli, they showed almost no hemolytic and cytotoxic activity towards PBMCs (P < 0.01). Indolicidin could form pores of well-defined structure in bacterial membranes whereas lysis of E. coli cells was observed after addition LFB-11 and LL-37 at 1 × MIC for 1 h. LL-37 treatment could lead to the leakage of entire bacterial cytoplasmic contents. The most obvious phenomenon was protuberant structures on the E. coli cell surface after incubation with LFP-20, cecropin P1 and palustrin-OG1. The results presented here illustrate that AMPs derived from different animals exhibited different antimicrobial characteristics. Because of their potent and broad-spectrum antimicrobial activity, low cytotoxicity towards normal cells, and the unique mechanism of action, these peptides may provide the impetus for the development of novel strategies for the prevention of bacterial infections in animals.  相似文献   

7.
Antimicrobial peptides (AMPs) have attracted attentions as a novel antimicrobial agent because of their unique activity against microbes. In the present study, we described a new, previously unreported AMP, moronecidin-like peptide, from Hippocampus comes and compared its antimicrobial activity with moronecidin from hybrid striped bass. Antibacterial assay indicated that gram-positive bacteria were more sensitive to moronecidin and moronecidin-like compared with gram-negative bacteria. Furthermore, both AMPs were found to exhibit effective antifungal activity. Comparative analysis of the antimicrobial activity revealed that moronecidin-like peptide has higher activity against Acinetobacter baumannii and Staphylococcus epidermidis relative to moronecidin. Both moronecidin-like and moronecidin peptides retained their antibacterial activity in physiological pH and salt concentration. The time-killing assay showed that the AMPs completely killed A. baumannii and S. epidermidis isolates after 1 and 5 h at five- and tenfold above their corresponding MICs, respectively. Anti-biofilm assay demonstrated that peptides were able to inhibit 50% of biofilm formation at sub-MIC of 1/8 MIC. Furthermore, moronecidin-like significantly inhibited biofilm formation more than moronecidin at 1/16 MIC. Collectively, our results revealed that antimicrobial and anti-biofilm activities of moronecidin-like are comparable to moronecidin. In addition, the hemolytic and cytotoxic activities of moronecidin-like were lower than those of moronecidin, suggesting it as a potential novel therapeutic agent, and a template to design new therapeutic AMPs.  相似文献   

8.
Complete Genome Sequence of Haemophilus parasuis SH0165   总被引:2,自引:0,他引:2  
Haemophilus parasuis is the causative agent of Glässer's disease, which produces big losses in swine populations worldwide. H. parasuis SH0165, belonging to the dominant serovar 5 in China, is a clinically isolated strain with high-level virulence. Here, we report the first completed genome sequence of this species.  相似文献   

9.
Antimicrobial peptides (AMPs) as components of innate immunity system have been isolated from fish and other species. In this study, the crude proteins extracted with gradient ammonium sulfate precipitation technique from the processing by-products of African catfish Clarias gariepinus (C. gariepinus) were purified by size-exclusion chromatography and all the four obtained fractions, Clarias antimicrobial peptides I(CAP-I), CAP-II, CAP-III and CAP-IV, showed antimicrobial activity. Among of these fractions, CAP-IV showed the highest antimicrobial activity against Staphylococcus aureus, Aeromonas sobria, Aeromonas hydrophila, Escherichia coli by agar diffusion plate test and the diameter of inhibition zone was 8.34, 9.27, 6.76, 6.13 mm, respectively. The molecular weight of main peptides of CAP-IV was around 4.1 KD by SDS-PAGE analysis. CAP-IV showed antimicrobial activity against both gram-negative and gram-positive bacterial pathogens at minimum inhibitory concentrations (MICs) ranging from 105 to 420 μg/mL. The antimicrobial activity of CAP-IV was stable at wide pH range, 3–11 and was also heat-stable when temperature was below 80 °C. Freeze-thawing treatment also only had slight effects on the antimicrobial activity of CAP-IV. Besides, CAP-IV was not sensitive to the hydrolysis by pepsin and trypsin, except for protease K. These results suggest that CAP-IV isolated from C. gariepinus is potential to be developed as a new antimicrobial peptide and may partially explain the high disease resistance of African catfish C. gariepinus.  相似文献   

10.
11.
Antimicrobial peptides (AMPs) were recently determined to be potential candidates for treating drug-resistant bacterial infections. The aim of this study was to develop shorter AMP fragments that combine maximal bactericidal effect with minimal synthesis cost. We first synthesized a series of truncated forms of AMPs (anti-lipopolysaccharide factor from shrimp, epinecidin from grouper, and pardaxin from Pardachirus marmoratus). The minimum inhibitory concentrations (MICs) of modified AMPs against ten bacterial species were determined. We also examined the synergy between peptide and non-peptide antibiotics. In addition, we measured the inhibitory rate of cancer cells treated with AMPs by MTS assay. We found that two modified antibacterial peptides (epinecidin-8 and pardaxin-6) had a broad range of action against both gram-positive and gram-negative bacteria. Furthermore, epinecidin and pardaxin were demonstrated to have high antibacterial and anticancer activities, and both AMPs resulted in a significant synergistic improvement in the potencies of streptomycin and kanamycin against methicillin-resistant Staphylococcus aureus. Neither AMP induced significant hemolysis at their MICs. In addition, both AMPs inhibited human epithelial carcinoma (HeLa) and fibrosarcoma (HT-1080) cell growth. The functions of these truncated AMPs were similar to those of their full-length equivalents. In conclusion, we have successfully identified shorter, inexpensive fragments with maximal bactericidal activity. This study also provides an excellent basis for the investigation of potential synergies between peptide and non-peptide antibiotics, for a broad range of antimicrobial and anticancer activities.  相似文献   

12.
Eleven antimicrobial peptides (AMP) based on the incorporation of cyclic tetra substituted Cα amino acids, as well as other unnatural amino acids were designed, synthesized and screened for in vitro activity against 18 strains of bacteria as well as 12 cancer cell lines. The AMPs discussed herein are derived from the following peptide sequence: Ac-GF(X)G(X)B(X)G(X)F(X)G(X)GB(X)BBBB-amide, X = any one of the following residues, A5c, A6c, Tic or Oic and B = any one of the following residues, Arg, Lys, Orn, Dpr or Dab. A diversity of in vitro inhibitory activity was observed for these AMPs. Several analogs exhibited single digit μM activity against drug resistant bacteria including; multiple drug resistant Mycobacterium tuberculosis, extremely drug resistant Mycobacterium tuberculosis and MRSA. The physicochemical properties of the basic amino acid residues incorporated into these AMPs seem to play a major role in defining antibacterial activity. Overall hydrophobicity seems to play a limited role in defining antibacterial activity. The ESKAPE pathogens were used to compare the activity of these AMPs to another family of synthetic AMPs incorporating the unnatural amino acids Tic and Oic. In most cases similarly substituted members of both families exhibited similar inhibitory activity against the ESKAPE pathogens. In specific cases differences in activity as high as 15 fold were observed between analogs. In addition four of these AMPs exhibited promising IC50 (<7.5 μM) values against 12 different and diverse cancer cell lines. Five other AMPs exhibited promising IC50 (<7.5 μM) values against selected cancer cell lines.  相似文献   

13.
14.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Antibiotic-resistant bacterial infections are becoming a serious health issue and will cause 10 million deaths per year by 2050. As a result, the development of new antimicrobial agents is urgently needed. Antimicrobial peptides (AMPs) are found in the innate immune systems of various organisms to effectively fend off invading pathogens. In this study, we designed a series of AMPs (THL-2-1 to THL-2-9) with centrosymmetric and amphipathic properties, through substituting different amino acids on the hydrophobic side and at the centrosymmetric position to improve their antimicrobial activity. The results showed that leucine as a residue on the hydrophobic side of the peptide could enhance its antimicrobial activity and that glutamic acid as a centrosymmetric residue could increase the salt resistance of the peptide. Thus, the THL-2-3 peptide (KRLLRELKRLL-NH2) showed the greatest antimicrobial activity (MIC90 of 16 μM) against Gram-negative bacteria and had the highest salt resistance and cell selectivity among all the designed peptides. In summary, the results of this study provide useful references for the design of AMPs to enhance antimicrobial activity.  相似文献   

16.
The increasing incidence of hospital acquired infections caused by antibiotic resistant pathogens has led to an increase in morbidity and mortality, finding alternative antibiotics unaffected by resistance mechanisms is fundamentally important for treating this problem. Naturally occurring proteins usually carry short peptide fragments that exhibit noticeable biological activity against a wide variety of microorganisms such as bacteria, fungi and protozoa. Traditional discovery of such antimicrobially active fragments (i.e. antimicrobial peptides, AMPs) from protein repertoire is either random or led by chance. Here, we report the use of a rational protocol that combines in silico prediction and in vitro assay to identify potential AMPs with high activity and low toxicity from the entire human genome. In the procedure, a three-step inference strategy is first proposed to perform genome-wide analysis to infer AMPs in a high-throughput manner. By employing this strategy we are able to screen more than one million peptide candidates generated from various human proteins, from which we identify four highly promising samples, and subsequently their antibacterial activity on five strains as well as cytotoxicity on human myoblasts are tested experimentally. As a consequence, two high-activity, low-toxicity peptides are discovered, which could be used as the structural basis to further develop new antibiotics. In addition, from 1491 known AMPs we also derive a quantitative measure called antibacterial propensity index (API) for 20 naturally occurring amino acids, which shows a significant allometric correlation with the theoretical minimal inhibitory concentration of putative peptides against Gram-positive and Gram-negative bacteria. This study may provide a proof-of-concept paradigm for the genome-wide discovery of novel antimicrobial peptides by using a combination of in silico and in vitro analyses.  相似文献   

17.
Antimicrobial peptides (AMPs) are a naturally occurring component of the innate immune response of many organisms and can have activity against both Gram-negative and Gram-positive bacterial species. In order to optimize and improve the direct antimicrobial effect of AMPs against a broad spectrum of bacterial species, novel synthetic hybrids were rationally designed from cecropin A, LL-37 and magainin II. AMPs were selected based on their α-helical secondary structure and fragments of these were analyzed and combined in silico to determine which hybrid peptides would form the best amphipathic cationic α-helices. Four hybrid peptides were synthesized (CaLL, CaMA, LLaMA and MALL) and evaluated for direct antimicrobial activity against a range of bacterial species (Bacillus anthracis, Burkholderia cepacia, Francisella tularensis LVS and Yersinia pseudotuberculosis) alongside the original 'parent' AMPs. The hybrid peptides showed greater antimicrobial effects than the parent AMPs (in one case a parent is completely ineffective while a hybrid based on it removes all traces of bacteria by 3h), although they also demonstrated higher hemolytic properties. Modifications were then carried out to the most toxic hybrid AMP (CaLL) to further improve the therapeutic index. Modifications made to the hybrid lowered hemolytic activity and also lowered antimicrobial activity by various degrees. Overall, this work highlights the potential for rational design and synthesis of improved AMPs that have the capability to be used therapeutically for treatment of bacterial infections.  相似文献   

18.
Antimicrobial peptides (AMPs) are important components of the innate immunity. Many antimicrobial peptides have been found from marine mollusks. Little information about AMPs of mollusks living on land is available. A novel cysteine-rich antimicrobial peptide (mytimacin-AF) belonging to the peptide family of mytimacins was purified and characterized from the mucus of the snail of Achatina fulica. Its cDNA was also cloned from the cDNA library. Mytimacin-AF is composed of 80 amino acid residues including 10 cysteines. Mytimacin-AF showed potent antimicrobial activity against Gram-negative and Gram-positive bacteria and the fungus Candida albicans. Among tested microorganisms, it exerted strongest antimicrobial activity against Staphylococcus aureus with a minimal peptide concentration (MIC) of 1.9 μg/ml. Mytimacin-AF had little hemolytic activity against human blood red cells. The current work confirmed the presence of mytimacin-like antimicrobial peptide in land-living mollusks.  相似文献   

19.
20.
This study aimed to detect and characterize antimicrobial proteins, especially antimicrobial peptides (AMPs) from leaves and roots of Capsicum annuum and to evaluate their inhibitory activities against different phytopathogenic fungi and the bacterium Xanthomonas euvesicatoria. Two methodologies were used for the extraction of peptides from leaves and roots of C. annuum: acid and ethanolic extraction. Extracts were subjected to reversed-phase chromatography on HPLC. The extraction and purification procedures were analysed by uni- and bi-dimensional electrophoresis in tricine gels. Our results show that alcoholic and acid extracts from both tissues can inhibit the growth of the phytopathogenics fungi C. lindemuthianum and C. gloeosporioides. The acid extracts from both tissues are active against X. euvesicatoria and only leaf extracts displayed specific inhibitory activity towards trypsin and α-amylase activity. The data compiled here aim to contribute to establish the multiplicity of potential uses of plant AMPs for the control of pests and pathogens of agricultural relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号